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NEW TYPE SINGULAR OPERATORS ON PRODUCT SPACES

Chao-Qiang Tan

Abstract. In this article we give sufficient conditions on kernels of singular
integral operators on product spaces to be bounded on weighted Lp-spaces
for 2 < p < ∞. Applications include the weighted norm inequalities of
holomorphic functional calculi of elliptic operators on product spaces.

1. INTRODUCTION

The purpose of this article is to give sufficient conditions on kernels of singular
integral operators on product spaces to be bounded on weighted Lp-spaces for 2 <
p <∞. For the basic facts about the classical singular integral operators on product
domains, see, for example, [9, 10, 11, 12] and [13].

To begin with, let us recall some results of the one-parameter theory. Let T be
a bounded linear operator on L2(R) with an associated kernel k(x, y) in the sense
that

(Tf)(x) =
∫

R

k(x, y)f(y)dy

where k(x, y) is a measurable function, and the above formula holds for each
continuous function f with compact support, and for almost all x not in the support
of f . One important result of Calderón-Zygmund operator theory is that T is
bounded on Lp(R) for 2 < p < ∞ if there exist constants C and c > 1 so
that the Hörmander integral condition on the kernel k(x, y) holds, i.e.,

(1.1)
∫
|x−y|≥c|x1−x|

|k(x, y)− k(x1, y)|dy ≤ C
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for all x, x1 ∈ R ([18]). In [6], Duong and McIntosh can weaken the Hörmander
integral condition and still conclude that T is bounded on Lp(R) for all 2 < p <∞.
Roughly speaking, assume that there exists a class of operators At with kernels
at(x, y), which play the role of approximation to the identity, so that the kernels
kt(x, y) of the composite operators TAt satisfy the condition∫

|x−y|≥ct1/m
|k(x, y)− kt(x, y)|dy ≤ C(1.2)

for some constants m, c, C, uniformly in x ∈ R and t > 0, then T is bounded on
Lp(R) for 2 < p < ∞. Moreover, it was proved in [7] that under the condition
(1.2), T is also bounded from L∞(R) to a space BMOA(R).

The most important feature of the class of Duong and McIntosh is the uncertainty
of the choice of the class {At}t>0. For example, if T is a classical singular operator
one can choose at(x, y) = 1

tχ|x−y|<t . If T = b(L), where b ∈ H∞(Sv+), and L
is the elliptic operator with holomorphic functional calculi, then one may choose
At = e−tL. See [6] for more details.

A natural problem is weather results in [6] can be extended to the product
spaces. This paper is devoted to solve this problem. Firstly we recall that the strong
maximal operator Ms is defined by:

Ms(f)(x) = sup
x∈R

1
|R|

∫
R
|f(x)|dx

where the sup is taken over all rectangles R in R2 which contain x. In this paper,
all rectangles’ both sides must be parallel to the coordinate axes.

Given a function f(x1, x2) on R × R, and a rectangle R, in [11], R.Fefferman
introduced the mean oscillation of f over R, oscR(f), by

oscR(f) = inf
f1,f2

( 1
|R|

∫∫
R

|f(x1, x2)− f1(x1) − f2(x2)|2dx1dx2

) 1
2

where the inf is taken over all pairs of functions f1, f2 depending only on the x1

and x2, respectively. Although in [3] L.Carleson disproved the fact that f is in the
dual of H1(R × R) if and only if oscR(f) ≤ c, Fefferman proved that the mean
oscillation over R can be used to obtain the boundedness of singular operators. To
be precise, in [11], Fefferman proved:

(1) Suppose that T is a bounded linear operator on L2(R2). Suppose further that
for any rectangle R in R2,

oscR(Tf) ≤ cγ−δ||f ||∞
whenever f is an L∞ function supported outside of γR for all γ ≥ 2 and
some fixed δ > 0, where γR is the rectangle γ-fold dilation of R. Then T
maps L∞(R2) boundedly into BMO(R × R).
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(2) Suppose T# is an operator defined on positive locally square integrable func-
tions. T# is monotone, i.e., T#f(x) ≤ T#g(x) when f(x) ≤ g(x) for all
x ∈ R2. Suppose further that for any function f supported outside of γR,

oscR(Tf) ≤ γ−δT#f(x), for all x ∈ R,

where δ > 0. Then T# is called a sharp operator of T . Fefferman proved
the following result:∫∫

R2

S(Tf)(x)2φ(x)dx ≤ c

∫∫
R2

(I + T#)(|f |)(x)2M(φ)(x)dx.

As a corollary, Fefferman also proved: if T is a bounded linear operator on
L2(R2) whose sharp operator is T# = Ms(f2)

1
2 , then for p > 2,∫∫

R2

|Tf |p(x)ω(x)dx ≤ c

∫
R2

|f(x)|pω(x)dx

whenever ω ∈ Ap/2(R × R). (A positive function ω(x1, x2) is said to be in
Ar(R×R) if only if ω(·, x2) ∈ Ar(R) with Ar norm bounded independently
of x2, and ω(x1, ·) ∈ Ar(R) with Ar norm bounded independently of x1.)

In this paper, we will extend the above results to more general setting of singular
operators on product spaces. In order to simplify, we always denote t = (t1, t2),
tm = (tm1 , t

m
2 ), x = (x1, x2) and dxdt

t means dx1dx2dt1dt2
t1t2

.
The following two theorems are our main theorems in this paper:

Theorem 1.1. Let T be a bounded linear operator on L2(R2). The sharp
operator T# is monotone and for any functions f supported outside of γR, the
γ-fold dilation of R,

CR(Tf) ≤ cγ−δT#f(x)

for all x ∈ R, where δ > 0,

CR(f) =
( 1
|R|

∫∫
R

∫ |I|

0

∫ |J|

0

|ψtm(f)(x)|2dxdt
t

) 1
2
.

(see Section 2 below for the exact definition of ψ tm) Then

(1) We have the following a priori duality estimate:∫∫
R2

S(Tf)(x)2φ(x)dx ≤ c

∫∫
R2

(I + T#)(|f |)(x)2M(φ)(x)dx

where I denotes the identity operator and M(φ) = M s(Ms(Ms(Ms(φ)))).
(see Section 2 below for the exact definition of S function)
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(2) If T# is bounded from L∞(R2) to L∞(R2), then T is bounded from L∞∩L2

to BMOA ∩ L2(see Section 2 for the definition) with estimate:

||Tf ||BMOA
≤ c||f ||∞.

The following theorem can be viewed as an extension of Duong and McIntosh’s
results to product spaces.

Theorem 1.2. Let T be a bounded linear operator on L2(R2), which satisfies
the following conditions:∫

|x1−y1|≥2kt1

||k(1)
t1

(x1, y1)||2L2→L2dy1 ≤ c
t2δ
1

(2kt1)1+2δ
,(1.3)

∫
|x2−y2|≥2kt2

||k(2)
t2

(x2, y2)||2L2→L2dy2 ≤ c
t2δ
2

(2kt2)1+2δ
,(1.4)

∫∫
|x1−y1|≥2kt1
|x2−y2|≥2lt2

|k(3)
t (x, y)|2dy ≤ c

t2δ
1

(2kt1)1+2δ

t2δ
2

(2lt2)1+2δ
,(1.5)

(here δ > 0 is given)for all k, l ≥ 2, where k
(1)
t1

(x1, y1) and k
(2)
t2

(x2, y2) are
operators satisfying:

k
(1)
t1

(x1, y1)g(z) =
∫∫

R2
ψtm1

(x1, z1)k(z1, y1, z, y2)g(y2)dz1dy2

k
(2)
t2

(x2, y2)g(z) =
∫∫

R2

ψtm2
(x2, z2)k(z, y1, z2, y2)g(y1)dz2dy1

and the function

k
(3)
t (x, y) =

∫∫
R2

ψtm1
(x1, z1)ψtm2

(x2, z2)k(z1, y1, z2, y2)dz1dz2.

Then the operator T satisfies all the assumptions of Theorem 1.1, with T #f =
Ms(|f |2) 1

2 . As a consequence, for p > 2,∫∫
R2

|Tf |p(x)ω(x)dx ≤ c

∫
R2

|f(x)|pω(x)dx

whenever ω ∈ Ap/2(R × R). Moreover,

||Tf ||BMOA
≤ c||f ||∞.
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The paper is organized as follows. In section 2, we give some assumptions
and introduce the Journé’s covering lemma. In section 3, we give the proof of the
main theorems. In section 4, we show that the C class of singular integral operators
defined by Fefferman is contained in our cases. We note that the classical singular
operators whose kernels satisfy the pointwise estimate must belong to the C class.
In section 5, we prove that the functional calculus of elliptic operators also satisfy
the conditions given in the above two theorems. We remark that operators given in
section 5 may not be handled by classical singular integral operators theory.

2. ASSUMPTIONS AND PRELIMINARIES

Assumptions suppose that T is a bounded linear operator from L2(R2) to
L2(R2), and its kernel is k(x1, y1, x2, y2). There is a class of integral operators At,
defined on L2

loc(R) initially, which plays the role of approximations to the identity.
Also we assume that operators At can be represented by kernels at(x, y) in the
sense that

Atu(x) =
∫

R

at(x, y)u(y)dy

for every function u ∈ L2(R)∩L1(R), and the kernel at(x, y) satisfies the following
conditions:

|at(x, y)| ≤ ht(x, y)(2.1)

for all x, y ∈ R, where ht(x, y) is a function satisfying

ht(x, y) =
1

2t
1
m

s
( |x− y|

t
1
m

)
(2.2)

for some m > 0 and s is a positive, bounded, decreasing function satisfying:
lim

r→∞ r1+εs(r) = 0.

In one-parameter case, we denote ψt = At(I−At) and S(f)(x) = (
∫∫

Γ(x) |ψtm(f)

(y)|2 dydt
t2 )

1
2 , where Γ(x) = {(y, t)| ∈ R

2
+, |y− x| < t}. we assume that

c1||f ||L2 ≤ ||S(f)||L2 ≤ c2||f ||L2(2.3)

for all f ∈ L2(R).
We now consider two-parameter case. For any t = (t1, t2) and a function f(x)

defined on R2, we let ψt = ψt1 ⊗ψt2 , where ψti = Ati(I−Ati), i = 1, 2. Also we
let S(f)(x) = (

∫∫
Γ(x) |ψtm(f)(y)|2dydt

t21t22
)

1
2 , where Γ(x) = {(y, t)| ∈ R

2
+×R

2
+, |y1−

x1| < t1, |y2 − x2| < t2}. We assume that:

c1||f ||L2 ≤ ||S(f)||L2 ≤ c2||f ||L2(2.4)
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for all f ∈ L2(R2).
We remark that there are many choices of {At} that satisfy the above assump-

tions(see section 4 and section 5 for example), but ψt may not satisfy the cancellation
condition(i.e.

∫
ψt(f)(x)dx = 0, ∀f ∈ L2).

Definition 2.1. We define the bounded mean oscillation space BMOA ∩ L2

by
BMOA ∩ L2 = {f | ∈ L2(R2), 1

|Ω|
∫∫̂
Ω

|ψtm(f)(x)|2dxdt
t1t2

<∞,

for all open set Ω ⊂ R
2}

where Ω̂ = {(x, t)|R(x, t) ⊂ Ω}, here R(x, t) is a rectangle in R
2 with center at x,

and sidelengths t1 and t2, respectively.

2.1. Journé’s covering lemma

To show the Theorem 1.1, we recall the Journé’s covering lemma ([12, 13]) and
its extension ([11]).

Lemma 2.2. For any open set Ω ⊂ R2, let m(Ω) denote the collection of
all maximal dyadic subrectangles in Ω, Similarly, let m 1(Ω)and m2(Ω) denote
the families of dyadic subrectangles in Ω, which are maximal in the x 1 and x2

directions, respectively. Given a rectangle R = I × J ∈ m2(Ω), let Î be the
largest dyadic interval containing I , and such that Î × J ⊂ Ω̃, where Ω̃ = {x| ∈
R2,Ms(χΩ)(x) > 1

2}. Define γ1(R) = |Î|
|I| , then we have the following inequality:∑

R∈m2(Ω)

|R|γ1(R)−δ ≤ cδ|Ω|,

moreover, ∑
R∈m2(Ω)

|R|γ1(R)−δ inf
x∈R

|f(x)| ≤ cδ

∫
Ω

|f(x)|dx.

3. PROOF OF THE MAIN THEOREMS

3.1. Proof of Theorem 1.1

Basically, the proof of Theorem 1.1 is similar to the proof of Theorem 1 in
[11]. We, however, remark that the operators{ψt} in the Theorem 1.1 may not
satisfy the cancellation condition, which is needed in the proof of Theorem 1 in
[11]. We let Ok = {x| ∈ R2,M(φ)(x) > 2k}, Bk = {R| are a dyadic rectangles,
|R ∩ Ok| > 1

2 |R| and |R ∩ Ok+1| ≤ 1
2 |R| }, and R+ = {(y, t)| ∈ R2

+ × R2
+ : y ∈

R, 1
2 |I | < t1 ≤ |I |, 1

2 |J| < t2 ≤ |J|}.
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Then ∫∫
R2

|S(Tf)(x)|2φ(x)dx

≤
∫∫

R
2
+×R

2
+

|ψtm(Tf)(y)|21
t

∫∫
|y−x|<t

φ(x)dx
dydt

t

≤
∑

k

∑
R∈Bk

2k+1

∫∫
R+

|ψtm(Tf)(y)|2dydt
t
.

The last inequality is based on the fact that 1
t

∫∫
|y−x|<t φ(x)dx ≤ inf

y∈R
Ms(φ)(y)

and |R ∩Ok+1| ≤ 1
2 |R|.

We claim that:∑
R∈Bk

∫∫
R+

|ψtm(Tf)(y)|2dydt
t

≤ c

∫∫
˜̃̃
Ok

(I + T#)(|f |)(x)2dx,

then it is easy to see that the theorem’s part(1) follows readily.

To show the claim above, we decompose f into two parts: f = fχ˜̃̃
Ok

+fχ ˜̃̃
O

c

k

=

f0 + f1, then∑
R∈Bk

∫∫
R+

|ψtm(Tf0)(y)|2dydt
t

≤
∫∫

R
2
+×R

2
+

|ψtm(Tf0)(y)|2dydt
t

≤ c||f0||22
=
∫∫

˜̃̃
Ok

|f(x)|2dx.

In order to estimate f1, we further decompose it into two parts. Firstly, we note
that R ∈ Bk implies R ⊆ Õk. Let Î be the maximal dyadic interval, containing I ,
such that Î × J ⊂ ˜̃

Ok , and denote R̃ = Î × J . Also let Ĵ be the maximal dyadic

interval, containing J , such that Î × Ĵ ⊂ ˜̃̃
Ok. Write γ1(R) = |Î|

I , γ2(R̃) = |Ĵ|
J . Let

f1
0 = f1χÎc×R

, and f1
1 = f1χÎ×Ĵc , then

∑
R∈Bk

∫
R+

|ψtm(Tf1
0 )(y)|2dydt

t
≤

∑
R∈m(Õk)

∫∫
R

∫ |I|

0

∫ |J|

0
|ψtm(Tf1

0 )(y)|2dydt
t

≤ c
∑

R∈m(Õk)

γ1(R)−2δ|R| inf
x∈R

T#f(x)2

≤ c

∫∫
Õk

T#(|f |)(x)2dx.
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The last inequality uses the Lemma 2.2. Also we have∑
R∈Bk

∫
R+

|ψtm(Tf1
1 )(y)|2dydt

t

≤
∑

S∈m1(
˜̃
Ok)

∑
R∈m(Õk)

R̃=S

∫∫
R=I×J

∫ |I|

0

∫ |J|

0
|ψtm(Tf1

1 )(y)|2dydt
t

≤
∑

S∈m1(
˜̃
Ok)

∫∫
S=I′×J ′

∫ |I′|

0

∫ |J ′|

0
|ψtm(Tf1

1 )(y)|2dydt
t

≤ c
∑

S∈m1(
˜̃
Ok)

γ2(S)−2δ|S| inf
x∈S

T#f(x)2

≤ c

∫∫
˜̃
Ok

T#(|f |)(x)2dx.

This completes the proof of part (1).

Now we turn to the proof of part(2). For any open set Ω ∈ R2, we decompose
f into two parts f 0 an f1, such that f 0 = fχ˜̃

Ω
, f = f0 + f1. Using the L2

boundedness of S function and the L2 boundedness of T , we have:
1
|Ω|
∫∫

Ω̂
|ψtm(Tf0)(x)|2dx ≤ c

1
|Ω| ||f

0||22 ≤ c||f ||∞.

Now we turn to estimate f 1. For any maximal dyadic rectangle R = I×J ⊂ Ω̃,
let Î be the maximal dyadic interval, containing I , such that Î×J ⊂ ˜̃Ω. Also let Ĵ be

the maximal dyadic interval, containing J , such that Î× Ĵ ⊂ ˜̃̃
Ω. Write γ1(R) = |Î|

I ,
γ2(R) = |Ĵ|

J . Let f1
0 = f1χÎc×R

, and f1
1 = f1χÎ×Ĵc . Then f1 = f1

0 + f1
1 , and

1
|Ω|
∫∫

Ω̂
|ψtm(Tf1)(x)|2dxdt

t

≤ c

|Ω|

( ∑
R∈m(Ω̃)

∫∫
R

∫ |I|

0

∫ |J|

0
|ψtm(Tf1

0 )(x)|2dxdt
t

+

∑
R∈m(Ω̃)

∫∫
R

∫ |I|

0

∫ |J|

0
|ψtm(Tf1

1 )(x)|2dxdt
t

)

≤ c

|Ω|
( ∑

R∈m(Ω̃)

γ1(R)−2δ|R|+
∑

R∈m(Ω̃)

γ2(R)−2δ|R|
)
||f ||2∞

≤ c||f ||2∞.
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The second inequality above uses the assumption on T#, and the third inequality
uses the Journé’s covering lemma. This completes the proof of Theorem 1.1.

Similar to [11], as a consequence of Theorem 1.1, we have

Corollary 2.3. If T is a bounded linear operatorL 2(R2) whose sharp operator
is T#f = Ms(f2)

1
2 , then

(1) for p > 2, ∫∫
|Tf |p(x)ω(x)dx ≤ c

∫
R2

|f(x)|pω(x)dx

whenever ω ∈ Ap/2(R × R).
(2) T is bounded from L2 ∩ L∞ to BMOA ∩ L2.

See the proof of the corollary of Theorem 1 in [11].

Proof of Theorem 1.2. Let R = I × J be a rectangle in R
2, and x0 ∈ R.

Without loss of generality we suppose that the center of R is the origin. We just
need to show that when suppf ⊆ (γI)c × R, we have

1
|R|

∫∫
R

∫ |I|

0

∫ |J|

0

|ψtm(Tf)(x)|2dxdt
t

≤ cγ−2δMs(|f |2)(x0).(3.1)

(since we can decompose f into two parts f1, f2, such that f = f1 + f2 with
f1 = fχ(γI)c×R, f2 = fχR×(γJ)c )

Let f = fχ(γI)c×(2J) + fχ(γI)c×(2J)c = f1 + f2, and apply S function’s L2

estimates, Minkoski inequality, then we have

1
|R|

∫∫
R

∫ |I|

0

∫ |J|

0
|ψtm(Tf1)(x)|2dxdt

t

≤ c

|R|
∫

I

∫ |I|

0

∫
R

∣∣∣ ∫
R

[k(1)
t1

(x1, y1)f1(y1, ·)](x2)dy1
∣∣∣2dx2

dx1dt1
t1

≤ c

|R|
∫

I

∫ |I|

0

(∫
R

( ∫
R

|[k(1)
t1

(x1, y1)f1(y1, ·)](x2)|2dx2

) 1
2
dy1

)2
dx1dt1
t1

≤ c

|R|
∫

I

∫ |I|

0

{ ∑
k: 2k>γ

( ∫
|y1|∼2k|I|

||k(1)
t1

(x1, y1)||2L2→L2dy1

) 1
2

( ∫
|y1|∼2k|I|

|f1(y1, x2)|2dx2dy1

) 1
2

}2
dx1dt1
t1
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≤ c

∫
I

∫ |I|

0

{ ∑
k: 2k>γ

tδ1

(2k|I |) 1
2
+δ

2
1
2
kMs(|f |2)(x0)

1
2

}2 dx1dt1
t1

≤ cγ−2δMs(|f |2)(x0).

Similarly,

1
|R|

∫∫
R

∫ |I|

0

∫ |J|

0
|ψtm(Tf2)(x)|2dxdt

t

≤ 1
|R|

∫∫
R

∫ |I|

0

∫ |J|

0

{ ∑
k: 2k>γ

l: l≥1

( ∫∫
|y1|∼2k |I|
|y2|∼2l |J|

|k(3)
t (x1, y1, x2, y2)|2dy1dy2

) 1
2

( ∫
|y1|∼2k|I|
|y2|∼2l |J|

|f1(y1, y2)|2dy2dy1
) 1

2

}2
dxdt

t

≤ c

∫∫
R

∫ |I|

0

∫ |J|

0

{ ∑
k: 2k>γ

l: l≥1

tδ1

(2k|I |) 1
2
+δ

tδ2

(2l|J|) 1
2
+δ

2
1
2
k2

1
2
lMs(|f |2)(x0)

1
2

}2
dxdt

t

≤ cγ−2δMs(|f |2)(x0).

This completes the proof of Theorem 1.2.

4. EXAMPLE 1: THE C CLASS SINGULAR INTEGRAL OPERATORS OF FEFFERMAN

In this section, we will verify that the singular integral operators of C class that
defined initially by R.Fefferman satisfy all assumptions of Theorem 1.2.

Firstly, let us recall the definition of the singular integral operators of C class.
If T is a bounded linear operator on L2(R2), with kernel k(x1, y1, x2, y2), in the
sense that

Tf(x1, y1) =
∫∫

R2

k(x1, y1, x2, y2)f(y1, y2)dy1dy2

whenever (x1, x2) /∈ suppf .
We define k(1)(x1, y1) to be the integral operator on R whose kernel is k(1)(x1, y1)

(x2, y2) = k(x1, y1, x2, y2). Define k(2) similarly with the kernel k(2)(x2, y2)(x1, y1)
= k(x1, y1, x2, y2). Suppose Thf(x) =

∫
R
h(x, y)f(y)dy is bounded on L2(R). We

define |Th|CZ = ||Th||L2→L2 + inf C where the inf is taken over all C > 0 so that(∫
|x−y|>γ|x−x′|

|h(x, y)− h(x′, y)|2dy
)1

2

≤ Cγ−
1
2
−δ|x− x′|− 1

2
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(here δ > 0 is given) for all γ ≥ 2. We say that T is in the C class if

(4.1)

(∫
|x1−y1 |>γ|x1−y′1|

|k(1)(x1, y1)−k(1)(x′1, y1)|2CZdy1

) 1
2

≤cγ− 1
2
−δ |x1−x′1|−

1
2

and similarly,

(4.2)

(∫
|x2−y2|>γ|x2−y′2 |

|k(2)(x2, y2)−k(2)(x′2, y2)|2CZdy2

) 1
2

≤cγ− 1
2
−δ|x2−x′2|−

1
2

for all γ ≥ 2.

In order to prove all operators in the C class satisfy our assumptions in Theorem
1.2, we should choose a suitable class of operators {At}t>0. To do this, let η(x) ∈
C∞

0 (R), with suppη ⊂ [−1, 1] and
∫
η(x)dx = 1. We set At(f)(x) = f ∗ ηt(x),

where ηt(x) = 1
t η(

x
t ). Then for any t1 > 0, ψt1f(x) = ψt1 ∗ f(x), where ψ(x) =

η(x)−η(x)∗η(x), and hence ψ(x) ∈ C∞
0 (R), and

∫
ψ(x)dx = 0. This implies that

the S function defined in (2.3) is the classical S function. Therefore the assumptions
(2.1), (2.3) and (2.4) hold with m = 1.

Theorem 4.1. The operators in the C class satisfy the hypothesis of Theorem
1.2.

Proof. We firstly verify the condition(1.3). If |x1 − y1| ≥ 2kt1, where k ≥ 2,
then

k
(1)
t1

(x1, y1)g(z) =
∫∫

R2

ψt1(x1, z1)k(z1, y1, z, y2)g(y2)dz1dy2

=
∫∫

R2

ψt1(x1, z1)[k(z1, y1, z, y2) − k(x1, y1, z, y2)]g(y2)dz1dy2

by the cancellation condition of ψ. And thus

||k(1)
t1

(x1, y1)||L2→L2 ≤ c

∫
|x1−z1|≤2t1

1
t1
|k(1)(z1, y1)− k(1)(x1, y1)|CZdz1.

This gives:∫
|x1−y1|≥2kt1

||k(1)
t1

(x1, y1)||2L2→L2dy1

≤ c

∫
|x1−y1|≥2kt1

1
t1

∫
|x1−z1|≤2t1

|k(1)(z1, y1) − k(1)(x1, y1)|2CZdz1dy1

≤ c

∫
|x1−z1|≤2t1

1
t1

( 2kt1
|x1 − z1|

)−1−2δ|x1 − z1|−1dz1

≤ c
t2δ
1

(2kt1)1+2δ
.



1240 Chao-Qiang Tan

The second inequality above uses the assumption(4.1). The proof of the condition(1.4)
is similar.

Finally, we turn to verify the condition(1.5). If |x1−y1| ≥ 2kt1 and |x2−y2| ≥
2lt2, then

k
(3)
t (x, y) =

∫∫
R2

ψt1(x1, z1)ψt2(x2, z2)k(z1, y1, z2, y2)dz1dz2

=
∫∫

R2

ψt1(x1, z1)ψt2(x2, z2)
{
[k(z1, y1, z2, y2)

−k(x1, y1, z2, y2)]− [k(z1, y1, x2, y2) − k(x1, y1, x2, y2)]
}
dz1dz2.

Therefore,∫∫
|x1−y1|≥2kt1
|x2−y2|≥2lt2

|k(3)
t (x, y)|2dy

≤ c

∫∫
|x1−y1|≥2kt1
|x2−y2|≥2lt2

∫∫
|x1−z1|≤2t1
|x2−z2|≤2t2

1
t1t2

∣∣∣[k(z1, y1, z2, y2) − k(x1, y1, z2, y2)
]

−[k(z1, y1, x2, y2) − k(x1, y1, x2, y2)
]∣∣∣2dz1dz2dy1dy2

≤ c

t1t2

∫∫
|x1−z1|≤2t1
|x2−z2|≤2t2

∫
|x1−y1|≥2kt1

|k(1)(z1, y1)

−k(1)(x1, y1)|2CZ

( 2lt2
|x2 − z2|

)−1−2δ |x2 − z2|−1dy1dz1dz2

≤ c

t1t2

∫∫
|x1−z1|≤2t1
|x2−z2|≤2t2

( 2kt1
|x1 − z1|

)−1−2δ|x1 − z1|−1

( 2lt2
|x2 − z2|

)−1−2δ|x2 − z2|−1dz1dz2

≤ c
t2δ
1

(2kt1)1+2δ

t2δ
2

(2lt2)1+2δ
.

This completes the proof of Theorem 4.1.

5. EXAMPLE 2: HOLOMORPHIC FUNCTIONAL CALCULI OF ELLIPTIC OPERATORS

In this section, we will give another example of operators that satisfy all the
assumptions of Theorem 1.2, which may not be contained in the C class(see section
4 above and [11]). We firstly give some preliminary definitions for introducing
holomorphic functional calculi of operators. (For more details see [1, 4] and [14])
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For 0 ≤ ω < µ < π, define the closed and open sectors in the (extended)complex
plane:

Sω = {z| ∈ C : | arg(z)| ≤ ω} ∪ {0,∞}, Sµ+ = {z| ∈ C : | arg(z)| < µ}.
Also we let S0

µ+ = {z| ∈ Sµ+, z �= 0}. Denote by H(Sµ+) the space of all
holomorphic functions on Sµ+ and by H∞(Sµ+) = {b ∈ H(Sµ+) : ||b||∞ < ∞}
where ||b||∞ = sup{|b(z)| : z ∈ Sµ+}. A closed operator L in L2(R) is said to be
type ω if its spectrum σ(L) ⊂ Sω, and for each µ > ω, there exists a constant cµ
such that

||(ζI − L)−1||L2→L2 ≤ cµ|ζ|−1, ζ �∈ Sµ.

In what following, we assume that L is a one-one linear operator of type ω on
L2(R) with ω < π/2, and hence L generates a holomorphic semigroup e−zL,
0 ≤ | arg(z)| < π

2 − ω. Also we assume the following two conditions:

(1) The holomorphic semigroup e−zL, | arg(z)| < π
2−ω, is represented by kernels

az(x, y) which satisfy, for all ω < θ < π
2 , an estimate

|az(x, y)| ≤ cθh|z|(x, y)

for x, y ∈ R and | arg(z)| < π
2−θ, where ht is defined on R2 that satisfies(2.2).

(2) The operator L has bounded holomorphic functional calculus in L2(R). That
is, for any µ > ω and b ∈ H∞(S0

µ), the operator b(L) satisfies

||b(L)||2 ≤ Cµ||f ||∞.(5.1)

In what following, we choose At = e−tL, as in section 2, we define the operator
ψt = At(I − At), and the S function SL(f)(x) = (

∫∫
Γ(x) |ψtm(f)(y)|2dydt

t2
)

1
2 ,

where Γ(x) = {(y, t)| ∈ R2
+, |y − x| < t}.

Then inequality(5.1) is equivalent to the square function estimate and its reverse:

C1||f ||22 ≤
∫

R

SL(f)(x)2dx ≤ C2||f ||22.

Also we have:

C1||f ||22 ≤
∫

R

SL∗(f)(x)2dx ≤ C2||f ||22.

See [14] for more details.

Remark. There are many operators satisfying the assumptions above. For
example,
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(1) the magnetic Schrödinger operator:

L = −(
∂

∂x
− ia)2 + V (x)

where a is real value function and 0 ≤ V (x) ∈ Lloc(R).
(2) the divergent operator:

L = −a1
d

dx
(a2

d

dx
)

where ai ∈ L∞(R,C), and Re(ai) ≥ k > 0, i = 1, 2.

Now we consider the two-parameter case. Suppose that f(ζ1, ζ2) defined on C
2,

and it satisfies the following property: for any fixed ζ2, f(ζ1, ζ2) is holomorphic in
Sµ+ for the ζ1 variable, and for any fixed ζ1, f(ζ1, ζ2) is holomorphic in Sµ+ for
the ζ2 variable. The collection of all such functions is denoted by H(Sµ+ × Sµ+).
Similar to one-parameter case, we write

Ψ(Sµ+ × Sµ+) = {f | ∈ H(Sµ+ × Sµ+), |f(ζ1, ζ2)| ≤ C |ζ1|s
1+|ζ1|2s

|ζ2|s
1+|ζ2|2s ,

∀ζ1, ζ2 ∈ Sµ+, for some s > 0}, and H∞(Sµ+ × Sµ+) = {f | ∈ H(Sµ+ ×
Sµ+), |f(ζ1, ζ2)| ≤ C, ∀ζ1, ζ2 ∈ Sµ+}.

We define the symbol ⊗ by T1⊗T2f(x, y) =
∫∫

K1(x, u)K2(y, v)f(u, v)dudv,
where T1 and T2 are operators on L2(R) with kernels K1 and K2, respectively.

If φ ∈ Ψ(Sµ+ × Sµ+), then we define

φ(L) = (
1

2πi
)2
∫

γ

∫
γ

(L− ζ1I)−1 ⊗ (L− ζ2I)−1φ(ζ1, ζ2)dζ1dζ2

where γ is the contour {ζ = re±iθ : r ≥ 0} parameterized clockwise around Sµ+,
and ω < θ < µ. Clearly, this integral is absolutely convergent. Applying Cauchy
theorem, we conclude that the definition is independent of the choice of θ ∈ (ω, µ).

Let φ(ζ1, ζ2) = ζ1

(1+ζ1)2
ζ2

(1+ζ2)2
. Then φ ∈ Ψ(Sµ+ × Sµ+) and φ(L) is one-one.

For all b ∈ H∞(Sµ+ × Sµ+), we define

b(L) = (φ(L))−1(bφ)(L).

We can verify many properties in one-parameter case are also satisfied in our case(see
[1]). For example, the following convergence Lemma holds.

Lemma 5.1. Let {fα} be a uniformly bounded net in H∞(S0
µ+ ×S0

µ+), which
converges to f ∈ H∞(S0

µ+×S0
µ+) uniformly on compact subsets of S 0

µ+×S0
µ+, such

that {fα(L)} is a uniformly bounded net. Then f(L) ∈ B(L2(R2)), fα(L)u →
f(L)u for all u ∈ L2(R2), and ||f(L)|| ≤ supα ||fα(L)||.

Theorem 5.1. If b ∈ H∞(Sµ+ × Sµ+), then the operator T = b(L) satisfies
all the assumptions of Theorem 1.2. As a consequence, we have:
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(1) The operator T = b(L) is bounded from Lp(R2, ω) to Lp(R2, ω), for all
ω ∈ A p

2
(R × R), where p > 2.

(2) The operator T = b(L) is bounded from L2 ∩ L∞ to BMOL ∩ L2.

Firstly we give a lemma.

Lemma 5.2. If t, s, β > 0, then∫ ∞

0

tu

(1 + tu)3
e−βsudu ≤ c

t

(s+ t)2
.

Proof. If s ≤ t, then

∫ ∞

0

tu

(1 + tu)3
e−βsudu ≤ c

(∫ 1
t

0
tudu+

∫ 1
s

1
t

1
(tu)2

du+
∫ ∞

1
s

1
(tu)2

1
(su)2

du
)

≤ c

t
.

If t ≤ s, then

∫ ∞

0

tu

(1 + tu)3
e−βsudu ≤ c

( ∫ 1
s

0
tudu+

∫ 1
t

1
s

tu
1

(su)3
du+

∫ ∞

1
t

1
(tu)2

1
(su)2

du
)

≤ c
t

s2
.

This completes the proof of Lemma 5.2.

Proof of Theorem 5.1. We choose At = e−tL. Applying the convergent
lemma above, we just need to show that when b ∈ Ψ(S0

µ+ × S0
µ+), the conditions

(1.3),(1.4)and(1.5) hold. We choose ω < θ < υ < µ, and denote

γ+ = {seiυ |s ≥ 0}, γ− = {se−iυ |s ≥ 0}, γ = γ+ ∪ γ−,

Γ+ = {sei( π
2
−θ)|s ≥ 0}, Γ− = {se−i( π

2
−θ)|s ≥ 0}, Γ = Γ+ ∪ Γ−.

It is easy to see that

k(1)(x1, y1)g(z) = (
1

2πi
)2
∫

γ

∫
γ

e−tm1 ζ1(1 − e−tm1 ζ1)

b(ζ1, ζ2)(L− ζ1I)−1(x1, y1)(L− ζ2I)−1g(z)dζ1dζ2.
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Applying the fact that (L− ζ1I)−1 = c
∫
Γ e

λζ1e−λLdλ, we have

||k(1)
t1

(x1, y1)g(z)||2
≤ 1

(2π)2

∫
γ
|e−tm1 ζ1(1− e−tm1 ζ1)| sup

ζ2

|b(ζ1, ζ2)| |(L− ζ1I)−1(x1, y1)| ||g||2d|ζ1|

≤ c

∫
γ+∪γ−

|e−tm1 ζ1(1− e−tm1 ζ1)| sup
ζ2

|b(ζ1, ζ2)|∫
Γ+∪Γ−

|eλζ1| |aλ(x1, y1)| d|λ| ||g||2 d|ζ1|

≤ c||b||∞||g||2
∫ ∞

0

∫ ∞

0

tm1 u

(1 + tm1 u)3
e−βsuhs(x1, y1)duds,

where β > 0 is a constant.
If |x1 − y1| ∼ 2kt1, we apply Lemma 5.2, then we have

||k(1)
t1

(x1, y1)||L2→L2 ≤ c

∫ ∞

0

∫ ∞

0

tm1 u

(1 + tm1 u)3
e−βsu 1

s1/m
(1 +

2kt1

s1/m
)−1−εduds

≤ c

∫ ∞

0

∫ ∞

0

tm1 u

(1 + tm1 u)3
e−βsmu 1

s
(1 +

2kt1
s

)−1−εsm−1duds

≤ c

∫ ∞

0

t1
m

(s+ t1)2m

1
s
(1 +

2kt1
s

)−1−εsm−1ds

≤ c
tδ1

(2kt1)1+δ

where δ = min(m, ε).
As a result,∫
|x1−y1|>2kt1

||k(1)
t1

(x1, y1)||2L2→L2dy1 ≤ c
∑

l: l≥k

t2δ
1

(2lt1)2+2δ
2lt1 ≤ c

t2δ
1

(2kt1)1+2δ
.

The conditions (1.4), (1.5) can be verified by the similar way. Here we omit
details.
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