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SYSTEMS OF GENERALIZED VECTOR QUASI-VARIATIONAL
INCLUSION PROBLEMS AND APPLICATION TO MATHEMATICAL

PROGRAMS

X. P. Ding, T. C. Lai and S. J. Yu

Abstract. In this paper, we introduce and study some new systems of gener-
alized vector quasi-variational inclusion problems involving condensing map-
pings in locally FC-uniform spaces. These systems contain many known
systems of generalized vector quasi-variational inclusion problems, systems of
generalized vector quasi-equilibrium problems and systems of vector quasi-
optimization problems as special cases. By applying an existence theorem of
maximal elements of a family of set-valued mappings involving condensing
mapping due to author, we prove some new existence theorems of solutions
for the systems of generalized quasi-variational inclusion problems. As ap-
plications, some existence results of solutions of the mathematical programs
with systems of generalized vector quasi-variational inclusion constraints are
established in noncompact locally FC-uniform spaces.

1. INTRODUCTION

Recently Lin [22] and Lin and Tu [23] studied some systems of generalized
quasi-variational inclusion problems with applications in locally convex topological
vector spaces. Hai and Khanh [17] studied some systems of set-valued quasivaria-
tional inclusion problems in topological vector spaces with applications.

Inspired by this line of research works, we introduce and study some new systems
of generalized quasi-variational inclusion problems involving condensing set-valued
mappings in locally FC-uniform spaces without convexity structure.
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For a nonempty set X , we denote by 2X the family of all subsets of X . Let
I be any index set. For each i ∈ I , let Xi, Yi and Zi be topological spaces. Let
X =

∏
i∈I Xi, Y =

∏
i∈I Yi and for x ∈ X , xi = πi(x) be the projection of x

onto Xi. For each i ∈ I , let Ai : X × Y → 2Xi , Ti, Si : X × Y → 2Yi and
Φi,Ψi : Yi × Xi × X → 2Zi be set-valued mappings. We consider the following
systems of generalized vector quasi-variational inclusions problems (SGVQVIP):

(I) Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I , x̂i ∈ Ai(x̂, ŷ), ŷi ∈ Si(x̂, ŷ)
and

SGVQVIP(I) Φi(vi, ui, x̂) ⊆ Ψi(vi, x̂i, x̂), ∀ vi ∈ Ti(x̂, ŷ), ui ∈ Ai(x̂, ŷ).

(II) Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I , x̂i ∈ Ai(x̂, ŷ), ŷi ∈ Si(x̂, ŷ)
and

SGVQVIP(II) Φi(vi, ui, x̂) �⊆Ψi(vi, x̂i, x̂), ∀ vi∈Ti(x̂, ŷ), ui ∈ Ai(x̂, ŷ).

(III) Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I , x̂i ∈ Ai(x̂, ŷ), ŷi ∈ Si(x̂, ŷ)
and
SGVQVIP(III)

Φi(vi, ui, x̂)
⋂

Ψi(vi, x̂i, x̂) = ∅, ∀ vi ∈ Ti(x̂, ŷ), ui ∈ Ai(x̂, ŷ).

(IV) Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I , x̂i ∈ Ai(x̂, ŷ), ŷi ∈ Si(x̂, ŷ)
and
SGVQVIP(IV)

Φi(vi, ui, x̂)
⋂

Ψi(vi, x̂i, x̂) �= ∅, ∀ vi ∈ Ti(x̂, ŷ), ui ∈ Ai(x̂, ŷ).

If for each i ∈ I and for all (x, y) ∈ X×Y , Ai(x, y) = Ai(x), Si(x, y) = Si(x)
and Ti(x, y) = Ti(x), then the SGQVIP (I)- SGQVIP (VI) reduce to the following
problems:

(I)′ Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I , x̂i ∈ Ai(x̂), ŷi ∈ Si(x̂) and

SGVQVIP(I)′ Φi(vi, ui, x̂) ⊆ Ψi(vi, x̂i, x̂), ∀ vi ∈ Ti(x̂), ui ∈ Ai(x̂).

(II)′ Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I , x̂i ∈ Ai(x̂), ŷi ∈ Si(x̂) and

SGVQVIP(II)′ Φi(vi, ui, x̂) �⊆ Ψi(vi, x̂i, x̂), ∀ vi ∈ Ti(x̂), ui ∈ Ai(x̂).

(III)′) Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I , x̂i ∈ Ai(x̂), ŷi ∈ Si(x̂) and

SGVQVIP(III)′ Φi(vi, ui, x̂)
⋂

Ψi(vi, x̂i, x̂)=∅, ∀ vi∈Ti(x̂), ui∈Ai(x̂).
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(IV)′ Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I , x̂i ∈ Ai(x̂), ŷi ∈ Si(x̂) and

SGVQVIP(IV)′ Φi(vi, ui,x̂)
⋂

Ψi(vi, x̂i, x̂) �= ∅, ∀ vi∈Ti(x̂), ui∈Ai(x̂).

It is easy to see that the SGVQVIP (I)’ and SGVQVIP (IV)’ contain respectively
the (SQVIP 2) and (SQVIP 4) introduced and studied by Hai and Khanh [17] in
topological vector spaces as special cases. The SGVQVIP (II)’ and SGQVIP (III)’
are new.

If for each i ∈ I , Zi is a topological vector space and let Ψi(yi, xi, x) = {0}
for all (yi, xi, x) ∈ Yi × Xi × X , then the SGVQVIP (III) and SGVVQVIP (IV)
reduce to the following problems respectively:

(a) Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I , x̂i ∈ Ai(x̂, ŷ), ŷi ∈ Si(x̂, ŷ)
and

(SVDP(a)) 0 /∈ Φi(vi, ui, x̂), ∀ vi ∈ Ti(x̂, ŷ), ui ∈ Ai(x̂, ŷ).

(b) Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I , x̂i ∈ Ai(x̂, ŷ), ŷi ∈ Si(x̂, ŷ)
and

(SVIP(b)) 0 ∈ Φi(vi, ui, x̂), ∀ vi ∈ Ti(x̂, ŷ), ui ∈ Ai(x̂, ŷ).

It is easy to see that the SVIP (b) and SVDP (a) contain respectively the (SVIP1)
and (SVIP2), introduced and studied by Lin and Tu [23] in locally convex topolog-
ical vector spaces as special cases.

Hence the SGVQVIP (I)-SGVQVIP(VI) include many known systems of gen-
eralized vector quasi-variational inclusion problems, systems of quasi-variational
disclusion problems and generalized vector quasi-equilibrium problems with wide
applications as very special cases, for example, see [2-4, 8-10, 12, 15, 19-21] and
the references therein.

In this paper, we introduce the new notions of Ψi-FC-quasiconvexity for set-
valued mappings Φi,Ψi : Yi ×Xi ×X → 2Zi in FC-space. by using these notions
and an existence theorem of maximal elements for a family of set-valued mappings
involving condensing mappings due to author [11], some new existence theorems of
solutions for the SGVQVIP (I)-SGVQVIP (VI) are proved in noncompact locally
FC-uniform spaces. These results improve, unify and generalize many known
results in recent literature. As applications, some existence results of solutions
of the mathematical programs with systems of generalized vector quasi-variational
inclusion constraints are established in noncompact locally FC-uniform spaces.
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2. PRELIMINARIES

For a nonempty set X , we denote by < X > the family of all nonempty
finite subsets of X . Let ∆n be the standard n-dimensional simplex with vertices
e0, e1, · · · , en. If J is a nonempty subset of {0, 1, · · · , n}, we denote by ∆J the
convex hull of the vertices {ej : j ∈ J}.

The following notion was introduced by Ben-El-Mechaiekh et al. [5].

Definition 2.1. (X,Γ) is called a L-convex space if X is a topological space
and Γ :< X >→ 2X is a mapping such that for each N ∈< X > with |N | = n+1,
there exists a continuous mapping ϕN : ∆n → Γ(N ) satisfying A ∈< N > with
|A| = J + 1 implies ϕN (∆J) ⊆ Γ(A), where ∆J is the face of ∆N corresponding
to A.

The following notion of a finitely continuous topological space ( in short, FC-
space ) was introduced by Ding [7].

Definition 2.2. (X, ϕN) is said to be a FC-space if X is a topological space
and for each N = {x0, · · · , xn} ∈< X > where some elements in N may be same,
there exists a continuous mapping ϕN : ∆n → X . A subset D of (X, ϕN) is said
to be a FC-subspace of X if for each N = {x0, · · · , xn} ∈< X > and for each
(xi0, · · · , xik} ⊆ N

⋂
D, ϕN(∆k) ⊆ D where ∆k = co({eij : j = 0, · · · , k}).

Comparing the definitions of L-convex spaces and FC-spaces, it is clear that
each L-convex space must be a FC-space. The following examples show that there
exists a FC-space which is not a L-convex space.

Example 2.1. Let (X, ‖ · ‖) be a strictly convex and reflexive Banach space
and X1 is a nonempty closed convex subset of X and X2 be a nonempty convex
subset of X with X1

⋂
X2 = ∅. Then E = X1

⋃
X2 is not convex. For each

N = {x0, · · · , xn} ∈< E >, define a mapping ϕN : ∆n → 2X by

ϕN (α) =




n∑
i=0

αixi, if N ⊂ X1 or N ⊂ X2,

j∑
i=0

αixi +
n∑

i=j+1

αiPX1(xi), if N = N1

⋃
N2,

for all α = (α0, · · · , αn) ∈ ∆n whereN1 = {x0, · · · , xj} ⊆ X1, N2 = {xj+1, · · · ,
xn} ⊆ X2 and PX1(xi) is the metric projection of xi onto X1. It is easy to see that
ϕN is continuous and hence (E, ϕN) is a FC-space. For any convex subset A of
X1 with A �= X1 and any subset B of X2, it is easy to check that the sets A, X1

and X1
⋃
B are all FC-subspaces of E . But the sets X2, B and A

⋃
B are not
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FC-subspaces of E . If we define a set-valued mapping Γ :< E >→ 2E by

Γ(N ) = ϕN(∆n), ∀ N = {x0, · · · , xn} ∈< E >,

then we have that for each N = {x0, · · · , xn} ∈< E >, ϕN (∆n) ⊆ Γ(N ). But if
N = N1

⋃
N2 where N1 = {x0, · · · , xj} ⊆ X1 and N2 = {xj+1, · · · , xn} ⊆ X2,

then we have Γ(N2) = ϕN2(∆J) ⊆ X2 and ϕN(∆J) ⊆ X1 where ∆J = co{ek :
k = j + 1, · · · , n}. Hence we have ϕN(∆J) �⊆ Γ(N2) and so (E,Γ) is not a
L-convex space.

It is clear that any convex subset of a topological vector space, any H-space in-
troduced by Horvath [18], any G-convex space introduced by Park and Kim [25] and
any L-convex spaces introduced by Ben-El-Mechaiekh et al. [5] are all FC-space.
Hence, it is quite reasonable and valuable to study various nonlinear problems in
FC-spaces.

By the definition of FC-subspaces of a FC-space, it is easy to see that if
{Bi}i∈I is a family of FC-subspaces of a FC-space (Y, ϕN) and

⋂
i∈I Bi �= ∅,

then
⋂

i∈I Bi is also a FC-subspace of (Y, ϕN) where I is any index set. For a
subset A of (Y, ϕN), we can define the FC-hull of A as follows:

FC(A) =
⋂

{B ⊂ Y : A ⊆ B and B is FC − subspace of Y }.

Clearly, FC(A) is the smallest FC-subspace of Y containing A and each FC-
subspace of a FC-space is also a FC-space

Lemma 2.1. [13]. Let (Y, ϕN) be a FC-space and A be a nonempty subset
of Y . Then

FC(A) =
⋃

{FC(N ) : N ∈< A >}.

Lemma 2.2. [13]. Let X be a topological space, (Y, ϕN) be a FC-space
and G : X → 2Y be such that G−1(y) = {x ∈ X : y ∈ G(x)} is compactly
open in X for each y ∈ Y . Then the mapping FC(G) : X → 2Y defined by
FC(G)(x) = FC(G(x)) for each x ∈ X satisfies that (FC(G))−1(y) is also
compactly open in X for each y ∈ Y .

The following notion was introduced by Ding [15].

Definition 2.3. (X,U , ϕN) is said to be a locally FC-uniform space if (X,U)
is a uniform space, and (X, ϕN) is an FC-space such that U has a basis B consisting
of entourages satisfying that for each V ∈ B, the set V [M ] = {x ∈ X : M

⋂
V [x] �=

∅} is an FC-subspace of X whenever M ⊆ X is an FC-subspace of X .
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Example 2.2. Let (E, ϕN) is the FC-space given in Example 2.1. Note that E
is a metric space and each metric space is a Hausdorff uniform space with uniform
structure U = {V (ε) : ε > 0} where V (ε) = {(x, y) ∈ E × E : d(x, y) < ε}, see
[16, p. 201]. For each V (ε) ∈ U , we have V [x] = {y ∈ X : |x− y| < ε} and so
V [M ] = {x ∈ X : M

⋂
V [x] �= ∅} =

⋃
x∈M V [x] for each FC-subspace M of E .

It is easy to check that (E,U , ϕN) is locally FC-uniform space.

Definition 2.4. [11] Let C be a lattice with a least element, denoted by 0,
(X,U , ϕN) be a locally FC-uniform space and Φ : 2X → C be a mapping. Then
Φ is said to be a measure of noncompactness on X if the following conditions are
satisfied:

(i) for any A ⊂ X , Φ(A) = 0 if and only if A is relatively compact,
(ii) Φ(FC(A)) = Φ(A), where FC(A) denotes the closure of FC-hull of A,
(iii) Φ(A

⋃
B) = max{Φ(A),Φ(B)}.

It follows from (iii) that if A ⊆ B, then Φ(A) ≤ Φ(B).

Definition 2.5. [11] Let Φ : 2X → C be a measure of noncompactness on
(X,U , ϕN). A mapping G : X → 2X is said to be Φ-condensing if, whenever
A ⊆ X with Φ(G(A)) ≥ Φ(A) then A is relatively compact.

Remark 2.1. It is clear that if G : X → 2X is Φ-condensing and G∗ : X → 2X

satisfies G∗(x) ⊆ G(x), ∀ x ∈ X , then G∗ is also Φ-condensing.

The following result is Theorem 2.2 of Ding [15].

Lemma 2.3. Let I be any index set. For each i ∈ I , let (Xi,Ui, ϕNi) be
a locally FC-uniform spaces with each (X i,Ui) having a basis Bi consisting of
symmetric entourages, and X =

∏
i∈I Xi, U =

∏
i∈I Ui and ϕN =

∏
i∈I ϕNi for

any N ∈< X > where Ni is the projection of N onto X i. Then (X,U , ϕN) is also
a locally FC-uniform space.

The following result is a special case of Corollary 3.3 of Ding [13].

Lemma 2.4. Let I be any index set. For each i ∈ I , let (Xi, ϕNi) be a
compact FC-space and X =

∏
i∈I Xi. For each i ∈ I , let Gi : X → 2Xi be such

that

(i) for each x ∈ X , Gi(x) is a FC-subspace of Xi,
(ii) for each x ∈ X , πi(x) /∈ Gi(x),
(iii) for each yi ∈ Xi, G−1

i (yi) is compactly open in X
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Then there exists x̂ ∈ X such that G i(x̂) = ∅ for each i ∈ I .

The following result is Lemma 2.2 of Ding [11].

Lemma 2.5. Let I be any index set. For each i ∈ I , let (Xi,Ui, ϕNi) be a
locally FC-uniform space and G i : X =

∏
i∈I Xi → 2Xi be a set-valued mapping

such that G : X → 2X defined by G(x) =
∏

i∈I Gi(x) is Φ-condensing. Then
there exists a nonempty compact FC-subspace K =

∏
i∈I Ki of X where each Ki

is a compact FC-subspace of X i such that G(K) ⊆ K .

By Lemma 2.4 and Lemma 2.5, we have the following result.

Theorem 2.1. Let I be any index set. For each i ∈ I , let (Xi,Ui, ϕNi) be
a locally FC-uniform space. Let X =

∏
i∈I Xi be the locally FC-uniform space

defined as in Lemma 2.3 and Φ is a measure of noncompactness on X . For each
i ∈ I , let Gi : X → 2Xi be such that

(i) for each x ∈ X , Gi(x) is a FC-subspace of Xi,
(ii) for each x ∈ X , πi(x) /∈ Gi(x),
(iii) for each yi ∈ Xi, G−1

i (yi) is compactly open in X ,
(iv) the mapping G : X → 2X defined by G(x) =

∏
i∈I Gi(x) for each x ∈ X

is Φ-condensing.

Then there exist a compact subset K =
∏

i∈I Ki of X and a point x̂ ∈ K such
that Gi(x̂) = ∅, for each i ∈ I .

Proof. By (iv) and Lemma 2.5, there exists a compact FC-subspace K =∏
i∈I Ki of X where each Ki is a compact FC-subspace of Xi such that G(K) ⊂

K. It follows from the conditions (i)-(iii) that for each i ∈ I , the restrictionGi|K of
Gi onto K also satisfies the conditions (i)-(iii) of Lemma 2.4. Hence all conditions
of Lemma 2.4 are satisfied. By Lemma 2.4, there exists x̂ ∈ K such that Gi(x̂) = ∅,
for each i ∈ I .

Remark 2.2. Theorem 2.1 generalized Proposition 2 of Chebbi and Florenzano
[6] and Theorem 4.3 of Lin and Ansari [19] to locally FC-uniform spaces without
convexity structure.

3. EXISTENCE OF SOLUTIONS FOR THE SGQVIPs

Throughout this section, unless otherwise specified, we shall fix the following
notations and assumptions. Let I be any index set. For each i ∈ I , let (Xi,Ui, ϕNi)
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and (Yi,Ui, ϕ
′
Ni

) be locally FC-uniform spaces, and Zi be a topological space. Let
X =

∏
i∈I Xi and Y =

∏
i∈I Yi be the locally FC-uniform spaces defined as in

Lemma 2.3. For each i ∈ I , let Ai : X × Y → 2Xi , Ti, Si : X × Y → 2Yi and
Φi,Ψi : Yi ×Xi ×X → 2Zi be set-valued mappings.

Definition 3.1. For each i ∈ I and y ∈ Y , Φi is said to be
(i) Ψi-FC-quasiconvex of type (I) in the first two arguments if for each Ni =

{ui,0, · · · , ui,n}∈<Xi > and for each x∈X with xi∈FC(Ni), there exists
j∈{0, · · · , n} such that Φi(vi, ui,j, x)⊆Ψi(vi, xi, x)}, ∀ vi∈Ti(x, y),

(ii) Ψi-FC-quasiconvex of type (II) in the first two arguments if each Ni =
{ui,0, · · · , ui,n}∈< Xi > and for each x∈X with xi∈FC(Ni), there exists
j∈{0, · · · , n} such that Φi(vi, ui,j, x) �⊆ Ψi(vi, xi, x)}, ∀ vi ∈ Ti(x, y),

(iii) Ψi-FC-quasiconvex of type (III) in the first two arguments if for each Ni =
{ui,0, · · · , ui,n} ∈< Xi > and for each x ∈ X with xi ∈ FC(Ni), there
exists j ∈ {0, · · · , n} such that ψi(vi, ui.j, x)

⋂
Ψi(vi, xi, x) = ∅, ∀ vi ∈

Ti(x, y),
(iv) Ψi-FC-quasiconvex of type (IV) in the first two arguments if for each Ni =

{ui,0, · · · , ui,n} ∈< Xi > and for each x ∈ X with xi ∈ FC(Ni), there
exists j ∈ {0, · · · , n} such that ψi(vi, ui.j, x)

⋂
Ψi(vi, xi, x) �= ∅, ∀ vi ∈

Ti(x, y),

Lemma 3.1. For each i ∈ I , define a set-valued mapping P i,k : X×Y → 2Xi ,
k = 1, 2, 3, 4 by

Pi,1(x, y)={ui∈Xi : Φ(vi, ui, x) �⊆ Ψi(vi, xi, x), for some vi∈Ti(x, y)}
(resp., Pi,2(x, y)={ui∈Xi : Φ(vi, ui, x) ⊆ Ψi(vi, xi, x), for some vi∈Ti(x, y)},

Pi,3(x, y)={ui∈Xi : Φ(vi, ui, x)
⋂

Ψi(vi, xi, x) �=∅, for some vi∈Ti(x, y)}
Pi,4(x, y)={ui∈Xi : Φ(vi, ui, x)

⋂
Ψi(vi, xi, x)=∅, for some vi∈Ti(x, y)}).

Then for each y ∈ Y , Φi is Ψi-FC-quasiconvex of type (I) (resp., type (II), type
(III), type (IV)) if and only if for each (x, y) ∈ X×Y , xi �∈ FC(Pi,1(x, y))(resp., xi

�∈ FC(Pi,2(x, y)), xi �∈ FC(Pi,3(x, y)), xi �∈ FC(Pi,4(x, y))).

Proof. We only need to prove the case k = 1, since the proof for the cases
k = 2, 3, 4 is completely similar.
Necessity. Suppose that for each y ∈ Y , Φi is Ψi-FC-quasiconvex of type (I). If
there exists (x̄, ȳ) ∈ X × Y such that x̄i ∈ FC(Pi,1(x̄, ȳ)), then by Lemma 2.1,
there exists Ni = {ui,0, · · · , ui,n} ∈< Pi(x̄, ȳ) > such that x̄i ∈ FC(Ni). By the
definition of Pi,1, we have that for each j ∈ {0, · · · , n}, there exists v̄i,j ∈ Ti(x̄, ȳ)
such that

Φ(v̄i,j, ui,j, x̄) �⊆ Ψi(v̄i,j, x̄i, x̄)
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which contradicts that the assumption for each y ∈ Y , Φi is Ψi-FC-quasiconvex
of type (I).

Sufficiency. Suppose that for each (x, y) ∈ X × Y , xi /∈ FC(Pi,1(x, y)).
If for some ȳ ∈ Y , Φi is not Ψi-FC-quasiconvex of type (I), then there exist
Ni = {ui,0, · · · , ui,n} ∈< Xi > and x̄ ∈ X with x̄i ∈ FC(Ni) such that for each
j ∈ {0, · · · , n}, there exists v̄i,j ∈ Ti(x̄, ȳ) such that

Φ(v̄i,j, ui,j, x̄) �⊆ Ψi(v̄i,j, x̄i, x̄).

It follows that Ni ⊆ Pi,1(x̄, ȳ) and hence we have x̄i ∈ FC(Ni) ⊆ FC(Pi,1(x̄, ȳ))
which is a contradiction.

Lemma 3.2. [1]. Let X and Y be topological spaces and G : X → 2 Y be a
set-valued mapping. Then G is lower semicontinuous in x ∈ X if and only if for
any y ∈ G(x) and any net {xα} ⊂ X satisfying xα → x, there exists a net {yα}
such that yα ∈ G(xα) and yα → y.

Lemma 3.3. For each i ∈ I , let Xi, Yi and Zi be topological spaces, and
let X =

∏
i∈I Xi and Y =

∏
i∈I Yi. For each i ∈ I , let Ai : X × Y → 2Xi ,

Ti, Si : X × Y → 2Yi and Φi,Ψi : Yi × Xi × X → 2Zi be set-valued mappings
such that

(i) Ti is lower semicontinuous on each compact subsets of X × Y ,
(ii) for each ui ∈ Xi, (vi, x) �→ Φi(vi, ui, x) is lower semicontinuous on each

compact subset of Yi ×X ,
(iii) the mapping Ψi ( resp. (yi, xi, x) �→ Zi \Ψi(yi, xi, x) ) is upper semicontin-

uous on each compact subsets of Y i ×Xi ×X with closed values.

Then for each i ∈ I and ui ∈ Xi, the set Mi,1 = {(x, y) ∈ X × Y : Φ(vi, ui, x) �⊆
Ψi(vi, xi, x), for some vi ∈ Ti(x, y)} ( resp., Mi,3 = {(x, y) ∈ X×Y : Φ(vi, ui, x)⋂

Ψi(vi, xi, x) �= ∅, for some vi ∈ Ti(x, y)} ) is compactly open in X × Y .

Proof. For each i ∈ I and ui ∈ Xi, let Ωi,1 = (X×Y )\Mi,1 = {(x, y) ∈ X×
Y : Φ(vi, ui, x) ⊆ Ψi(vi, xi, x), ∀ vi ∈ Ti(x, y)} . For any compact subset K of
X×Y , if (x, y) ∈ clK(Ωi,1

⋂
K), then there exists a net ((xλ, yλ))λ∈Λ ⊆ Ωi,1

⋂
K

such that (xλ, yλ) → (x, y) ∈ K. Hence we have

(3.1) Φi(vi, ui, xλ) ⊆ Ψi(vi, xi,λ, xλ), ∀ vi ∈ Ti(xλ, yλ).

By (i) and Lemma 3.2, for each vi ∈ Ti(x, y), there exists a net (vi,λ)λ∈Λ ⊆ Yi

such that vi,λ ∈ Ti(xλ, yλ) and vi,λ → vi. By (3.1), we have

(3.2) Φi(vi,λ, ui, xλ) ⊆ Ψi(vi,λ, xi,λ, xλ), ∀ λ ∈ Λ.
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Since the mapping (vi, x) �→ Φi(vi, ui, x) is lower semicontinuous at (vi, x), by
Lemma 3.2, for each zi ∈ Φi(vi, ui, x), there exists a net (zi,λ)λ∈Λ such that
zi,λ ∈ Φi(vi,λ, ui, xλ) and zi,λ → zi. By (3.2), we have

(3.3) zi,λ ∈ Ψi(vi,λ, xi,λ, xλ), ∀ λ ∈ Λ.

It follows from condition (iii) and (3.3) that zi ∈ Ψ(vi, xi, x) and hence

Φi(vi, ui, x) ⊆ Ψ(vi, xi, x)

Therefore (x, y) ∈ Ωi,1
⋂
K and Ωi,1 is compactly closed in X × Y . Hence Mi,1

is compactly open in X × Y . By using similar argument, we can prove that Mi,3

is also compactly open in X × Y .

Lemma 3.4. For each i ∈ I , let Xi, Yi and Zi be topological spaces, and
let X =

∏
i∈I Xi and Y =

∏
i∈I Yi. For each i ∈ I , let Ai : X × Y → 2Xi ,

Ti, Si : X × Y → 2Yi and Φi,Ψi : Yi × Xi × X → 2Zi be set-valued mappings
such that

(i) Ti is lower semicontinuous on each compact subsets of X × Y ,
(ii) for each ui ∈ Xi, (vi, x) �→ Φi(vi, ui, x) is upper semicontinuous on each

compact subset of Yi ×X with compact values,
(iii) the mapping (yi, xi, x) �→ Zi \ Ψi(yi, xi, x) ( resp., Ψi ) is upper semicon-

tinuous on each compact subsets of Y i ×Xi ×X with closed values.

Then for each i ∈ I and ui ∈ Xi, the set Mi,2 = {(x, y) ∈ X × Y : Φ(vi, ui, x) ⊆
Ψi(vi, xi, x), for some vi ∈ Ti(x, y)} (resp., Mi,4 = {(x, y) ∈ X×Y : Φ(vi, ui, x)⋂

Ψi(vi, xi, x) = ∅, for some vi ∈ Ti(x, y)} ) is compactly open in X × Y .

Proof. For each i ∈ I and ui ∈ Xi, let Ωi,2 = (X × Y ) \Mi,2 = {(x, y) ∈
X×Y : Φ(vi, ui, x) �⊆ Ψi(vi, xi, x), ∀ vi ∈ Ti(x, y)}. For any compact subsetK of
X×Y , if (x, y) ∈ clK(Ωi,2

⋂
K), then there exists a net ((xλ, yλ))λ∈Λ ⊆ Ωi,2

⋂
K

such that (xλ, yλ) → (x, y) ∈ K. Hence we have

(3.4) Φi(vi, ui, xλ) �⊆ Ψi(vi, xi,λ, xλ), ∀ vi ∈ Ti(xλ, yλ).

By (i) and Lemma 3.2, for each vi ∈ Ti(x, y), there exists a net (vi,λ)λ∈Λ ⊆ Yi

such that vi,λ ∈ Ti(xλ, yλ) and vi,λ → vi. By (3.4), we have

Φi(vi,λ, ui, xλ) �⊆ Ψi(vi,λ, xi,λ, xλ), ∀ λ ∈ Λ.

It follows that for each λ ∈ Λ, there exists zi,λ ∈ Φi(vi,λ, ui, xλ) such that zi,λ ∈
Zi \ Ψi(vi,λ, xi,λ, xλ). Let L = (xλ)λ∈Λ

⋃{x} and Mi = (vi,λ)λ∈Λ
⋃{vi}, then

L and Mi are compact in X and Yi respectively. By the condition (ii), we have
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Φi(Mi, ui, L) is compact in Zi. Without loss of generality, we can assume that
zi,λ → zi and so we have zi ∈ Φi(vi, ui, x). By the condition (iii), we have
zi ∈ Zi \ Ψi(vi, xi, x). It follows that

Φi(vi, ui, x) �⊆ Ψ(vi, xi, x), ∀ vi ∈ Ti(x, y).

Therefore (x, y) ∈ Ωi,2
⋂
K and Ωi,2 is compactly closed in X × Y . Hence Mi,2

is compactly open in X × Y . By using similar argument, we can prove that Mi,4

is also compactly open in X × Y .

Theorem 3.1. Suppose that for each i ∈ I , the following conditions are
satisfied:

(i) for each (x, y) ∈ X × Y , Ai(x, y) and Si(x, y) are both nonempty FC-
subspaces of Xi and Yi, and for each (ui, vi) ∈ Xi × Yi, A−1

i (ui), S−1
i (vi)

are compactly open in X × Y ,
(ii) for each y ∈ Y , Φi is Ψi-FC-quasiconvex of type (I) in the first two argu-

ments,
(iii) Ti is lower semicontinuous on each compact subsets of X × Y ,
(iv) Φi is lower semicontinuous on each compact subset of Y i ×Xi ×X ,
(v) the mapping Ψi is upper semicontinuous on each compact subsets of Y i ×

Xi ×X with closed values.
(vi) the set Wi = {(x, y) ∈ X × Y : xi ∈ Ai(x, y), yi ∈ Si(x, y)} is compactly

closed in X × Y ,
(vii) the mapping (A× S) : X × Y → 2X×Y defined by

(A× S)(x, y) =
[∏

i∈I

Ai(x, y)
]
×

[∏
i∈I

Si(x, y)
]
, ∀ (x, y) ∈ X × Y

is Φ condensing on X × Y where Φ is the measure of noncompactness on
X × Y .

Then the solution set of the SGVQVIP(I)

Θ1 =
⋂
i∈I

{(x, y) ∈ X × Y : xi ∈ Ai(x, y), yi ∈ Si(x, y) and

Φi(vi, ui, x) ⊆ Ψi(vi, xi, x), ∀ vi ∈ Ti(x, y), ui ∈ Ai(x, y)}
is nonempty and compact in X × Y .

Proof. For each i ∈ I , define a set-valued mapping Pi,1, : X × Y → 2Xi by

Pi,1(x, y) = {ui ∈ Xi : Φi(vi, ui, x) �⊆ Ψi(vi.xi, x), for some vi ∈ Ti(x, y)}
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By (ii) and Lemma 3.1, we have that for each (x, y) ∈ X × Y ,

(3.5) xi /∈ FC(Pi,1(x, y)).

By the condition (iii)-(v) and Lemma 3.3, for each i ∈ I and ui ∈ Xi,

P−1
i,1 (ui) = {(x, y) ∈ X×Y : Φi(vi, ui, x) �⊆ Ψi(vi, xi, x), for some vi ∈ Ti(x, y)}

is compactly open in X × Y . It follows from Lemma 2.2 that (FC(Pi,1))−1(ui) is
also compactly open in X × Y for each ui ∈ Xi. By Lemma 2.3, for each i ∈ I ,
Xi × Yi is a locally FC-uniform space and X × Y is also a locally FC-uniform
space. For each i ∈ I , define a set-valued mapping Gi : X × Y → 2Xi×Yi by

Gi(x, y) =

{
[Ai(x, y)

⋂
FC(Pi,1(x, y))]× Si(x, y), if (x, y) ∈Wi,

Ai(x, y)× Si(x, y), if (x, y) /∈Wi,

By the condition (i), for each i ∈ I and (x, y) ∈ X×Y , Gi(x, y) is a FC-subspace
of Xi × Yi. By the definition of Wi and (3.5), for each i ∈ I and (x, y) ∈ X × Y ,
(xi, yi) /∈ Gi(x, y). For each i ∈ I and (ui, vi) ∈ Xi × Yi, we have

G−1
i (ui, vi) = [A−1

i (ui))
⋂

(FC(Pi,1))−1(ui)
⋂
S−1

i (vi)]⋃
[((X × Y ) \Wi)

⋂
A−1

i (ui)
⋂
S−1

i (vi)].

Since (FC(Pi,1))−1(ui) is compactly open in X × Y for each ui ∈ Xi, by the
conditions (i) and (vi), G−1

i (ui, vi) is also compactly open in X × Y . Define a
set-valued mapping G : X × Y → 2X×X by

G(x, y) =
∏
i∈I

Gi(x, y), ∀ (x, y) ∈ X × Y.

Then we have

G(x, y) ⊆ (A× T )(x, y), ∀ (x, y) ∈ X × Y.

By the condition (vii) and Remark 2.1, G is also Φ-condensing on X × Y . All
conditions of Theorem 2.1 are satisfied. By Theorem 2.1, there exist a compact
K =

∏
i∈I Ki of X × Y and (x̂, ŷ) ∈ K such that Gi(x̂, ŷ) = ∅ for each i ∈ I .

If (x̂, ŷ) �∈ Wj for some j ∈ I , then either Aj(x̂, ŷ) = ∅ or Sj(x̂, ŷ) = ∅ which
contradicts the condition (i). Therefore (x̂, ŷ) ∈Wi for each i ∈ I . This shows that
for each i ∈ I , x̂i ∈ Ai(x̂, ŷ), ŷi ∈ Si(x̂, ŷ) and Ai(x̂, ŷ)

⋂
FC(Pi,1(x̂, ŷ)) = ∅

and hance Ai(x̂, ŷ)
⋂
Pi,1(x̂, ŷ) = ∅. Therefore, for each i ∈ I ,

x̂i ∈ Ai(x̂, ŷ), ŷi ∈ Si(x̂, ŷ) and Φi(vi, ui, x̂)

⊆ Ψ(vi, x̂i, x̂), ∀ vi ∈ Ti(x̂, ŷ), ui ∈ Ai(x̂, ŷ).
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Hence Θ1 ⊆ K is nonempty. For each i ∈ I , let

Qi = {(x, y) ∈ K : xi ∈ Ai(x, y), yi ∈ Si(x, y) and
Φi(vi, ui, x) ⊆ Ψi(vi, xi, x), ∀ vi ∈ Ti(x, y), ui ∈ Ai(x, y)}

= Wi

⋂
{(x, y) ∈ K : Φi(vi, ui, x)

⊆ Ψi(vi, xi, x), ∀ vi ∈ Ti(x, y), ui ∈ Ai(x, y)}
= Wi

⋂
Bi,

where Bi = {(x, y) ∈ K : Φi(vi, ui, x) ⊆ Ψi(vi, xi, x), ∀ vi ∈ Ti(x, y), ui ∈
Ai(x, y)}. Therefore we have Θ1 =

⋂
i∈I Qi =

⋂
i∈I(Wi

⋂
Bi). Now we prove

that for each i ∈ I , Bi is closed in K. Indeed, if (x, y) ∈ Bi, then there exists a
net (xλ, yλ)λ∈Λ ⊆ Bi such that (xλ, yλ) → (x, y) ∈ K. Hence we have
(3.6)
Φi(vi, ui, xλ) ⊆ Ψi(vi, xi,λ, xλ), ∀ vi ∈ Ti(xλ, yλ), ui ∈ Ai(xλ, yλ) and λ ∈ Λ.

Since Ti is lower semicontinuous on K by (iii), it follows from Lemma 3.2 that for
each vi ∈ Ti(x, y), there exists a net (vi,λ)λ∈Λ ⊆ Yi such that vi,λ ∈ Ti(xλ, yλ) and
vi,λ → vi. Since for each ui ∈ Xi, A−1

i (ui) is compactly open in X×Y , Ai is also
lower semicontinuous on K by Takahashi [26]. It follows from Lemma 3.2 that for
each ui ∈ Ai(x, y), there exists a net (ui,λ)λ∈Λ ⊆ Xi such that ui,λ ∈ Ai(xλ, yλ)
and ui,λ → ui. By (3.6), we have

(3.7) Φi(vi,λ, ui,λ, xλ) ⊆ Ψi(vi,λ, xi,λ, xλ), ∀ λ ∈ Λ.

For each zi ∈ Φi(vi, ui, x), since Φi is lower semicontinuous at (vi, ui, x) by (vi),
there exists a net (zi,λ)λ∈Λ such that zi,λ ∈ Φi(vi,λ, ui,λ, xλ) and zi,λ → zi. By
(3.7), zi,λ ∈ Ψi(vi,λ, xi,λ, xλ) for all λ ∈ Λ. By (v), ψi is upper semicontinuous
with closed values and so we have zi ∈ Ψi(vi, xi, x). Hence,

Φ(vi, ui, x) ⊆ Ψ(vi, xi, x), ∀ vi ∈ Ti(x, y) and ui ∈ Ai(x, y).

So (x, y) ∈ Bi and Bi is closed in K. By (vi), Wi is also closed in K and hence
Θ1 =

⋂
i∈I(Wi

⋂
Bi) is closed in K and hence it is also compact. This completes

the proof.

Remark 3.1. Theorem 3.1 improves and generalizes Theorem 2.3 of Ding [12]
under weaker conditions, and the conclusion of Theorem 3.1 is better than that of
Theorem 2.3 in [12]. Theorem 3.1 is also a new existence result of solutions for
the SGVQVIP(I) which is different from Theorem 3.2 of Hai and Khanh [17] in
the following ways: (1) the mathematical model of SGQVIP (I) is more general
than the mathematical model of (SQIP2) in [17]; (2) for each i ∈ I , Xi and Yi
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may be locally FC-uniform spaces without convexity structure and Zi may be any
topological space; (3) the conclusion of Theorem 3.1 is better than that of Theorem
3.2 in [17].

Theorem 3.2. Suppose that for each i ∈ I , the following conditions are
satisfied:

(i) for each (x, y) ∈ X × Y , Ai(x, y) and Si(x, y) are both nonempty FC-
subspaces of Xi and Yi, and for each (ui, vi) ∈ Xi × Yi, A−1

i (ui), S−1
i (vi)

are compactly open in X × Y ,
(ii) for each y ∈ Y , Φi is Ψi-FC-quasiconvex of type (II) in the first two argu-

ments,
(iii) Ti is lower semicontinuous on each compact subsets of X × Y ,
(iv) Φi is upper semicontinuous on each compact subset of Y i × Xi × X with

compact values,
(v) the mapping (yi, xi, x) �→ Zi \Ψi(yi, xi, x) is upper semicontinuous on each

compact subsets of Yi ×Xi ×X with closed values.
(vi) the set Wi = {(x, y) ∈ X × Y : xi ∈ Ai(x, y), yi ∈ Si(x, y)} is compactly

closed in X × Y ,
(vii) the mapping (A× S) : X × Y → 2X×Y defined by

(A× S)(x, y) =
[∏

i∈I

Ai(x, y)
]
×

[∏
i∈I

Si(x, y)
]
, ∀ (x, y) ∈ X × Y

is Φ condensing on X × Y where Φ is the measure of noncompactness on
X × Y .

Then the solution set of the SGVQVIP(II)

Θ2 =
⋂
i∈I

{(x, y) ∈ X × Y : xi ∈ Ai(x, y), yi ∈ Si(x, y) and

Φi(vi, ui, x) �⊆ Ψi(vi, xi, x), ∀ vi ∈ Ti(x, y), ui ∈ Ai(x, y)}

is nonempty and compact in X × Y .

Proof. For each i ∈ I , define a set-valued mapping Pi,2, : X × Y → 2Xi by

Pi,2(x, y) = {ui ∈ Xi : Φi(vi, ui, x) ⊆ Ψi(vi.xi, x), for some vi ∈ Ti(x, y)}

By (ii) and Lemma 3.1, we have that for each (x, y) ∈ X × Y ,

(3.8) xi /∈ FC(Pi,2(x, y)).
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By the condition (iii)-(v) and Lemma 3.4, for each i ∈ I and ui ∈ Xi,

P−1
i,2 (ui) = {(x, y) ∈ X×Y : Φi(vi, ui, x) ⊆ Ψi(vi, xi, x), for some vi ∈ Ti(x, y)}

is compactly open in X × Y . It follows from Lemma 2.2 that (FC(Pi,1))−1(ui) is
also compactly open in X × Y for each ui ∈ Xi. By Lemma 2.3, for each i ∈ I ,
Xi × Yi is a locally FC-uniform space and X × Y is also a locally FC-uniform
space. For each i ∈ I , define a set-valued mapping Gi : X × Y → 2Xi×Yi by

Gi(x, y) =

{
[Ai(x, y)

⋂
FC(Pi,2(x, y))]× Si(x, y), if (x, y) ∈Wi,

Ai(x, y)× Si(x, y), if (x, y) /∈Wi,

By the condition (i), for each i ∈ I and (x, y) ∈ X×Y , Gi(x, y) is a FC-subspace
of Xi × Yi. By the definition of Wi and (3.8), for each i ∈ I and (x, y) ∈ X × Y ,
(xi, yi) /∈ Gi(x, y). For each i ∈ I and (ui, vi) ∈ Xi × Yi, we have

G−1
i (ui, vi) = [A−1

i (ui))
⋂

(FC(Pi,2))−1(ui)
⋂
S−1

i (vi)]⋃
[((X × Y ) \Wi)

⋂
A−1

i (ui)
⋂
S−1

i (vi)].

Since (FC(Pi,2))−1(ui) is compactly open in X × Y for each ui ∈ Xi, by the
conditions (i) and (vi), G−1

i (ui, vi) is also compactly open in X × Y . Define a
set-valued mapping G : X × Y → 2X×X by

G(x, y) =
∏
i∈I

Gi(x, y), ∀ (x, y) ∈ X × Y.

Then we have

G(x, y) ⊆ (A× T )(x, y), ∀ (x, y) ∈ X × Y.

By the condition (vii) and Remark 2.1, G is also Φ-condensing on X × Y . All
conditions of Theorem 2.1 are satisfied. By Theorem 2.1, there exist a compact
K =

∏
i∈I Ki of X × Y and (x̂, ŷ) ∈ K such that Gi(x̂, ŷ) = ∅ for each i ∈ I .

If (x̂, ŷ) �∈ Wj for some j ∈ I , then either Aj(x̂, ŷ) = ∅ or Sj(x̂, ŷ) = ∅ which
contradicts the condition (i). Therefore (x̂, ŷ) ∈Wi for each i ∈ I . This shows that
for each i ∈ I , x̂i ∈ Ai(x̂, ŷ), ŷi ∈ Si(x̂, ŷ) and Ai(x̂, ŷ)

⋂
FC(Pi,2(x̂, ŷ)) = ∅

and hance Ai(x̂, ŷ)
⋂
Pi,2(x̂, ŷ) = ∅. Therefore, for each i ∈ I ,

x̂i ∈ Ai(x̂, ŷ), ŷi ∈ Si(x̂, ŷ) and Φi(vi, ui, x̂)

�⊆ Ψ(vi, x̂i, x̂), ∀ vi ∈ Ti(x̂, ŷ), ui ∈ Ai(x̂, ŷ).

Hence Θ2 ⊆ K is nonempty. For each i ∈ I , let
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Qi = {(x, y) ∈ K : xi ∈ Ai(x, y), yi ∈ Si(x, y) and
Φi(vi, ui, x) �⊆ Ψi(vi, xi, x), ∀ vi ∈ Ti(x, y), ui ∈ Ai(x, y)}

= Wi

⋂
{(x, y) ∈ K : Φi(vi, ui, x)

�⊆ Ψi(vi, xi, x), ∀ vi ∈ Ti(x, y), ui ∈ Ai(x, y)}
= Wi

⋂
Bi,

where Bi = {(x, y) ∈ K : Φi(vi, ui, x) �⊆ Ψi(vi, xi, x), ∀ vi ∈ Ti(x, y), ui ∈
Ai(x, y)}. Therefore we have Θ2 =

⋂
i∈I Qi =

⋂
i∈I(Wi

⋂
Bi). Now we prove

that for each i ∈ I , Bi is closed in K . Indeed, if (x, y) ∈ Bi, then there exists a
net (xλ, yλ)λ∈Λ ⊆ Bi such that (xλ, yλ) → (x, y) ∈ K. Hence we have
(3.9)
Φi(vi, ui, xλ) �⊆ Ψi(vi, xi,λ, xλ), ∀ vi ∈ Ti(xλ, yλ), ui ∈ Ai(xλ, yλ) and λ ∈ Λ.

Since Ti is lower semicontinuous on K by (iii), it follows from Lemma 3.2 that for
each vi ∈ Ti(x, y), there exists a net (vi,λ)λ∈Λ ⊆ Yi such that vi,λ ∈ Ti(xλ, yλ) and
vi,λ → vi. Since for each ui ∈ Xi, A−1

i (ui) is compactly open in X×Y , Ai is also
lower semicontinuous on K by Takahashi [26]. it follows from Lemma 3.2 that for
each ui ∈ Ai(x, y), there exists a net (ui,λ)λ∈Λ ⊆ Xi such that ui,λ ∈ Ai(xλ, yλ)
and ui,λ → ui. By (3.9), we have

(3.10) Φi(vi,λ, ui,λ, xλ) �⊆ Ψi(vi,λ, xi,λ, xλ), ∀ λ ∈ Λ.

It follows that for each λ ∈ Λ, there exists zi,λ ∈ Φi(vi,λ, ui,λ, xλ) such that
zi,λ ∈ Zi \ Ψi(vi,λ, xi,λ, xλ). Let Li = (vi,λ)λ∈Λ

⋃{vi}, Mi = (ui,λ)λ∈Λ
⋃{ui}

and N = (xλ)λ∈Λ
⋃{x}, then Li × Mi × N is compact in Yi × Xi × X . By

(iv), Φi(Li,Mi, N ) is compact in Zi. Without loss of generality, we can assume
zi,λ → zi. By (iv), we have zi ∈ Φi(vi, ui, x). It follows from the condition (v)
that zi ∈ Zi \ Ψi(vi, xi, x). Therefore,

Φi(vi, ui, x) �⊆ Ψ(vi, xi, x), ∀ vi ∈ Ti(x, y), ui ∈ Ai(x, y).

So (x, y) ∈ Bi and Bi is closed in K . By (vi), Wi is also closed in K and hence
Θ2 =

⋂
i∈I(Wi

⋂
Bi) is closed in K and hence it is also compact. This completes

the proof.

Remark 3.2. Theorem 3.2 improves and generalizes Theorem 2.2 of Ding [12]
to more general mathematical model under weaker conditions, and the conclusion
of Theorem 3.2 is better than that of Theorem 2.2 in [12].

By using the similar argument as in the proof of Theorem 3.1 and Theorem 3.2,
it is easy to prove the following results.
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Theorem 3.3. Suppose that for each i ∈ I , the following conditions are
satisfied:

(i) for each (x, y) ∈ X × Y , Ai(x, y) and Si(x, y) are both nonempty FC-
subspaces of Xi and Yi, and for each (ui, vi) ∈ Xi × Yi, A−1

i (ui), S−1
i (vi)

are compactly open in X × Y ,
(ii) for each y ∈ Y , Φi is Ψi-FC-quasiconvex of type (III) in the first two

arguments,
(iii) Ti is lower semicontinuous on each compact subsets of X × Y ,
(iv) Φi is lower semicontinuous on each compact subset of Y i ×Xi ×X ,
(v) the mapping (yi, xi, x) �→ Zi \Ψi(yi, xi, x) is upper semicontinuous on each

compact subsets of Yi ×Xi ×X with closed values.
(vi) the set Wi = {(x, y) ∈ X × Y : xi ∈ Ai(x, y), yi ∈ Si(x, y)} is compactly

closed in X × Y ,
(vii) the mapping (A× S) : X × Y → 2X×Y defined by

(A× S)(x, y) =
[∏

i∈I

Ai(x, y)
]
×

[∏
i∈I

Si(x, y)
]
, ∀ (x, y) ∈ X × Y

is Φ condensing on X × Y where Φ is the measure of noncompactness on
X × Y .

Then the solution set of the SGVQVIP(III)

Θ3 =
⋂
i∈I

{(x, y) ∈ X × Y : xi ∈ Ai(x, y), yi ∈ Si(x, y) and

Φi(vi, ui, x)
⋂

Ψi(vi, xi, x) = ∅, ∀ vi ∈ Ti(x, y), ui ∈ Ai(x, y)}

is nonempty and compact in X × Y .

Remark 3.3. Theorem 3.3 improves and generalizes Theorem 2.4 of Ding [12]
to more general mathematical model under weaker conditions, and the conclusion
of Theorem 3.3 is better than that of Theorem 2.4 in [12]. obtains .

Theorem 3.4. Suppose that for each i ∈ I , the following conditions are
satisfied:

(i) for each (x, y) ∈ X × Y , Ai(x, y) and Si(x, y) are both nonempty FC-
subspaces of Xi and Yi, and for each (ui, vi) ∈ Xi × Yi, A−1

i (ui), S−1
i (vi)

are compactly open in X × Y ,
(ii) for each y ∈ Y , Φi is Ψi-FC-quasiconvex of type (IV) in the first two

arguments,
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(iii) Ti is lower semicontinuous on each compact subsets of X × Y ,
(iv) Φi is upper semicontinuous on each compact subset of Y i × Xi × X with

compact values,
(v) the mapping the mapping Ψ i is upper semicontinuous on each compact sub-

sets of Yi ×Xi ×X with closed values.
(vi) the set Wi = {(x, y) ∈ X × Y : xi ∈ Ai(x, y), yi ∈ Si(x, y)} is compactly

closed in X × Y ,
(vii) the mapping (A× S) : X × Y → 2X×Y defined by

(A× S)(x, y) =
[∏

i∈I

Ai(x, y)
]
×

[∏
i∈I

Si(x, y)
]
, ∀ (x, y) ∈ X × Y

is Φ condensing on X × Y where Φ is the measure of noncompactness on
X × Y .

Then the solution set of the SGVQVIP(IV)

Θ4 =
⋂
i∈I

{(x, y) ∈ X × Y : xi ∈ Ai(x, y), yi ∈ Si(x, y) and

Φi(vi, ui, x)
⋂

Ψi(vi, xi, x) �= ∅, ∀ vi ∈ Ti(x, y), ui ∈ Ai(x, y)}
is nonempty and compact in X × Y .

Remark 3.4. Theorem 3.4 improves and generalizes Theorem 2.5 of Ding [12]
to more general mathematical model under weaker conditions, and the conclusion
of Theorem 3.4 is better than that of Theorem 2.5 in [12]. Theorem 3.1 is also
a new existence result of solutions for the SGVQVIP(IV) which is different from
Theorem 3.4 of Hai and Khanh [17] in the following ways: (1) the mathematical
model of SGQVIP (IV) is more general than the mathematical model of (SQIP4) in
[17]; (2) for each i ∈ I , Xi and Yi may be FC-spaces without convexity structure
and Zi may be any topological space; (3) the conclusion of Theorem 3.1 is better
than that of Theorem 3.4 in [17].

4. MATHEMATICAL PROGRAMS WITH SYSTEMS OF GENERALIZED VECTOR

QUASI-VARIATIONAL INCLUSION CONSTRAINTS

In this section, by applying the results in above section, we shall establish some
existence results of solutions for mathematical programs with systems of generalized
vector quasi-variational inclusion constraints.

Definition 4.1. [24]. Let V be a topological vector space ordered by a closed
convex cone D in V and M ⊆ V be a nonempty set. A point v0 ∈ M is said
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to be an efficient point of M if there is no v ∈ M such that v0 ∈ v + D \ {0},
where 0 is the zero element of V . The set of all efficient points of M is denoted
by MinD(M).

Lemma 4.1 [24]. Let V be a topological vector space ordered by a closed
convex coneD in V . IfM is a nonempty compact subset of V , then MinD(M) �= ∅.

Let h : X × Y → 2V be a set-valued mapping. We consider the following
Mathematical programs with systems of generalized vector quasi-variational inclu-
sion constraints:

MP(I)




Find (x̂, ŷ) ∈ Θ1 such that h(x̂, ŷ)
⋂

MinD(Θ1) �= ∅
where Θ1 =

⋂
i∈I {(x, y)∈X×Y : xi∈Ai(x, y), yi ∈ Si(x, y) and

Φi(vi, ui, x) ⊆ Ψi(vi, xi, x), ∀ vi ∈ Ti(x, y), ui ∈ Ai(x, y)}

MP(II)




Find (x̂, ŷ) ∈ Θ2 such that h(x̂, ŷ)
⋂

MinD(Θ2) �= ∅
where Θ2 =

⋂
i∈I {(x, y) ∈ X×Y : xi∈Ai(x, y), yi∈Si(x, y) and

Φi(vi, ui, x) �⊆ Ψi(vi, xi, x), ∀ vi ∈ Ti(x, y), ui ∈ Ai(x, y)}

MP(III)




Find (x̂, ŷ) ∈ Θ3 such that h(x̂, ŷ)
⋂

MinD(Θ3) �= ∅
where Θ1 =

⋂
i∈I {(x, y)∈X×Y : xi ∈ Ai(x, y), yi ∈ Si(x, y) and

Φi(vi, ui, x)
⋂

Ψi(vi, xi, x) = ∅, ∀ vi ∈ Ti(x, y), ui ∈ Ai(x, y)}

MP(IV)




Find (x̂, ŷ) ∈ Θ4 such that h(x̂, ŷ)
⋂

MinD(Θ4) �= ∅
where Θ4 =

⋂
i∈I {(x, y)∈X×Y : xi ∈ Ai(x, y), yi∈Si(x, y) and

Φi(vi, ui, x)
⋂

Ψi(vi, xi, x) �= ∅, ∀ vi ∈ Ti(x, y), ui ∈ Ai(x, y)}

Theorem 4.1. Assume that all conditions of Theorem 3.1 are satisfied. Let
V be a topological vector space ordered by a closed convex cone D in V and
h : X × Y → 2V be a upper semicontinuous set-valued mapping with nonempty
compact values. Then there exists a solution of MP (I).

Proof. It follows from Theorem 3.1 that the solution set Θ1 of the SGVQVIP(I)
is nonempty compact on X × Y . Since h be a upper semicontinuous set-valued
mapping with nonempty compact values, h(Θ1) is compact in V . By Lemma 4.1,
MinD(h(Θ1)) �= ∅. Hence there exists (x̂, ŷ) ∈ Θ1 and ū ∈ h(x̂, ŷ) such that û ∈
MinD(h(Θ1)) and so h(x̂, ŷ)

⋂
MinD(h(Θ1)) �= ∅, where Θ1 =

⋂
i∈I {(x, y) ∈

X × Y : xi ∈ Ai(x, y), yi ∈ Si(x, y) and Φi(vi, ui, x) ⊆ Ψi(vi, xi, x), ∀ vi ∈
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Ti(x, y), ui ∈ Ai(x, y)}.

By using Theorems 3.2-3.4, and the similar argument as in the proof of Theorem
4.1, it is easy to prove the following results.

Theorem 4.2. Assume that all conditions of Theorem 3.2 are satisfied. Let
V be a topological vector space ordered by a closed convex cone D in V and
h : X × Y → 2V be a upper semicontinuous set-valued mapping with nonempty
compact values. Then there exists a solution of MP (II).

Theorem 4.3. Assume that all conditions of Theorem 3.3 are satisfied. Let
V be a topological vector space ordered by a closed convex cone D in V and
h : X × Y → 2V be a upper semicontinuous set-valued mapping with nonempty
compact values. Then there exists a solution of MP (III).

Theorem 4.4. Assume that all conditions of Theorem 3.4 are satisfied. Let
V be a topological vector space ordered by a closed convex cone D in V and
h : X × Y → 2V be a upper semicontinuous set-valued mapping with nonempty
compact values. Then there exists a solution of MP (IV).
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