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MODIFIED EXTRAGRADIENT METHODS FOR STRICT
PSEUDO-CONTRACTIONS AND MONOTONE MAPPINGS

Lu-Chuan Ceng1 and Shuechin Huang2,∗

Abstract. In this paper we introduce an iterative process to find a common
element of the set of fixed points of a strict pseudo-contraction and the set of
solutions of the variational inequality problem for a monotone and Lipschitz
continuous mapping. The iterative process is based on the so-called modi-
fied extragradient method. We obtain a weak convergence theorem for two
sequences generated by this process. Using this theorem, we also construct
an iterative process to find a common element of the set of fixed points of a
strict pseudo-contraction and the set of zeroes of a monotone and Lipschitz
continuous mapping.

1. INTRODUCTION

Throughout this paper, H denotes a real Hilbert space with inner product 〈·, ·〉
and norm ‖ · ‖.

Definition 1.1. Let C be a nonempty subset of H . A mapping A : C → H is
said to be (see [1, 9]):

(i) monotone if

〈Ax − Ay, x− y〉 ≥ 0, for all x, y ∈ C;
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(ii) α-inverse strongly monotone if there exists a positive number α such that

〈Ax − Ay, x− y〉 ≥ α‖Ax − Ay‖2, for all x, y ∈ C;

(iii) β-strongly monotone if there exists a positive number β such that

〈Ax − Ay, x − y〉 ≥ β‖x − y‖2, for all x, y ∈ C;

(iv) k-Lipschitz continuous if there exists a positive number k such that

‖Ax − Ay‖ ≤ k‖x − y‖, for all x, y ∈ C.

It is obvious that every α-inverse strongly monotone mapping A is monotone
and Lipschitz continuous.

Definition 1.2. Let C be a nonempty subset of H . A self-mapping S : C → C
is said to be (see [10, 14]):

(i) nonexpansive if

‖Sx − Sy‖ ≤ ‖x − y‖, for all x, y ∈ C;

(ii) a strict pseudo-contraction if there exists a constant 0 ≤ κ < 1 such that

‖Sx − Sy‖2 ≤ ‖x− y‖2 + κ‖(I − S)x − (I − S)y‖2, for all x, y ∈ C;

(iii) a quasi-strict pseudo-contraction if the set of fixed points of S, F (S) = {z ∈
C : Sz = z}, is nonempty and if there exists a constant 0 ≤ κ < 1 such that

‖Sx− p‖2 ≤ ‖x− p‖2 + κ‖x − Sx‖2, for all x ∈ C, p ∈ F (S).

We also say that S is a κ-strict pseudo-contraction if condition (ii) holds, and
respectively, S is a κ-quasi-strict pseudo-contraction if condition (iii) holds.

Let C be a nonempty subset of H . Given a mapping A : C → H , the variational
inequality problem, denoted VI(A, C), is to find a point u ∈ C such that

〈Au, v − u〉 ≥ 0, for all v ∈ C.

The set of solutions of the variational inequality problem VI(A, C) will be de-
noted by Ω(A, C). The variational inequality problem was first discussed by Lions
[8]. Subsequently, this problem has been widely studied since it covers diverse
disciplines such as partial differential equations, optimal control, optimization the-
ory, mathematical programming, mechanics and mathematical economics. It is well
known that if A is a strongly monotone and Lipschitz continuous mapping on C,
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then VI(A, C) has a unique solution. The mapping A : C → H is said to be pseu-
domonotone if for any x, y ∈ C, 〈x − y, Ay〉 ≥ 0 implies 〈x − y, Ax〉 ≥ 0. Every
monotone mapping is pseudomonotone. In particular, if C is a nonempty closed
convex subset of H and A : C → H is pseudomonotone and continuous on finite-
dimensional subspaces, then the set of solutions Ω(A, C) of VI(A, C) is closed and
convex [17, Lemma 3.1]. The various approaches and interesting results to this
problem in finite-dimensional and infinite-dimensional spaces have been intensively
developed; see [2]-[5], [7, 9, 12, 15, 16], and [18]-[20].

It is remarkable that, in 1976, Korpelevich [7] found a solution of the noncon-
strained variational inequality problem in the finite-dimensional Euclidean space Rn

under the assumption that C ⊂ Rn is closed and convex and A : C → Rn is mono-
tone and k-Lipschitz continuous by introducing the following so-called extragradient
method:

(1)




x0 = x ∈ C,

x̄n = PC(xn − λAxn),

xn+1 = PC(xn − λAx̄n), n ≥ 0,

where λ ∈ (0, 1/k). He showed that if Ω(A, C) is nonempty, then the sequences
{xn} and {x̄n} generated by (1) converge to the same point z ∈ Ω(A, C).

Recently, motivated by the idea of Korpelevich’s extragradient method, a va-
riety of iterative schemes were introduced to find a common element of the set
of fixed points of a nonexpansive mapping and the set of solutions of the varia-
tional inequality problem for a monotone and k-Lipschitz continuous mapping. In
2006, Nadezhkina and Takahashi [12] provided an iterative process and proved the
following weak convergence result.

Theorem 1.3. (Nadezhkina and Takahashi [12]). Let C be a nonempty closed
convex subset of a real Hilbert space H , A : C → H a monotone and k-Lipschitz
continuous mapping and S : C → C a nonexpansive mapping such that F (S) ∩
Ω(A, C) 
= ∅. Let {xn} and {yn} be the sequences generated by

(2)




x0 = x ∈ C,

yn = PC(xn − λnAxn),

xn+1 = αnxn + (1 − αn)SPC(xn − λnAyn), n ≥ 0,

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [c, d] for some c, d ∈
(0, 1). Then {xn} and {yn} converge weakly to the same point z ∈ F (S)∩Ω(A, C),
where z = limn→∞ PF (S)∩Ω(A,C)xn.

Inspired by Nadezhkina and Takahashi’s iterative scheme (2), Zeng and Yao [18]
gave an iterative process and asserted the following strong convergence theorem.
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Theorem 1.4. (Zeng and Yao [18]). Let C be a nonempty closed convex subset
of a real Hilbert space H , A : C → H a monotone and k-Lipschitz continuous
mapping and S : C → C a nonexpansive mapping such that F (S)∩Ω(A, C) 
= ∅.
Let {xn} and {yn} be sequences generated by


x0 = x ∈ C,

yn = PC(xn − λnAxn),

xn+1 = αnx0 + (1− αn)SPC(xn − λnAyn), n ≥ 0,

where {λn} and {αn} satisfy the conditions:

(i) {λnk} ⊂ (0, 1− δ), for some δ ∈ (0, 1);

(ii) {αn} ⊂ (0, 1),
∞∑

n=0

αn = ∞, limn→∞ αn = 0.

Then {xn} and {yn} converge strongly to the same element PF (S)∩Ω(A,C)(x0)
provided limn→∞ ‖xn − xn+1‖ = 0.

Furthermore, Ceng and Yao [2] introduced an iterative extragradient-like ap-
proximation method and established another strong convergence theorem.

Theorem 1.5. (Ceng and Yao [2]). Let C be a nonempty closed convex subset
of a real Hilbert space H , f : C → C a contraction, A : C → H a monotone and
Lipschitz continuous mapping and S : C → C a nonexpansive mapping such that
F (S) ∩ Ω(A, C) 
= ∅. Let {xn} and {yn} be sequences generated by

(3)




x0 = x ∈ C,

yn = (1− γn)xn + γnPC(xn − λnAxn),

xn+1 =(1 − αn−βn)xn+αnf(yn)+βnSPC(xn−λnAyn), n≥0,

where {λn} is a sequence in (0, 1) with
∑∞

n=0 λn < ∞, and {αn}, {βn}, {γn}
are three sequences in [0, 1] satisfying the conditions:

(i) αn + βn ≤ 1, for all n ≥ 0;

(ii) lim
n→∞αn = 0,

∞∑
n=0

αn = ∞;

(iii) 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1.

Then {xn} and {yn} converge strongly to the same point q = PF (S)∩Ω(A,C)f(q) if
and only if {Axn} is bounded and lim infn→∞〈Axn, y − xn〉 ≥ 0, for all y ∈ C.
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Let C be a nonempty closed convex subset of a real Hilbert space H . Suppose
that A : C → H is a monotone and k-Lipschitz continuous mapping and S : C → C
is a κ-strict pseudo-contraction for some 0 ≤ κ < 1 such that F (S)∩Ω(A, C) 
= ∅.
Based on the extragradient method (3) and Mann’s iterative method [10], this paper
is devoted to introduce a modified extragradient method as follows:



x0 = x ∈ C,

yn = PC(xn − λnAxn),

tn = PC(xn − λnAyn),

xn+1 = αntn + (1− αn)Stn, n ≥ 0,

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [α, β] for some α, β ∈
(κ, 1). It is shown that the sequences {xn} and {yn} generated by this iterative
scheme converge weakly to the same point z ∈ F (S) ∩ Ω(A, C), where z =
limn→∞ PF (S)∩Ω(A,C)xn. We also apply this result to construct an iterative process
to find a common element of the set of fixed points of a strict pseudo-contraction
and the set of zeroes of a monotone and Lipschitz continuous mapping.

2. PRELIMINARIES

Suppose that C is a nonempty closed convex subset of a real Hilbert space H .
For each point x ∈ H there exists a unique nearest point in C, denoted PCx, such
that ‖x − PCx‖ ≤ ‖x − y‖ for all y ∈ C. The mapping PC is called the metric
projection of H onto C. Then PC is a nonexpansive mapping from H onto C
characterized by the following properties [14]: PCx ∈ C and

(4) 〈x − PCx, y − PCx〉 ≤ 0, for all x ∈ H, y ∈ C,

(5) ‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2, for all x ∈ H, y ∈ C.

Let A be a monotone mapping of C into H . In the context of the variational
inequality problem, the inequality (5) implies that

u ∈ Ω(A, C) ⇐⇒ u = PC(u − λAu), for all λ > 0.

We will use the notations → for strong convergence and ⇀ for weak conver-
gence. The following facts will be used in the sequel.

Lemma 2.1. ([10, Lemma 1.1]). Let H be a real Hilbert space. Then we have

(i) ‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, for all x, y ∈ H;
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(ii) ‖tx + (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2, for all t ∈ [0, 1]
and x, y ∈ H;

(iii) If {xn} ⇀ z, then

lim sup
n→∞

‖xn − y‖2 = lim sup
n→∞

‖xn − z‖2 + ‖z − y‖2, for all y ∈ H.

A set-valued mapping T : H → 2H is said to be monotone if

〈x − y, f − g〉 ≥ 0, for all (x, f), (y, g) ∈ G(T ),

where G(T ) denotes the graph of T . A monotone mapping T : H → 2H is said to
be maximal if its graph G(T ) is not properly contained in the graph of any other
monotone mapping. A monotone mapping T is maximal if and only if whenever
(x, f) ∈ H × H and 〈x − y, f − g〉 ≥ 0 for all (y, g) ∈ G(T ), then f ∈ Tx; see
[6]. Let A : C → H be a monotone and k-Lipschitz continuous mapping and let
NCv be the normal cone to C at v ∈ C, i.e.,

NCv = {w ∈ H : 〈v − u, w〉 ≥ 0, for all u ∈ C}.

Define a set-valued mapping T : H → 2H by

Tv =

{
Av + NCv, if v ∈ C,

∅, if v 
∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ Ω(A, C); see [13].

3. WEAK CONVERGENCE THEOREM

In this section, we establish a weak convergence theorem for strict pseudo-
contractions and monotone mappings. The following two lemmas are required.

Lemma 3.1. (Marino and Xu [10, Proposition 2.1 ]) Let C be a nonempty
closed convex subset of a real Hilbert space H and let S : C → C be a mapping.

(i) If S is a strict pseudo-contraction, then the mapping I −S is demiclosed (at
0), i.e., if {xn} is a sequence in C such that xn ⇀ x̃ and (I − S)xn → 0,
then (I − S)x̃ = 0.

(ii) If S is a quasi-strict pseudo-contraction, then the fixed set F (S) of S is
closed and convex so that the projection PF (S) is well defined.
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Lemma 3.2. (Takahashi and Toyoda [15, Lemma 3.2]) Let C be a nonempty
closed convex subset of a real Hilbert space H and let {x n} be a sequence in H .
Suppose that for each u ∈ C,

‖xn+1 − u‖ ≤ ‖xn − u‖, n ≥ 0.

Then the sequence {PCxn} converges strongly to some z ∈ C.

Our weak convergence theorem is obtained as follows.

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space
H , A : C → H a monotone and k-Lipschitz continuous mapping and S : C → C

a κ-strict pseudo-contraction for some 0 ≤ κ < 1 such that F (S) ∩ Ω(A, C) 
= ∅.
Let {xn} and {yn} be sequences generated by

(6)




x0 = x ∈ C,

yn = PC(xn − λnAxn),

tn = PC(xn − λnAyn),

xn+1 = αntn + (1− αn)Stn, n ≥ 0,

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [c, d] for some c, d ∈
(κ, 1). Then {xn} and {yn} converge weakly to the same point z ∈ F (S)∩Ω(A, C),
where z = limn→∞ PF (S)∩Ω(A,C)xn.

Proof. The proof is divided into five steps. First, note that F (S) ∩ Ω(A, C) is
closed and convex by Lemma 3.1(ii) and [17, Lemma 3.1].

Step 1. Let u ∈ F (S) ∩ Ω(A, C) so that 〈Au, v − u〉 ≥ 0, for all v ∈ C. We
claim that

‖xn+1 − u‖ ≤ ‖xn − u‖, for n ≥ 0,

which implies that
lim

n→∞ ‖xn − u‖
exists, for all u ∈ F (S) ∩ Ω(A, C).

By (5), (6) and the monotonicity of A, we obtain

‖tn − u‖2 ≤ ‖xn − λnAyn − u‖2 − ‖xn − λnAyn − tn‖2

= ‖xn − u‖2 − ‖xn − tn‖2 + 2λn〈Ayn, u− tn〉
= ‖xn − u‖2 − ‖xn − tn‖2 + 2λn〈Ayn − Au, u− yn〉

+ 2λn〈Au, u− yn〉 + 2λn〈Ayn, yn − tn〉
≤ ‖xn − u‖2 − ‖xn − tn‖2 + 2λn〈Ayn, yn − tn〉
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= ‖xn − u‖2 − (‖xn − yn‖2 + 2〈xn − yn, yn − tn〉 + ‖yn − tn‖2)

+ 2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2〈xn − λnAyn − yn, tn − yn〉.

Since yn = PC(xn − λnAxn) and A is k-Lipschitz continuous, it follows from (4)
that

〈xn − λnAyn − yn, tn − yn〉 = 〈xn − λnAxn − yn, tn − yn〉
+ 〈λnAxn − λnAyn, tn − yn〉

≤ 〈λnAxn − λnAyn, tn − yn〉
≤ λnk‖xn − yn‖‖tn − yn‖.

Therefore

(7)

‖tn − u‖2

≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2λnk‖xn − yn‖‖tn − yn‖
≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+λ2
nk2‖xn − yn‖2 + ‖yn − tn‖2

= ‖xn − u‖2 + (λ2
nk2 − 1)‖xn − yn‖2

≤ ‖xn − u‖2.

Note that u = Su and {αn} ⊂ [κ, 1]. Since S a κ-strict pseudo-contraction, we
have by (6), (7) and Lemma 2.1(ii) that

(8)

‖xn+1 − u‖2

= ‖αn(tn − u) + (1− αn)(Stn − u)‖2

= αn‖tn − u‖2 + (1− αn)‖Stn − u‖2 − αn(1 − αn)‖tn − Stn‖2

≤ αn‖tn − u‖2 + (1− αn)(‖tn − u‖2 + κ‖tn − Stn‖2)
−αn(1 − αn)‖tn − Stn‖2

= ‖tn − u‖2 + (1 − αn)(κ− αn)‖tn − Stn‖2

≤ ‖xn − u‖2 + (λ2
nk2 − 1)‖xn − yn‖2

≤ ‖xn − u‖2.

Our claim is proved. Hence limn→∞ ‖xn − u‖ exists and so the sequences {xn}
and {tn} are bounded.

Step 2. Observe that
lim

n→∞ ‖xn − yn‖ = 0
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and
lim

n→∞ ‖yn − tn‖ = 0.

In fact, we have by (8) that

(1 − λ2
nk2)‖xn − yn‖2 ≤ ‖xn − u‖2 − ‖xn+1 − u‖2

which shows that

‖xn − yn‖2 ≤ 1
1 − λ2

nk2
(‖xn − u‖2 − ‖xn+1 − u‖2).

Hence limn→∞ ‖xn − yn‖ = 0. On the other hand, since PC is nonexpansive,

‖tn − yn‖2 = ‖PC(xn − λnAyn) − PC(xn − λnAxn)‖2

≤ λ2
nk2‖xn − yn‖2

≤ λ2
nk2

1 − λ2
nk2

(‖xn − u‖2 − ‖xn+1 − u‖2).

Thus limn→∞ ‖yn − tn‖ = 0 by Step 1. Since ‖xn − tn‖ ≤ ‖xn −yn‖+‖yn − tn‖,
it implies that limn→∞ ‖xn − tn‖ = 0. By Lipschitz continuity of A, we have
limn→∞ ‖Ayn − Atn‖ = 0.

Step 3. We claim that the following hold:

(i) lim
n→∞ ‖tn − Stn‖ = 0;

(ii) lim
n→∞ ‖xn − Sxn‖ = 0.

Indeed, since κ < c ≤ αn ≤ d < 1 for all n ≥ 0, it follows from (7) and the fourth
inequality in (8) that

(c − κ)(1− d)‖tn − Stn‖2 ≤ (αn − κ)(1− αn)‖tn − Stn‖2

≤ ‖xn − u‖2 − ‖xn+1 − u‖2.

By Step 1, limn→∞ ‖tn − Stn‖ = 0.
By Lemma 2.1(ii),

(9)

‖xn+1 − Sxn+1‖2 = ‖αn(tn − Sxn+1) + (1− αn)(Stn − Sxn+1)‖2

= αn‖tn − Sxn+1‖2 + (1− αn)‖Stn − Sxn+1‖2

−αn(1 − αn)‖tn − Stn‖2.
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Note that tn − xn+1 = (1 − αn)(tn − Stn). The first term on the right-hand side
of (9) can be written as

(10)

‖tn − Sxn+1‖2 = ‖(tn − xn+1) + (xn+1 − Sxn+1)‖2

= ‖tn − xn+1‖2 + ‖xn+1 − Sxn+1‖2

+2〈tn − xn+1, xn+1 − Sxn+1〉
= (1 − αn)2‖tn − Stn‖2 + ‖xn+1 − Sxn+1‖2

+2〈tn − xn+1, xn+1 − Sxn+1〉.

To estimate the second term on the right-hand side of (9), since S is a κ-strict
pseudo-contraction, it follows that

(11)

‖Stn − Sxn+1‖2 ≤ ‖tn − xn+1‖2 + κ‖(tn − Stn) − (xn+1 − Sxn+1)‖2

= ‖tn − xn+1‖2 + κ‖tn − Stn‖2 + κ‖xn+1 − Sxn+1‖2

−2κ〈tn − Stn, xn+1 − Sxn+1〉
= [ (1− αn)2 + κ ]‖tn − Stn‖2 + κ‖xn+1 − Sxn+1‖2

−2κ〈tn − Stn, xn+1 − Sxn+1〉.

Now, we deduce from (9), (10) and (11) that

(12)

‖xn+1 − Sxn+1‖2 ≤ (1− αn)(1 + κ − 2αn)‖tn − Stn‖2

+[ αn + κ(1 − αn) ]‖xn+1 − Sxn+1‖2

+2(1 − αn)(αn − κ)〈tn − Stn, xn+1 − Sxn+1〉
≤ [αn + κ(1− αn)]‖xn+1 − Sxn+1‖2

+(1 − αn)(1 + κ − 2αn)‖tn − Stn‖2

+2(1 − αn)(αn − κ)‖tn − Stn‖‖xn+1 − Sxn+1‖.

Putting an = ‖xn+1 − Sxn+1‖ and bn = ‖tn − Stn‖ for n ≥ 0, and then dividing
(12) by 1 − αn yields

(1 − κ)a2
n ≤ (1 + κ − 2αn)b2

n + 2(αn − κ)anbn.

If bn = 0, then an = 0. If bn > 0, divide the last inequality by b2
n and set

γn = an/bn to get the quadratic inequality of γn

(1 − κ)γ2
n − 2(αn − κ)γn − (1 + κ − 2αn) ≤ 0
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which implies that

γn ≤ αn − κ +
√

(αn − κ)2 + (1− κ)(1 + κ − 2αn)
1 − κ

= 1.

Therefore an ≤ bn. It follows that ‖xn+1 − Sxn+1‖ ≤ ‖tn − Stn‖, for all n ≥ 0.
Since limn→∞ ‖tn − Stn‖ = 0, we have limn→∞ ‖xn − Sxn‖ = 0.

Step 4. Denote the weak ω-limit set of {xn} by

ωw(xn) = {x ∈ H : xni ⇀ x, for some subsequence {xni}}.
We claim that

ωw(xn) ⊂ F (S) ∩ Ω(A, C).

Since {xn} is bounded and H is reflexive, ωw(xn) is nonempty. Let z ∈ ωw(xn)
so that there exists a subsequence {xni} of {xn} converging weakly to z. We will
show that z ∈ Ω(A, C). Since xn − tn → 0 and yn − tn → 0, we have tni ⇀ z
and yni ⇀ z. Define a set-valued mapping T : H → 2H by

Tv =

{
Av + NCv, if v ∈ C,

∅, if v 
∈ C.

Then T is maximal monotone. Let (v, w) ∈ G(T ). Then w ∈ Tv = Av + NCv.
Hence w − Av ∈ NCv and so

〈v − u, w − Av〉 ≥ 0, for all u ∈ C.

On the other hand, since tn = PC(xn − λnAyn) and v ∈ C, we have by (4) that

〈xn − λnAyn − tn, tn − v〉 ≥ 0

and so

(13) 〈v − tn, Ayn +
tn − xn

λn
〉 ≥ 0.

Since w − Av ∈ NCv, tni ∈ C and A is monotone, (13) shows that

(14)

〈v − tni , w〉
≥ 〈v − tni , Av〉
≥ 〈v − tni , Av〉 − 〈v − tni , Ayni +

tni − xni

λni

〉

= 〈v − tni , Av − Atni〉 + 〈v − tni , Atni − Ayni〉 − 〈v − tni ,
tni − xni

λni

〉

≥ 〈v − tni , Atni − Ayni〉 − 〈v − tni ,
tni − xni

λni

〉.
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As i approaching ∞,
〈v − z, w〉 ≥ 0.

Since T is maximal monotone, z ∈ T−10 and hence z ∈ Ω(A, C); see [13].
To prove that z ∈ F (S), note that S is a κ-strict pseudo-contraction and so by

Lemma 3.1 (i) the mapping I − S is demiclosed at zero. Since ‖xn − Sxn‖ → 0
and xni ⇀ z, we have z ∈ F (S). Consequently, z ∈ F (S) ∩ Ω(A, C) and hence
ωw(xn) ⊂ F (S) ∩ Ω(A, C).

Step 5. The sequences {xn} and {yn} converge weakly to the same point z ∈
F (S) ∩ Ω(A, C), where z = limn→∞ PF (S)∩Ω(A,C)xn. To see this, we first show
that ωw(xn) is a single-point set. Take z1, z2 ∈ ωw(xn) arbitrarily and let {xki} and
{xmj} be subsequences of {xn} such that xki ⇀ z1 and xmj ⇀ z2, respectively.
It follows from Step 1 and Step 4 that limn→∞ ‖xn − z1‖ and limn→∞ ‖xn − z2‖
exist. By Lemma 2.1 (iii) we obtain

limn→∞ ‖xn − z1‖2 = lim
j→∞

‖xmj − z1‖2

= lim
j→∞

‖xmj − z2‖2 + ‖z2 − z1‖2

= lim
i→∞

‖xki − z2‖2 + ‖z2 − z1‖2

= lim
i→∞

‖xki − z1‖2 + 2‖z2 − z1‖2

= lim
n→∞ ‖xn − z1‖2 + 2‖z2 − z1‖2

which asserts that z1 = z2. Therefore ωw(xn) is a single-point set, say {z},
and so xn ⇀ z. Since xn − yn → 0, we also have yn ⇀ z. For n ≥ 0, let
un = PF (S)∩Ω(A,C)xn so that by (4),

〈z − un, xn − un〉 ≤ 0.

Then Step 1 and Lemma 3.2 assure that {un} converges strongly to some z0 ∈
F (S) ∩ Ω(A, C). Hence 〈z − z0, z − z0〉 ≤ 0 which shows that z = z0. This
completes the proof.

4. APPLICATIONS

In this section we apply Theorem 3.1 to construct an iterative process to find a
common element of the set of fixed points of a strict pseudo-contraction and the set
of zeroes of a monotone and Lipschitz continuous mapping.

Theorem 4.1. Let H be a real Hilbert space, A : H → H a monotone and
k-Lipschitz continuous mapping and S : H → H a κ-strict pseudo-contraction for
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some 0 ≤ κ < 1 such that F (S) ∩ A−10 
= ∅. Let {xn} and {yn} be sequences
generated by 



x0 = x ∈ H,

yn = xn − λnAxn,

tn = xn − λnAyn,

xn+1 = αntn + (1− αn)Stn, for n ≥ 0,

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [c, d] for some c, d ∈
(κ, 1). Then {xn} and {yn} converge weakly to the same point z ∈ F (S)∩A−10,
where

z = lim
n→∞ PF (S)∩A−10xn.

Proof. This is exactly the case when C = H in Theorem 3.1. Since Ω(A, H) =
A−10 and PH = I , the desired result follows.

Remark. Notice that F (S) ∩ A−10 ⊂ Ω(A, F (S)). See also [16, Yamada]
for the case when A : H → H is a strongly monotone and Lipschitz continuous
mapping and S : H → H is a nonexpansive mapping.

It is well known (see [11]) that if A : H → H is a maximal monotone mapping,
then for each u ∈ H and λ > 0 there is a unique z ∈ H such that

u ∈ (I + λA)(z).

The (single-valued) function JA
λ := (I +λA)−1 thus defined is called the resolvent

of A of parameter λ, and it is also known as the proximal mapping. The mapping
JA

λ : H → H is nonexpansive and JA
λ (z) = z if and only if 0 ∈ A(z).

Theorem 4.2. Let H be a real Hilbert space, A : H → H a monotone and
k-Lipschitz continuous mapping and B : H → 2 H a maximal monotone mapping
such that A−10 ∩ B−10 
= ∅. Let JB

r be the resolvent of B, for each r > 0. Let
{xn} and {yn} be sequences generated by



x0 = x ∈ H,

yn = xn − λnAxn,

tn = xn − λnAyn,

xn+1 = αntn + (1 − αn)JB
r tn, for n ≥ 0,

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [c, d] for some c, d ∈
(0, 1). Then {xn} and {yn} converge weakly to the same point z ∈ A−10∩B−10,
where

z = lim
n→∞ PA−10∩B−10xn.
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Proof. We have Ω(A, H) = A−10, F (JB
r ) = B−10, PH = I and κ = 0 in Theorem

3.1. The desired result obtains.
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