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SIMULTANEOUS METRIC PROJECTIONS IN C(Q, Y )
WITH APPLICATIONS

M. Iranmanesh and H. Mohebi

Abstract. We develop a theory of simultaneous metric projection in a normed
linear space X and present various characterizations of simultaneous metric
projection onto closed convex sets in terms of the elements of X∗. Also,
we characterize the elements of simultaneous metric projection onto closed
convex sets in terms of extreme points of the closed unit ball BX∗ . Finally,
as an application, we give various characterizations of simultaneous metric
projection onto subspaces of the Banach space C(Q, Y ).

1. INTRODUCTION

The theory of simultaneous metric projection onto closed convex sets (in partic-
ular, subspaces) has been studied by many authors, e.g., [1, 2, 6, 8, 9, 10, 11, 13,
14, 16, 17, 19]. In this paper, we use totally bounded sets to give various charac-
terizations of simultaneous metric projection onto closed convex sets in a normed
linear space X in terms of the elements of X∗, and the extreme points of the closed
unit ball BX∗ . Also, we present various characterizations of simultaneous metric
projection onto subspaces of the Banach space C(Q, Y ).

The structure of the paper is as follows: In section 2, we give some preliminary
definitions on simultaneous metric projection. Various characterizations of simulta-
neous metric projection in terms of the elements of X∗ are given in section 3. In
section 4, we present characterizations of simultaneous metric projection in terms of
the extreme points of the closed unit ball BX∗ . Applications and characterizations
of simultaneous metric projection onto subspaces of the Banach space C(Q, Y ) are
given in section 5.
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2. PRELIMINARIES

Let X be a normed linear space and W a subset of X. If S is a bounded set in
X, we define

(2.1) d(S,W ) := inf
ω∈W

sup
s∈S

‖s−w‖.

We recall (see [13]) that a point ω0 ∈ W is called a simultaneous metric
projection of S onto W or a best simultaneous approximation to S from W if

sup
s∈S

‖s− ω0‖ = d(S,W ).

The set of all simultaneous metric projections of S onto W will be denoted by
SW (S) :

(2.2) SW (S) := {w ∈W : sup
s∈S

‖s −w‖ = d(S,W )}.

It is well-known that SW (S) is a bounded subset of X and if W is a closed and
convex subset of X, then SW (S) is closed and convex.

For any subset W of a (real) normed linear space X, the polar set of W is
defined by

W ◦ := {f ∈ X∗ : f(w) ≤ 0 ∀ w ∈W},
where X∗ is the dual space of X.

We recall (see [7]) that for an arbitrary compact Hausdorff space Q, we denote
by CR(Q) the Banach space of all real valued continuous functions defined on Q,
and C(Q, Y ) denotes the Banach space of all continuous functions f from Q to the
Banach space Y equipped with the norm defined by

‖f‖ = sups∈S ‖f(s)‖.

A set M in X is called an extremal subset of a closed and convex set W if:

(i) M is a closed convex subset of W.

(ii) Together with every interior point of a segment in W it contains the whole
segment, that is, the relations x, y ∈W, λx+ (1 − λ)y ∈ M and 0 < λ < 1
imply x, y ∈M.

An extremal subset of W consisting of a single point (i.e. a point of W which is
not an interior point of any segment in W ) is called an extreme point of W. We
denote by E(W ) the set of all extreme points of W (for more details see [15]).
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For a normed linear space X and n ∈ N, we define Xn to be the n−fold direct
sum of X equipped with the norm:

(2.3) ‖(x1, x2, ..., xn)‖ = max
1≤i≤n

‖xi‖.

Throughout this paper, we assume that X is a (real) normed linear space.

3. CHARACTERIZATIONS OF SIMULTANEOUS METRIC PROJECTION IN TERMS OF THE

ELEMENTS OF X∗

In this section, we give various characterizations of simultaneous metric pro-
jection onto closed convex sets in terms of the elements of X∗. We start with the
following theorem.

Theorem 3.1. Let W be a closed and convex set in a real normed linear space
X, S be a totally bounded set in X with S ∩W = ∅, and ω 0 ∈ W. Assume that
W ∩ co({ω0} ∪ S) = {ω0}. Then the following assertions are equivalent:

(i) ω0 ∈ SW (S),
(ii) For each ε > 0 there exists a finite subset {s 1, s2, ..., sn} of S and bounded

linear functionals f i ∈ X∗ (i = 1, 2, ..., n) such that S ⊂ ⋃n
i=1 N (si, ε),

(3.1)
n∑

i=1

‖fi‖ = 1,

(3.2)
n∑

i=1

fi(ω − ω0) ≤ 0 (ω ∈W ),

and

(3.3)
n∑

i=1

fi(si − ω0) = max
1≤i≤n

‖si − ω0‖.

Proof. (i) ⇒ (ii). Let ε > 0 be given. Since S is a totally bounded set,
it follows that there exists a finite subset {s1, s2, ..., sn} of S such that S ⊂⋃n

i=1 N (si, ε). Since ω0 ∈ SW (S), we conclude that for each s ∈ S, we have

(3.4) ‖s− ω0‖ ≤ max
1≤i≤n

‖si − ω0‖ + ε ≤ sup
s∈S

‖s − ω0‖ + ε = d(S,W ) + ε,

where N (x, ε) := {y ∈ X : ‖y − x‖ < ε} (x ∈ X). Now, let r = max1≤i≤n ‖si −
ω0‖. Then, r > 0 because S ∩W = ∅. We define

(3.5) Bi := {y ∈ co({ω0} ∪ S) : ‖si − y‖ ≤ r} (i = 1, 2, ..., n).
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It follows that ω0 ∈ Bi for all i = 1, 2, ..., n, and for each i = 1, 2, ..., n, we have
si ∈ Bi.

It is clear that each Bi is a closed and convex subset of X . Moreover, in view
of (3.4) and that W ∩ co({ω0}∪S) = {ω0}, we get intBi ∩W = ∅, i = 1, 2, ..., n.
Therefore, by Hahn-Banach Theorem, for each 1 ≤ i ≤ n, there exist bounded
linear functionals gi ∈ X∗ and λi ∈ R such that,

gi(si − ω) ≥ λi (∀ ω ∈W ),

and

gi(si − y) ≤ λi (∀ y ∈ Bi).

Thus, we have gi(si − ω0) = λi �= 0, i = 1, 2, ..., n. Since si ∈ Bi, it follows that
λi > 0 for all 1 ≤ i ≤ n. Let fi = r

nλ
−1
i gi, i = 1, 2, ..., n. Therefore, fi ∈ X∗,

i = 1, 2, ..., n. Then, we get

(3.6) fi(si − ω) ≥ r

n
(∀ ω ∈W ; i = 1, 2, ..., n),

(3.7) fi(si − y) ≤ r

n
(∀ y ∈ Bi; i = 1, 2, ..., n),

and

(3.8)
n∑

i=1

fi(si − ω0) = r.

We prove that
∑n

i=1 ‖fi‖ = 1. Indeed, for each 1 ≤ i ≤ n, we have

r

n
= fi(si − ω0) ≤ ‖fi‖‖si − ω0‖ ≤ ‖fi‖ max

1≤i≤n
‖si − ω0‖ = r‖fi‖.

Thus, ‖fi‖ ≥ 1
n (i = 1, ..., n). We claim that ‖fi‖ = 1

n (1 ≤ i ≤ n). If not, then
for each 1 ≤ i ≤ n, there exists zi ∈ X such that ‖zi‖ = 1 and fi(zi) > 1

n .

Let ti = si − rzi ∈ X, i = 1, 2, ..., n. Since for each i = 1, 2, ..., n, we have
‖ti − si‖ = r, it follows that ti ∈ Bi, i = 1, 2, ..., n. But, we have fi(si − ti) > r

n .

This is a contradiction because fi(si − y) ≤ r
n for each y ∈ Bi, i = 1, 2, ..., n.

Hence, for each i = 1, ..., n, we have ‖fi‖ = 1
n , and hence

∑n
i=1 ‖fi‖ = 1. Also,

in view of (3.6) and (3.8), we have
n∑

i=1

fi(ω − ω0) =
n∑

i=1

fi(si − ω0) −
n∑

i=1

fi(si − ω) ≤ r − r = 0,

for all ω ∈W. Thus, (ii) holds.
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(ii) ⇒ (i). Assume that (ii) holds. For each ω ∈W, we have

max
1≤i≤n

‖si − ω0‖ =
n∑

i=1

fi(si − ω0)

≤
n∑

i=1

fi(si − ω) +
n∑

i=1

fi(ω − ω0)

≤
n∑

i=1

fi(si − ω) ≤ max
1≤i≤n

‖si − ω‖
n∑

i=1

‖fi‖

= max
1≤i≤n

‖si − ω‖.

Also, since S ⊂ ⋃n
i=1 N (si, ε), we conclude that for each s ∈ S there exists

1 ≤ i0 ≤ n such that

‖s− ω0‖ ≤ ‖si0 − ω0‖ + ε

≤ max
1≤i≤n

‖si − ω0‖ + ε

≤ max
1≤i≤n

‖si −w‖ + ε (ω ∈W ).

This implies that

sup
s∈S

‖s− ω0‖ ≤ sup
s∈S

‖s− ω‖ + ε,

for each ω ∈W. Since ε>0 was arbitrary,we have (i), and the proof is complete.

In the following, we give a characterization of simultaneous metric projection
for a subset M of SW (S).

Theorem 3.2. Let W be a closed and convex set in a real normed linear
space X, S be a totally bounded set in X with S ∩W = ∅, and M ⊂W. Assume
that W ∩ co({ω} ∪ S) = {ω} for each ω ∈ M. Then the following assertions are
equivalent:

(i) M ⊆ SW (S),
(ii) For each ε > 0 there exist a finite subset {s 1, s2, ..., sn} of S and bounded

linear functionals f i ∈ X∗ (i = 1, ..., n) such that S ⊂ ⋃n
i=1 N (si, ε),

(3.9)
n∑

i=1

‖fi‖ = 1,

(3.10)
n∑

i=1

fi ∈ (W − ω)◦ (ω ∈M),
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and

(3.11) max
1≤i≤n

‖si − ω‖ =
n∑

i=1

fi(si − ω) (ω ∈M).

Proof. (i) ⇒ (ii). Suppose that (i) holds. Let ω0 ∈ M ⊂ SW (S) be fixed.
By Theorem 3.1, for each ε > 0 there exist a finite subset {s1, s2, ..., sn} of S and
linear functionals fi ∈ X∗ (i = 1, ..., n) such that

∑n
i=1 ‖fi‖ = 1,

(3.12)
n∑

i=1

fi(ω − ω0) ≤ 0 (ω ∈W )

and

(3.13) max
1≤i≤n

‖si − ω0‖ =
n∑

i=1

fi(si − ω0).

Assume now that ω ∈M ⊂ SW (S) is arbitrary. Then, by Theorem 3.1, there exist
linear functionals hi ∈ X∗ (i = 1, 2, ..., n) such that

∑n
i=1 ‖hi‖ = 1,

(3.14)
n∑

i=1

hi(ω′ − ω) ≤ 0 (ω′ ∈W ),

and

(3.15) max
1≤i≤n

‖si − ω‖ =
n∑

i=1

hi(si − ω).

Then, in view of (3.14) and (3.15), for each ω′ ∈W, we get
n∑

i=1

fi(si − ω) ≤
n∑

i=1

‖fi‖ max
1≤i≤n

‖si − ω‖

= max
1≤i≤n

‖si − ω‖

=
n∑

i=1

hi(si − ω)

=
n∑

i=1

hi(si − ω′) +
n∑

i=1

hi(ω′ − ω)

≤
n∑

i=1

hi(si − ω′)

≤
n∑

i=1

‖hi‖ max
1≤i≤n

‖si − ω′‖

= max
1≤i≤n

‖si − ω′‖.
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Consequently, we have

(3.16) max
1≤i≤n

‖si − ω‖ ≤ max
1≤i≤n

‖si − ω0‖ (ω ∈M),

and

(3.17)
n∑

i=1

fi(si − ω) ≤ max
1≤i≤n

‖si − ω0‖ (ω ∈M).

Therefore, by (3.12), (3.13) and (3.17), we obtain
n∑

i=1

fi(si − ω) ≤ max
1≤i≤n

‖si − ω0‖

=
n∑

i=1

fi(si − ω0)

=
n∑

i=1

fi(si − ω) +
n∑

i=1

fi(ω − ω0)

≤
n∑

i=1

fi(si − ω) (ω ∈M).

This implies that

(3.18)
n∑

i=1

fi(si − ω) = max
1≤i≤n

‖si − ω0‖ (ω ∈M).

Thus, we have

max
1≤i≤n

‖si − ω0‖ =
n∑

i=1

fi(si − ω)

≤
n∑

i=1

‖fi‖ max
1≤i≤n

‖si − ω‖ = max
1≤i≤n

‖si − ω‖ (ω ∈M).

Hence, it follows from (3.16) and (3.18) that

max
1≤i≤n

‖si − ω‖ = max
1≤i≤n

‖si − ω0‖ =
n∑

i=1

fi(si − ω) (ω ∈M).

Now, we show that
∑n

i=1 fi ∈ (W − ω)◦ for each ω ∈ M. To see this, let
ω ∈M and ω′ ∈W be arbitrary. Then, by (3.11), (3.12) and (3.17), we obtain

n∑

i=1

fi(ω′ − ω) =
n∑

i=1

fi(ω′ − ω0) +
n∑

i=1

fi(ω0 − si) +
n∑

i=1

fi(si − ω)

≤ 0 − max
1≤i≤n

‖si − ω0‖ + max
1≤i≤n

‖si − ω0‖ = 0.
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(ii) ⇒ (i). This is an immediate consequence of Theorem 3.1, which completes the
proof.

4. CHARACTERIZATIONS OF SIMULTANEOUS METRIC PROJECTION IN TERMS

OF THE ELEMENTS OF E (BX∗)

In this section, we present characterizations of simultaneous metric projection
onto closed convex sets in terms of the elements of E(BX∗). Moreover, we charac-
terize uniqueness of simultaneous metric projection onto closed convex sets.

It is easily seen that F ∈ (Xn)∗ if and only if there exist functionals f1, f2, ..., fn

in X∗ such that F (x1, x2, ..., xn) =
∑n

i=1 fi(xi), where xi ∈ X and ‖F‖ =∑n
i=1 ‖fi‖.
The following lemma shows that if F is an extreme point of B(Xn)∗ , then,

nfi (i = 1, 2, ..., n) is an extreme point of BX∗ .

Lemma 4.1. Let F ∈ (Xn)∗ be an extreme point of B(Xn)∗ and fi ∈ X∗ be
such that F (x1, ..., xn) =

∑n
i=1 fi(xi) and ‖F‖ =

∑n
i=1 ‖fi‖, where xi ∈ X (i =

1, 2, ..., n). Then, nfi ∈ E(BX∗) i = 1, 2, ..., n.

Proof. Assume that

(4.1) nfi = λgi + (1 − λ)hi,

where gi, hi ∈ BX∗ . Therefore,
∑n

i=1 fi = λ
∑n

i=1
1
ngi + (1 − λ)

∑n
i=1

1
nhi. Con-

sider the functionals F1, F2 ∈ (Xn)∗ defined by

F1(x1, x2, ..., xn) =
n∑

i=1

1
n
gi(xi) and F2(x1, x2, ..., xn) =

n∑

i=1

1
n
hi(xi).

It is clear that F1, F2 ∈ B(Xn)∗. Now, since F = λF1 + (1 − λ)F2 and F ∈
E(B(Xn)∗), it follows that λ = 0, or λ = 1. In view of 4.1, we conclude that
nfi = gi, or nfi = hi. Therefore, we have nfi ∈ E(BX∗) (i = 1, 2, .., n), which
completes the proof.

Theorem 4.1. Under the hypotheses of Theorem 3.1 the assertions (i) and (ii)
are equivalent. Moreover, nfi ∈ E(BX∗) for all i = 1, 2, ..., n.

Proof. (i) ⇒ (ii). Assume that (i) holds and ε > 0 is given. By Theorem 3.1,
there exist a finite subset {s1, s2, ..., sn} of S and linear functionals gi ∈ X∗ (i =
1, 2, ..., n) such that

n∑

i=1

‖gi‖ = 1,
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n∑

i=1

gi(ω − ω0) ≤ 0 (ω ∈W ),

and

max
1≤i≤n

‖si − ω0‖ =
n∑

i=1

gi(si − ω0).

Let

M1 := {F ∈ (Xn)∗ : ‖F‖ = 1, max
1≤i≤n

‖si − ω0‖ = F (s1 − ω0, ..., sn − ω0)}.

Since there exists a linear functional F0 ∈ (Xn)∗ such that

(4.2) F0(x1, x2, ..., xn) =
n∑

i=1

gi(xi), and ‖F0‖ =
n∑

i=1

‖gi‖,

we conclude that F0 ∈ M1, and hence M1 �= ∅. It is clear that M1 is closed and
convex. We show that M1 is an extremal subset of B(Xn)∗ . To do this, assume
that for an F ∈ M1, and a λ with 0 < λ < 1, we have F = λF1 + (1− λ)F2 for
some F1, F2 ∈ B(Xn)∗ . Since F ∈ M1, we get

(4.3)

max1≤i≤n ‖si − ω0‖ = F (s1 − ω0, ..., sn − ω0)

= λF1(s1 − ω0, ..., sn − ω0)

+(1− λ)F2(s1 − ω0, ..., sn − ω0).

On the other hand, we have

Fi(s1 − ω0, ..., sn − ω0) ≤ ‖Fi‖ max
1≤i≤n

‖si − ω0‖ ≤ max
1≤i≤n

‖si − ω0‖ (i = 1, 2).

We show that

F1(s1 − ω0, ..., sn − ω0) = max
1≤i≤n

‖si − ω0‖ = F2(s1 − ω0, ..., sn − ω0).

Indeed, assume on the contrary that F1(s1−ω0, ..., sn−ω0) �= max1≤i≤n ‖si−ω0‖.
It follows that

(4.4) F1(s1 − ω0, ..., sn − ω0) < max
1≤i≤n

‖si − ω0‖.

By (4.3) and (4.4), we have

max
1≤i≤n

‖si − ω0‖ = λF1(s1 − ω0, ..., sn − ω0) + (1− λ)F2(s1 − ω0, ..., sn − ω0)

< λ max
1≤i≤n

‖si − ω0‖ + (1− λ) max
1≤i≤n

‖si − ω0‖
= max

1≤i≤n
‖si − ω0‖.
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This is a contradiction. It is easy to show that

(4.5) ‖F1‖ = ‖F2‖ = 1.

Therefore, F1, F2 ∈ M1. Thus, we conclude that M1 is an extremal subset of
B(Xn)∗ , and hence M1 is weak∗-compact.

Now, consider M2 := M1 ∩ [(W − ω0)n]◦. Clearly, M2 is convex and it is
also weak∗−compact because [(W − ω0)n]◦ is weak∗−closed. Consequently, by a
virtue of Krein-Milman Theorem [[4], p. 440; Theorem 4], we get E(M2) �= ∅.
Also, note that M2 is an extremal subset of B(Xn)∗ . Taking into account [[15], p.
58,; Lemma 1.7], we get E(M2) = E(B(Xn)∗) ∩M2 �= ∅. This implies that there
exists a linear functional F ∈ E(B(Xn)∗) such that ‖F‖ = 1,

(4.6) F (ω − ω0, ..., ω− ω0) ≤ 0 (ω ∈W ),

and

(4.7) F (s1 − ω0, ..., sn − ω0) = max
1≤i≤n

‖si − ω0‖.

Now, choose linear functionals fi ∈ X∗ (i = 1, 2, .., n) such that F (x1, x2, ..., xn) =∑n
i=1 fi(xi) and ‖F‖ =

∑n
i=1 ‖fi‖. By Lemma 4.1, we have nfi ∈ E(BX∗)

(i = 1, 2, ..., n). In view of (4.6) and (4.7), we conclude that (3.1), (3.2) and (3.3)
hold.

(ii) ⇒ (i). This is an immediate consequence of Theorem 3.1 (the implication
(ii) ⇒ (i)).

Theorem 4.2. Under the hypotheses of Theorem 3.1 the following assertions
are equivalent:

(i) ω0 ∈ SW (S),
(ii) For each ε > 0 there exist a finite subset {s 1, s2, ..., sn} of S and bounded

linear functionals f i ∈ X∗ (i = 1, ..., n) such that S ⊂ ⋃n
i=1 N (si, ε),

nfi ∈ E(BX∗) with the following properties:

(4.8)
n∑

i=1

‖fi‖ = 1,

(4.9) |
n∑

i=1

fi(si − ω0)| = max
1≤i≤n

‖si − ω0‖,

and

(4.10) |
n∑

i=1

fi(si − ω0)| ≤ |
n∑

i=1

fi(si − ω)| (ω ∈W ).
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(iii) For each ε > 0 there exist a finite subset {s 1, s2, ..., sn} of S and bounded
linear functionals f i ∈ X∗ (i = 1, ..., n) such that S ⊂ ⋃n

i=1 N (si, ε),
nfi ∈ E(BX∗) satisfying (3.2), (4.9) and

(4.11)
n∑

i=1

fi(ω − ω0)
n∑

i=1

fi(si − ω0) ≤ 0 (ω ∈W ).

Proof. (i) ⇒ (ii). Assume that (i) holds and ε > 0 is arbitrary. Then, by
Theorem 4.1, there exist a finite subset {s1, s2, ...., sn} of S and bounded linear
functionals fi ∈ X∗ such that S ⊂ ⋃n

i=1 N (si, ε), nfi ∈ E(BX∗) (i = 1, 2, ...n)
and (3.1), (3.2) and (3.3) hold. Therefore, by (3.2) and (3.3), we have

|
n∑

i=1

fi(si − ω0)| ≤ |
n∑

i=1

fi(si − ω)| (∀ ω ∈W ).

Hence, (i) implies (ii).
(ii) ⇒ (i). Assume that (ii) holds. Since S ⊂ ⋃n

i=1 N (si, ε), by a similar
argument as in the proof of Theorem 3.1 (the implication (ii) ⇒ (i)) and using
(4.10), we get

sup
s∈S

‖s − ω0‖ ≤ max
1≤i≤n

‖si − ω0‖ + ε

≤ max
1≤i≤n

‖si − ω‖ + ε

≤ sup
s∈S

‖s− ω‖ + ε,

for each ω ∈W. Since ε > 0 was arbitrary, this implies that ω0 ∈ SW (S).
(i) ⇒ (iii). Assume now that (i) holds and ε > 0 is arbitrary. Then, by

Theorem 4.1, there exist a finite subset {s1, s2, ..., sn} of S and bounded linear
functionals fi ∈ X∗ such that S ⊂ ⋃n

i=1 N (si, ε), nfi ∈ E(BX∗) (i = 1, ..., n) and
that (3.1), (3.2) and (3.3) hold. Thus, we conclude that (4.9) holds and we have

n∑

i=1

fi(ω − ω0)
n∑

i=1

fi(si − ω0) ≤ 0 (ω ∈W ).

Therefore, (i) implies (iii).
(iii) ⇒ (i). If (iii) holds, then for each ε > 0 there exist a finite sub-

set {s1, s2, ..., sn} of S and bounded linear functionals fi ∈ X∗ such that S ⊂⋃n
i=1 N (si, ε), nfi ∈ E(BX∗) (i = 1, ..., n) satisfying (3.2), (4.9) and

n∑

i=1

fi(ω − ω0)
n∑

i=1

fi(si − ω0) ≤ 0 (ω ∈W ).
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Now, for each 1 ≤ i ≤ n, put

(4.12) ψi = sign[
n∑

i=1

fi(si − ω0)]fi.

Then, we have nψi ∈ E(BX∗), and

n∑

i=1

ψi(si − ω0) = sign [
n∑

i=1

fi(si − ω0)]
n∑

i=1

fi(si − ω0)

=

n∑

i=1

fi(si − ω0)

|
n∑

i=1

fi(si − ω0)|

n∑

i=1

fi(si − ω0)

= |
n∑

i=1

fi(si − ω0)| = max
1≤i≤n

‖si − ω0‖.

Also, by (4.11), we conclude that

n∑

i=1

ψi(ω − ω0) = sign [
n∑

i=1

fi(si − ω0))]
n∑

i=1

fi(ω − ω0)

=

n∑

i=1

fi(si − ω0)

|
n∑

i=1

fi(si − ω0)|

n∑

i=1

fi(ω − ω0) ≤ 0 (ω ∈W ).

Note that in view of (4.9) and that nfi ∈ E(BX∗) (i = 1, 2, ..., n), we conclude
that

∑n
i=1 ‖fi‖ = 1, and hence by (4.12) we have

∑n
i=1 ‖ψi‖ = 1. Whence, the

functionals ψi defined by (4.12) satisfy (3.1), (3.2) and (3.3), and therefore by
Theorem 3.1, we have ω0 ∈ SW (S). Thus, (iii) implies (i), which completes the
proof.

Remark 4.1. It is worth noting that under the hypotheses of Theorem 3.1, in the
following we obtain results of a different nature. In fact, we give a characterization
for uniqueness of simultaneous metric projection onto closed convex sets.

Theorem 4.3. Under the hypotheses of Theorem 3.1 the following assertions
are equivalent:

(i) SW (S) = {ω0},
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(ii) ω0 ∈ SW (S) and for each ε > 0 there do not exist ω ∈ W \ {ω0}, a finite
subset {s1, s2, ..., sn} of S such that S ⊂ ⋃n

i=1 N (si, ε) and fi ∈ X∗ (i =
1, 2, ..., n) with properties

(4.13)
n∑

i=1

‖fi‖ = 1,

(4.14)
n∑

i=1

fi(ω) =
n∑

i=1

fi(ω0),

and

(4.15)
n∑

i=1

fi(si − ω) = max
1≤i≤n

‖si − ω‖.

(iii) ω0 ∈ SW (S) and for each ε > 0 there do not exist ω ∈ W \ {ω0}, a finite
subset {s1, s2, ..., sn} of S such that S ⊂ ⋃n

i=1 N (si, ε) and fi ∈ X∗

(i=1,2,...,n) with properties (4.14), (4.15) and

(4.16) nfi ∈ E(BX∗) (i = 1, 2, ..., n).

(iv) ω0 ∈ SW (S) and for each ε > 0 there do not exist ω ∈ W \ {ω0}, a finite
subset {s1, s2, ..., sn} of S such that S ⊂ ⋃n

i=1 N (si, ε) and fi ∈ X∗ (i =
1, 2, ..., n) with properties (4.14), (4.16) and

(4.17) |
n∑

i=1

fi(si − ω)| = max
1≤i≤n

‖si − ω‖.

(v) ω0 ∈ SW (S) and for each ε > 0 there do not exist ω ∈ W \ {ω0}, a finite
subset {s1, s2, ..., sn} of S such that S ⊂ ⋃n

i=1 N (si, ε) and fi ∈ X∗ (i =
1, 2, ..., n) with properties (4.16), (4.17) and

(4.18)
n∑

i=1

fi(ω − ω0)
n∑

i=1

fi(si − ω) ≥ 0.

Proof. (i) ⇒ (ii). Assume that we have (i). Suppose that (ii) does not hold.
Then for each ε > 0 there exist ω ∈W \ {ω0}, a finite subset {s1, s2, ..., sn} of S
such that S ⊂ ⋃n

i=1 N (si, ε) and fi ∈ X∗ (i = 1, 2, ..., n) satisfying (4.13), (4.14)
and (4.15). Therefore, since ω0 ∈ SW (S), we have

max
1≤i≤n

‖si − ω‖ = |
n∑

i=1

fi(si − ω)| = |
n∑

i=1

fi(si − ω0) −
n∑

i=1

fi(ω − ω0)|

= |
n∑

i=1

fi(si − ω0)| ≤ max
1≤i≤n

‖si − ω0‖
n∑

i=1

‖fi‖

= max
1≤i≤n

‖si − ω0‖ ≤ sup
s∈S

‖s− ω0‖ = d(S,W ).
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It follows that ω ∈ SW (S), which contradicts (i). Thus, (i) implies (ii).
(ii) ⇒ (iii). Assume that (iii) does not hold. Then for each ε > 0 there exist

ω ∈ W \ {ω0}, a finite subset {s1, s2, ..., sn} of S such that S ⊂ ⋃n
i=1 N (si, ε)

and fi ∈ X∗ (i = 1, ..., n) with nfi ∈ E(BX∗) (i = 1, 2, ..., n) and (4.14), (4.15)
hold. Therefore, ‖nfi‖ ≤ 1 and thus

∑n
i=1 ‖fi‖ ≤ 1. For the reverse inequality, by

(4.15), we get
∑n

i=1 ‖fi‖ ≥ 1, and hence (ii) does not hold. Therefore, (ii) implies
(iii).

The implication (iii) ⇒ (iv) is obvious.
Now, assume that we have (iv). Let {s1, s2, ..., sn} be a finite subset of S such

that S ⊂ ⋃n
i=1 N (si, ε). Then, for every ω ∈W \{ω0} and fi ∈ X∗ (i = 1, 2, ..., n)

with properties (4.16) and (4.17), we conclude that

(4.19)
n∑

i=1

fi(ω) �=
n∑

i=1

fi(ω0).

In view of (4.16) and (4.17), we obtain
∑n

i=1 ‖fi‖ = 1. Consequently, by (4.19),
for any such ω ∈W \ {ω0} and fi ∈ X∗ (i = 1, 2, ..., n), we get

( max
1≤i≤n

‖si − ω0‖)2 ≥ |
n∑

i=1

fi(si − ω0)|2

= |
n∑

i=1

fi(si − ω) +
n∑

i=1

fi(ω − ω0)|2

= |
n∑

i=1

fi(si − ω)|2 + |
n∑

i=1

fi(ω − ω0)|2

+2
n∑

i=1

fi(ω − ω0)
n∑

i=1

fi(si − ω)

> ( max
1≤i≤n

‖si − ω‖)2 + 2
n∑

i=1

fi(ω − ω0)
n∑

i=1

fi(si − ω).

Taking into account that ω0 ∈ SW (S), it follows that for any such ω ∈ W \ {ω0}
and functionals fi ∈ X∗ (i = 1, ..., n), we obtain

n∑

i=1

fi(ω − ω0)
n∑

i=1

fi(si − ω) < 0.

Thus, (iv) implies (v).
Finally, assume that we have (v), and let ω ∈W \ {ω0} be arbitrary. Then, by

Theorem 4.2 (the implication (i) ⇒ (iii)), it follows that ω ∈W \ SW (S). Thus ,
(v) implies (i), and the proof is complete.
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5. CHARACTERIZATIONS OF SIMULTANEOUS METRIC PROJECTION IN C(Q, Y )

Let Q be a compact Hausdorff space, Y be a Banach space and G be a prox-
iminal subspace of Y. Let W = C(Q,G) and S = {f1, f2, ..., fn} be a finite set
in X = C(Q, Y ) such that S ∩W = ∅. As an application of the results obtained,
we characterize simultaneous metric projection onto W, which is considered as a
subspace of X. We start with the following theorem.

Theorem 5.1. Let Q be a compact Hausdorff space and G be a proximinal
subspace of a Banach space Y. Assume that W = C(Q,G) is considered as a sub-
space of X = C(Q, Y ). Then for each ε > 0 and each finite set S = {f1, f2, ..., fn}
in X such that S ∩W = ∅ and max1≤j≤n d(fj(Q), G) < ε

2 , there exist elements
x1j, x2j, ...xmjj ∈ C(Q) and g1j, g2j, ..., gmjj ∈ G (j = 1, 2, ..., n) with the fol-
lowing properties:

(i) 0 ≤ xij ≤ 1 (i = 1, 2, ...,mj; j = 1, 2, ..., n),

(ii)
∑mj

i=1 xij = 1 (j = 1, 2, ..., n), and

(iii) max1≤r≤n ‖fr − 1
n

∑n
j=1

∑mj

i=1 xij ⊗ gij‖ ≤ ε. Moreover, SC(Q,G)(S) �= ∅,
where d(fj(Q), G) (1 ≤ j ≤ n) is defined by (2.1).

Proof. Let ε > 0 be given and let fj ∈ S (j = 1, 2, ..., n) be fixed. Put
Kj := fj(Q) (j = 1, 2, ..., n). Since Kj is a compact subset of Y, it follows that
Kj is a totally bounded set. Thus, for each j = 1, 2, ..., n, there exist elements
y1j , y2j, ..., ymjj ∈ Kj such that Kj ⊂ ∪mj

i=1N (yij,
ε
2 ) (j = 1, 2, ..., n). Then, by

([12]; Theorem 2.13), for each j = 1, 2, ..., n, there exist functions hij ∈ C(Y )
such that hij(x) = 0 for each x /∈ N (yij, ε

2 ), 0 ≤ hij ≤ 1 (i = 1, 2, ...,mj), and∑mj

i=1 hij(q) = 1 for all q ∈ Q and all j = 1, 2, ..., n. Put xij = hij ◦ fj (i =
1, 2, ...,mj; j = 1, 2, ..., n). Then, xij ∈ C(Q), 0 ≤ xij ≤ 1 (i = 1, 2, ...,mj; j =
1, 2, ..., n), and

∑mj

i=1 xij = 1 (j = 1, 2, ..., n). Now, let q ∈ Q be arbitrary. Since
fj(q) ∈ Kj and Kj ⊂ ∪mj

i=1N (yij ,
ε
2) (j = 1, 2, ..., n), it follows that

(5.1) ‖fj(q) − yij‖ < ε

2
for some i = 1, 2, ....,mj.

Since G is a proximinal subspace of Y and yij ∈ Y (i = 1, 2, ...,mj; j =
1, 2, ..., n), we conclude that there exists gij ∈ G (i = 1, 2, ...,mj; j = 1, 2, ..., n)
such that

(5.2) ‖yij − gij‖ = d(yij, G), (i = 1, 2, ...,mj; j = 1, 2, ..., n).

In view of (5.1) and (5.2) and that yij ∈ Kj (i = 1, 2, ..., mj; j = 1, 2, ..., n), we
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obtain

(5.3)

‖fj(q)− gij‖ ≤ ‖fj(q)− yij‖ + ‖yij − gij‖
<

ε

2
+ d(yij, G)

≤ ε

2
+ max

1≤j≤n
d(fj(Q), G)

<
ε

2
+
ε

2
= ε,

for all q ∈ Q and some i = 1, 2, ...,mj (j = 1, 2, ..., n).
On the other hand, we have xij(q) = hij(fj(q)) = 0, if fj(q) /∈ N (yij,

ε
2 )

(i = 1, 2, ..., mj; j = 1, 2, ..., n). This, together with (5.3) and that
∑mj

i=1 xij = 1
(j = 1, 2, ..., n) imply that

(5.4)

‖fr(q)− 1
n

n∑

j=1

mj∑

i=1

xij(q)gij‖ =
1
n
‖nfr(q)−

n∑

j=1

mj∑

i=1

xij(q)gij‖

=
1
n
‖

n∑

j=1

mj∑

i=1

xij(q)[fr(q)− gij]‖

≤ 1
n

n∑

j=1

mj∑

i=1

xij(q)‖fr(q)− gij‖

<
1
n
ε

n∑

j=1

mj∑

i=1

xij(q) = ε,

for all r = 1, 2, ..., n and all q ∈ Q.

Now, Consider the isometry

ρ : C(Q) ⊗G→ C(Q,G)

defined by ρ(z) = ρz, where z =
∑k

r=1 ur ⊗ vr ∈ C(Q) ⊗ G (k ∈ N) and
ρz(q) :=

∑k
r=1 ur(q)vr, for each q ∈ Q. Therefore, it follows from (5.4) that

max
1≤r≤n

‖fr − 1
n

n∑

j=1

mj∑

i=1

xij ⊗ gij‖ ≤ ε.

Now, let r0 = d(S,W ). It is obvious that r0 > 0, since S ∩W = ∅. Then, by
the above, we conclude that for ε = r0 > 0 there exist elements x1j, x2j, ...xmjj ∈
C(Q) and g1j, g2j, ..., gmjj ∈ G (j = 1, 2, ..., n) such that 0 ≤ xij ≤ 1 (i =
1, 2, ...,mj; j = 1, 2, ..., n),

∑mj

i=1 xij = 1 (j = 1, 2, ..., n), and

(5.5) max
1≤r≤n

‖fr − 1
n

n∑

j=1

mj∑

i=1

xij ⊗ gij‖ ≤ r0.
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Let z0 = 1
n

∑n
j=1

∑mj

i=1 xij ⊗ gij. Thus, ρz0 ∈ C(Q,G), and by (5.5), we have
max1≤r≤n ‖fr − ρz0‖ < r0. This implies that max1≤r≤n ‖fr − ρz0‖ = d(S,W ),
and hence ρz0 ∈ SC(Q,G)(S), which completes the proof.

In the sequel, let S = {f1, f2, ..., fn} be a finite subset in C(Q, Y ) and, For
simplicity, we denote Sq := {f1(q), f2(q), ..., fn(q)} for each q ∈ Q.

Theorem 5.2. Under the hypotheses of Theorem 5.1, for each ε > 0 and each fi-
nite set S = {f1, f2, ..., fn} inX such that S∩W = ∅ and max1≤j≤n d(fj(Q), G) <
ε
2 , then there exists q0 ∈ Q such that

(5.6) d(S, C(Q,G)) = sup
q∈Q

d(Sq, G) = d(Sq0, G).

Proof. If ω ∈W and q ∈ Q, then we have

(5.7) d(Sq, G) ≤ max
1≤i≤n

‖fi(q) − ω(q)‖ ≤ max
1≤i≤n

‖fi − ω‖.

By taking infimum on ω ∈W, and then supremum on q ∈ Q, we get

(5.8) sup
q∈Q

d(Sq, G) ≤ d(S,W ).

For the reverse inequality, by Theorem 5.1 there exist elements x1j, x2j, ...xmjj ∈
C(Q), y1j, y2j, ..., ymjj ∈ fj(Q) and g1j, g2j, ..., gmjj ∈ G (j = 1, 2, ..., n) such
that 0 ≤ xij ≤ 1, ‖gij − yij‖ < ε (i = 1, 2, ..., mj; j = 1, 2, ..., n),

∑mj

i=1 xij = 1
(j = 1, 2, ..., n), and

(5.9) max
1≤r≤n

‖fr − 1
n

n∑

j=1

mj∑

i=1

xij ⊗ gij‖ ≤ ε.

Now, for each i = 1, 2, ...,mj, choose qi ∈ Q such that yij = fj(qi) (j =
1, 2, ..., n). Choose g0 ∈ G such that

‖yij − g0‖ ≤ max
1≤j≤n

‖yij − g0‖
= max

1≤j≤n
‖fj(qi)− g0‖

≤ inf
g∈G

max
1≤j≤n

‖fj(qi) − g‖+ ε

= d(Sqi, G) + ε

≤ sup
q∈Q

d(Sq, G) + ε, ∀ i = 1, 2, ...,mj; j = 1, 2, ..., n.
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This implies that

(5.10)
‖gij − g0‖ ≤ ‖gij − yij‖ + ‖yij − g0‖

< sup
q∈Q

d(Sq, G) + 2ε, ∀ i = 1, 2, ...,mj; j = 1, 2, ..., n.

Let z0 = 1
n

∑n
j=1

∑mj

i=1 xij ⊗ gij. Thus, by a similar argument as in the proof
of Theorem 5.1, we have ρz0 ∈ W and ρz0(q) := 1

n

∑n
j=1

∑mj

i=1 xij(q)gij for
all q ∈ Q. Therefore, in view of (5.9), (5.10) and that

∑mj

i=1 xij = 1 for each
j = 1, 2, ..., n, we conclude that

d(S,W ) ≤ ‖fr − ρz0‖ = sup
q∈Q

‖fr(q) − ρz0(q)‖

≤ sup
q∈Q

‖fr(q) − ρz0(q)‖ + ‖ 1
n

n∑

j=1

mj∑

i=1

xij ⊗ (gij − g0)‖

< ε+
1
n

sup
q∈Q

‖
n∑

j=1

mj∑

i=1

xij(q)(gij − g0)‖

≤ ε+
1
n

sup
q∈Q

n∑

j=1

mj∑

i=1

xij(q)‖gij − g0‖

≤ 3ε+ sup
q∈Q

d(Sq, G).

Since ε > 0 was arbitrary, we conclude that d(S, C(Q,G)) = supq∈Q d(Sq, G).
Finally, we define F (q) := d(Sq, G) for each q ∈ Q. Now, for each g ∈ G and

each q, q′ ∈ Q, we have

‖fi(q) − g‖ ≤ ‖fi(q)− fi(q′)‖ + ‖fi(q′)− g‖,

and

‖fi(q′)− g‖ ≤ ‖fi(q) − fi(q′)‖+ ‖fi(q)− g‖.

From these relations, we obtain

|F (q) − F (q′)| ≤ max
1≤i≤n

‖fi(q)− fi(q′)‖ (q, q′ ∈ Q).

This implies that F is a continuous function on Q. Since Q is compact, it follows
that there exists q0 ∈ Q such that supq∈Q d(Sq, G) = d(Sq0, G), which completes
the proof.



Simultaneous Metric Projections in C(Q, Y ) with Applications 1429

Theorem 5.3. Under the hypotheses of Theorem 5.1, for each ε > 0 and
each finite set S = {f1, f2, ..., fn} in X such that S ∩W = ∅, max1≤j≤n d(fj

(Q), G) < ε
2 and ω0 ∈W, then the following assertions are equivalent:

(i) ω0 ∈ SW (S),

(ii) There exists q0 ∈ Q such that ω0(q0) ∈ SG(Sq0), and

(5.11) max
1≤i≤n

‖fi − ω0‖ = max
1≤i≤n

‖fi(q0) − ω0(q0)‖ = d(Sq0, G).

Proof. (i) ⇒ (ii). Suppose (i) holds. In view of Theorem 5.2, there exists
q0 ∈ Q such that

d(Sq0, G) = d(S, C(Q,G)).

Since ω0 ∈ SW (S), we get

max
1≤i≤n

‖fi − ω0‖ = d(S, C(Q,G)) = d(Sq0, G))

≤ max
1≤i≤n

‖fi(q0) − ω0(q0)‖
≤ max

1≤i≤n
‖fi − ω0‖

Therefore

max
1≤i≤n

‖fi − ω0‖ = max
1≤i≤n

‖fi(q0) − ω0(q0)‖ = d(Sq0, G),

and we have ω0(q0) ∈ SG(Sq0).
(ii) ⇒ (i). Assume that (ii) holds. Then there exists q0 ∈ Q such that ω0(q0) ∈

SG(Sq0), and (5.11) holds. Therefore, in view of Theorem 5.2, we obtain

d(S, C(Q,G)) ≤ max
1≤i≤n

‖fi − ω0‖
= max

1≤i≤n
‖fi(q0) − ω0(q0)‖ = d(Sq0, G)

≤ d(S, C(Q,G)).

This implies that ω0 ∈ SW (S), and the proof is complete.

Corollary 5.1. Let Q be a compact Hausdorff space. Assume W = CR(Q)
is considered as a subspace of X = CC(Q). Let ε > 0 be given and let S =
{f1, f2, ..., fn} be a finite set in C(Q, Y ) such that S∩W = ∅ and max1≤j≤n d(fj

(Q),R) < ε
2 . If ω0 ∈W, then the following assertions are equivalent:

(i) ω0 ∈ SCR(Q)(S),
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(ii) There exists q0 ∈ Q such that ω0(q0) ∈ SR(Sq0) and
max1≤i≤n ‖fi − ω0‖ = max1≤i≤n ‖fi(q0) − ω0(q0)‖ = d(Sq0,R).

Proof. This is an immediate consequence of Theorem 5.3.

Theorem 5.4. Under the hypotheses of Theorem 5.1, for each ε > 0 and each
finite set S = {f1, f2, ..., fn} in X such that S∩W = ∅, max1≤j≤n d(fj(Q), G)<
ε
2 and ω0 ∈W, then the following assertions are equivalent:

(i) ω0 ∈ SW (S),
(ii) There exist q0 ∈ Q and bounded linear functionals ϕ i ∈ Y ∗ (i = 1, ..., n)

such that
n∑

i=1

‖ϕi‖ = 1,

n∑

i=1

ϕi(g − ω0(q0)) ≤ 0 (g ∈ G),

and
n∑

i=1

ϕi(fi(q0) − ω0(q0)) = max
1≤i≤n

‖fi − ω0‖.

Proof. (i) ⇒ (ii). Suppose (i) holds. Since ω0 ∈ SW (S), it follows from
Theorem 5.3 (the implication (i) ⇒ (ii)) that ω0(q0) ∈ SG(Sq0). Therefore, by
Theorem 3.1, there exist linear functionals ϕi ∈ Y ∗ (i = 1, 2, ..., n) such that

n∑

i=1

‖ϕi‖ = 1,

n∑

i=1

ϕi(g − ω0(q0)) ≤ 0 (g ∈ G),

and

max
1≤i≤n

‖fi − ω0‖ =
n∑

i=1

ϕi(fi(q0)− ω0(q0)).

(ii) ⇒ (i). Assume (ii) holds. Then there exist q0 ∈ Q and bounded linear
functionals ϕi ∈ Y ∗ (i = 1, ..., n) such that

max
1≤i≤n

‖fi − ω0‖ =
n∑

i=1

ϕi(fi(q0) − ω0(q0))

=
n∑

i=1

ϕi(g − ω0(q0)) +
n∑

i=1

ϕi(fi(q0) − g)
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≤
n∑

i=1

ϕi(fi(q0) − g)

≤ max
1≤i≤n

‖fi(q0) − g‖,

for all g ∈ G. Therefore, we have

max
1≤i≤n

‖fi − ω0‖ ≤ inf
g∈G

max
1≤i≤n

‖fi(q0)− g‖ = d(Sq0, G)

≤ max
1≤i≤n

‖fi(q0) − ω0(q0)‖
≤ max

1≤i≤n
‖fi − ω0‖.

This implies that

max
1≤i≤n

‖fi − ω0‖ = max
1≤i≤n

‖fi(q0) − ω0(q0)‖ = d(Sq0, G),

and ω0(q0) ∈ SG(Sq0). Thus, by Theorem 5.3 (the implication (ii) ⇒ (i)), we
obtain ω0 ∈ SW (S), and the proof is complete.
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