TAIWANESE JOURNAL OF MATHEMATICS Vol. 13, No. 4, pp. 1159-1165, August 2009 This paper is available online at http://www.tjm.nsysu.edu.tw/

MULTIPLICATION OPERATORS ON ANALYTIC FUNCTIONAL SPACES

B. Yousefi and A. Khaksari Dedicated to Mola Ali

Abstract. Let X be a reflexive Banach space of functions analytic on a bounded plane domain G such that for every λ in G the functional of evaluation at λ is bounded. Assume further that X contains the constants and admits multiplication by the independent variable z, M_z , as a bounded operator. We give sufficient conditions for M_z to be reflexive.

1. INTRODUCTION

In this section we include some preparatory material which will be needed later. By a *domain* we understand a connected open subset of the plane. If Ω is a bounded domain in the plane, then as comes in Sarason ([11]), the *Carathéodory hull* (or \mathbb{C} -hull) of Ω is the complement of the closure of the unbounded component of the complement of the closure of Ω . The \mathbb{C} -hull of Ω is denoted by Ω^* . Intuitively, Ω^* can be described as the interior of the outer boundary of Ω , and in analytic terms it can be defined as the interior of the set of all points z_0 in the plane such that $|p(z_0)| \leq \sup\{|p(z)| : z \in \Omega\}$ for all polynomials p. The components of Ω^* are simply connected; in fact, one can easily see that each of these components has a connected complement. The component of Ω^* that contains Ω is denoted by Ω_1 . Note that for all polynomials p, $||p||_{\Omega} = ||p||_{\Omega_1}$. The domain Ω is called a *Carathéodory domain* if $\Omega^* = \Omega$. In this case the Farrell-Rubel-Shields Theorem holds: let f be a bounded analytic function on Ω . Then there is a sequence $\{p_n\}$ of polynomials such that $||p_n||_{\Omega} \leq c$ for a constant c and $p_n(z) \to f(z)$ for all $z \in \Omega$ ([7, Theorem 5.1, p.151]).

Received June 15, 2007, accepted November 6, 2007.

Communicated by Sen-Yen Shaw.

²⁰⁰⁰ Mathematics Subject Classification: 47B37, 46A25.

Key words and phrases: Functional Banach spaces of analytic functions, Multiplication operators, Reflexive operator, Multipliers, Caratheodory domain, Bounded point evaluation, Farrell-Rubel-Shields Theorem.

Now let X be a reflexive Banach space. For the algebra $\mathcal{B}(X)$ of all bounded operators on the Banach space X, the weak operator topology is the one in which a net A_{α} converges to A if $A_{\alpha}x \to Ax$ weakly, $x \in X$.

For the following definition one can see [3, 9].

Definition. If $A \in \mathcal{B}(X)$, then Lat(A) is the lattice of all invariant subspaces of A, and AlgLat(A) is the algebra of all operators B in $\mathcal{B}(X)$ such that $Lat(A) \subset$ Lat(B). An operator A in $\mathcal{B}(X)$ is said to be *reflexive* if AlgLat(A) = W(A), where W(A) is the smallest subalgebra of $\mathcal{B}(X)$ that contains A and the identity Iand is closed in the weak operator topology.

Consider a Banach space X of functions analytic on a plane domain G, such that for each $\lambda \in G$ the linear functional, e_{λ} , of evaluation at λ is bounded on X. Assume further that X contains the constant functions and multiplication by the independent variable z defines a bounded linear operator M_z on X. A complex valued function φ on G for which $\varphi f \in X$ for every $f \in X$ is called a *multiplier* of X and the collection of all these multipliers is denoted by $\mathcal{M}(X)$. Each multiplier φ of X determines a multiplication operator M_{φ} on X by $M_{\varphi}f = \varphi f$, $f \in X$. It is well-known that each multiplier is a bounded analytic function ([13]). Indeed $|\varphi(\lambda)| \leq ||M_{\varphi}||$ for each λ in G. Also $M_{\varphi}1 = \varphi \in X$. But $X \subset H(G)$, thus φ is a bounded analytic function. We also point out that if φ is a multiplier and $\lambda \in G$ then

$$M^*_{\varphi}e_{\lambda} = \varphi(\lambda)e_{\lambda},$$

since for all f in X we have

$$< f, M_{\varphi}^* e_{\lambda} > = < M_{\varphi} f, e_{\lambda} > = \varphi(\lambda) f(\lambda)$$

= $\varphi(\lambda) < f, e_{\lambda} > = < f, \varphi(\lambda) e_{\lambda} >$

(here for simplicity we used the notation $\langle x, x^* \rangle$ instead of $x^*(x)$ for $x \in x$ and $x^* \in X^*$).

In this paper we will investigate the reflexivity of the operator M_z acting on functional Banach spaces of analytic functions on an arbitrary bounded plane domain (for a source of functional Banach spaces one can see [4]).

2. MAIN RESULTS

The operator M_z has been the focus of attention for several decades and many of its properties have been studied ([2]). The study of reflexive operators has been playing a key role in the theory of invariant subspaces and harmonic analysis of operators on Hilbert spaces. It is well-known, due to the work by Sarason in

1160

[10], that normal operators are reflexive and one of the intensively studied models of non-normal reflexive operators is the so-called shift on Hilbert spaces, whose concrete realization is basically the multiplication by z on the Hardy space of "square integrable" \mathcal{K} -valued holomorphic functions for some Hilbert space \mathcal{K} . It was shown by J. Deddens ([5]) that every isometry is reflexive. Also, R. Olin and J. Thomson ([8]) have shown that subnormal operators are reflexive. H. Bercovici, C. Foias, J. Langsam, and C. Pearcy ([1]) have shown that (BCP)-operators are reflexive. The reflexive operators on a finite dimensional space were characterized by J. Deddens and P. A. Fillmore ([6]). Reflexivity of certain bilateral weighted shifts are also studied in [12, 14]. In this article we would like to give some sufficient conditions so that the operator M_z becomes reflexive on certain functional Banach spaces of analytic functions on a bounded plane domain (for a good source of reflexivity see [9]).

Main Theorem. Let X be a reflexive functional Banach space of analytic functions on a bounded plane domain G such that X contains the constant functions and $M_z \in \mathcal{B}(X)$. If $||M_p|| \leq c||p||_G$ for every polynomial p and $||f||_G \leq d||f||_X$ for all f in $X \cap H^{\infty}(G)$, then M_z is reflexive.

Proof. Let R be the Riemann mapping from the open unit disk U onto G_1 . Set $\Omega = R^{-1}(G)$ and $E = \{f \circ R : f \in X\}$. It is easy to see that E turns out to be a reflexive Banach space with the norm $||f \circ R||_E = ||f||_X$, $f \in X$. Furthermore, the functions in E are analytic on Ω , $\Omega \subset U$, and E contains the constants. Consider the Banach space (E, Ω) and denote the functional of point evaluation at $\lambda \in \Omega$ by e'_{λ} . Since $e'_{\lambda}(f \circ R) = e_{R(\lambda)}(f)$, the functional of point evaluations are bounded on (E, Ω) . The operator $S : X \to E$ given by $Sf = f \circ R$ is clearly an isomorphism. Also, observe that the map $\varphi \to \varphi \circ R$ is an isometric isomorphism of

$$\mathcal{M}(X) \to \mathcal{M}(E) = \{\varphi \circ R : \varphi \in \mathcal{M}(X)\}$$

just as the map $A \to SAS^{-1}$ of $\mathcal{B}(X) \to \mathcal{B}(E)$ is, since if $||f||_X \leq 1$, then

$$||Sf||_E = ||f \circ R||_E = ||f||_X \le 1$$

and also we have

$$||SAS^{-1}(f \circ R)||_E = ||SAf||_E = ||Af \circ R||_E = ||Af||_X.$$

Hence indeed $||SAS^{-1}|| = ||A||$. Let the multiplication operator by $\phi \in \mathcal{M}(E)$ be denoted by M'_{ϕ} . Therefore for every polynomial p we get

$$c||p \circ R||_{\Omega} = c||p||_{G} \ge ||M_{p}|| = ||SM_{p}S^{-1}|| = ||M'_{p \circ R}||,$$

since

$$SM_pS^{-1}(f \circ R) = SM_pf = S(pf) = (pf) \circ R$$
$$= (p \circ R) \cdot (f \circ R) = M'_{n \circ R}(f \circ R)$$

Hence $c||p \circ R||_{\Omega} \ge ||M'_{p \circ R}||$ for every polynomial p. Note that

$$M'_R(f \circ R) = R \cdot (f \circ R) = (zf) \circ R$$

for every $f \in X$ and since $zf \in X$ whenever $f \in X$, we see that this definition make sense. Also, note that

$$SM_z f = (zf) \circ R = R \cdot (f \circ R) = M'_R Sf,$$

hence $SM_z = M'_R S$. The boundedness of M'_R follows directly from it's definition. Now let $L \in Lat(M_z)$ and define

$$L_R = \{ f \circ R : f \in L \}.$$

Then the correspondence $L \to L_R$ is clearly a bijection of $Lat(M_z) \to Lat(M'_R)$. The map $A \to SAS^{-1}$ establishes a bijection of $AlgLat(M_z) \to AlgLat(M'_R)$ and also of $W(M_z) \to W(M'_R)$. Hence M_z is reflexive on (X, G) if and only if M'_R is reflexive on (E, Ω) . So we could reduce the problem of reflexivity concerning the operator of multiplication on (X, G) into a problem of reflexivity of an operator on (E, Ω) where Ω is a subset of the open unit disk U. Now we show that M'_R is reflexive on (E, Ω) . For this let $A \in AlgLat(M'_R)$. Note that

$$< f \circ R, (M'_R)^* e'_z > = < M'_R (f \circ R), e'_z >$$

$$= R(z) \cdot (f \circ R)(z)$$

$$= R(z) < f \circ R, e'_z >$$

$$= < f \circ R, R(z) e'_z >$$

for all f in X. Hence

$$(M_R')^* e_z' = R(z)e_z'$$

(here for simplicity we used the notation $\langle y, y^* \rangle$ instead of $y^*(y)$ whenever $y \in E$ and $y^* \in E^*$). So we conclude that the one dimensional span of $\{e'_z\}$ is invariant under $(M'_R)^*$ and so $A^*e'_z = \varphi(z)e'_z$. Using the Hahn-Banach Theorem and the reflexivity of E, we see that the linear span of $\{e'_\lambda\}_{\lambda \in \Omega}$ is weak star dense in E^* . Hence $\varphi \in \mathcal{M}(E)$ and $A = M'_{\varphi}$, and so $\varphi \in H^{\infty}(\Omega)$. Note that $M'_{\varphi} \in \mathcal{B}(E)$. Now we show that $E_0 = E \cap H^{\infty}(\Omega_1)$ is a closed subspace of E that is invariant

1162

under M'_R . For this let $\{f_n \circ R\}_n$ be a sequence in E_0 converging to $f \circ R$ in E. Then $||f_n \circ R||_E < b$ for some constant b. Note that

$$||f_n \circ R||_{\Omega} = ||f_n||_G \le d||f_n||_X = d||f_n \circ R||_E < bd.$$

We have $||f_n \circ R||_{\Omega} = ||f_n \circ R||_{\Omega_1}$. This implies that $f \circ R \in E_0$. Clearly E_0 is invariant under M'_R . Thus $E_0 \in Lat(M'_R)$ and so $E_0 \in Lat(A)$. But $A = M'_{\varphi}$, this implies that $\varphi E_0 \subset E_0$. Hence $\varphi \in E_0 \subset H^{\infty}(\Omega_1)$ since E_0 contains the constants. But Ω_1 is a Carathéodory domain and so by the Farrell-Rubel-Shields Theorem there is a sequence $\{p_n\}_n$ of polynomials converging to φ such that for all n, $||p_n||_{\Omega_1} \leq a$ for some a > 0. So we obtain

$$\|M'_{p_n}\| \le c \|p_n\|_{\Omega_1} \le ca$$

for all n. But ball $\mathcal{B}(E)$ is compact in the weak operator topology and so by passing to a subsequence if necessary, we may assume that for some $B \in \mathcal{B}(E)$, $M'_{p_n} \longrightarrow B$ in the weak operator topology. Using the fact that $(M'_{p_n})^* \longrightarrow B^*$ in the weak operator topology and acting these operators on e'_{λ} we obtain that

$$\overline{p_n(\lambda)}e'_{\lambda} = (M'_{p_n})^*e'_{\lambda} \longrightarrow B^*e'_{\lambda}$$

weakly. Since $p_n(\lambda) \longrightarrow \varphi(\lambda)$ we see that $B^*e'_{\lambda} = \varphi(\lambda)e'_{\lambda}$. Because the closed linear span of $\{e'_{\lambda} : \lambda \in \Omega\}$ is dense in E^* , we conclude that $B = M'_{\varphi} = A$. This implies that $A \in W(M'_z)$. We now show that $W(M'_z) = W(M'_R)$ which implies that $AlgLat(M'_R) = W(M'_R)$ and this completes the proof. Because R can be approximated pointwise boundedly by polynomials, we see that $W(M'_R) \subseteq W(M'_z)$. Conversely, by proposition 2 of [11], $R : U \to G_1$ is a generator of H^{∞} , so there exists a sequence of polynomials $\{p_n\}_n$ such that $p_n(R) \to z$ weak star, i.e., $\{p_n \circ R\}_n$ is uniformly bounded and converges to z at every point of U (see [11, Lemma 1]). But it is clear that $M'_{p_n \circ R} = p_n(M'_R)$ is in $W(M'_R)$. Hence $M'_z \in W(M'_R)$ and so indeed $W(M'_z) = W(M'_R)$. The proof is now complete.

Note that if $T \in \mathcal{B}(X)$, then by definition a compact set K containing the spectrum of T, $\sigma(T)$, is a *spectral set* for T if $||f(T)|| \leq ||f||_K$ for all rationals f with poles off K.

In the proof of the main theorem we used the condition " $||M_p|| \le c||p||_G$ for every polynomial p". In the following we show that there are other alternatives.

Corollary. The conclusion in the main theorem also holds if " $||M_p|| \le c||p||_G$ for every polynomial p" is replaced by any one of the followings

- (i) The map $\varphi \longrightarrow M_{\varphi}$ of $\mathcal{M}(X) \longrightarrow \mathcal{B}(X)$ is an isometry,
- (ii) \overline{G} is a spectral set for M_z ,

B. Yousefi and A. Khaksari

(iii) $||M_{\varphi}|| \leq c ||\varphi||_G$ for every multiplier φ , $H^{\infty}(G_1) \subset \mathcal{M}(X)$.

Proof. First note that each $\varphi \in \mathcal{M}(X)$ determines a bounded multiplication operator M_{φ} on X by $M_{\varphi}f = \varphi f$, $f \in X$. If the condition (i) holds, then $\|M_{\varphi}\| = \|\varphi\|_G$ for all φ in $\mathcal{M}(X)$. Since each polynomial is a multiplier of X, hence $\|M_p\| = \|p\||_G$ for every polynomial p. If the condition (ii) holds, then clearly by the definition of the spectral set, we get $\|M_p\| = \|p(M_z)\| \le \|p\||_{\overline{G}} = \|p\|_G$ for every polynomial p. Also, since each polynomial is a multiplier of X, hence the condition (iii) implies that $\|M_p\| \le c \|p\||_G$ for every polynomial p. Now we show that the condition (iv) implies " $\|M_p\| \le c \|p\||_G$ for every polynomial p. Now we show that the condition (iv) implies " $\|M_p\| \le c \|p\||_G$ for every polynomial p. There this we show that $L : H^{\infty}(G_1) \longrightarrow \mathcal{B}(X)$ given by $L(\varphi) = M_{\varphi}$ is continuous. Note that by condition (iv) if $\varphi \in H^{\infty}(G_1)$, then $\varphi \in \mathcal{M}(X)$ and so the multiplication operator M_{φ} is defined on X and in fact $M_{\varphi} \in \mathcal{B}(X)$. Suppose that the sequence $\{\varphi_n\}_n$ converges to φ in $H^{\infty}(G_1)$ and $L(\varphi_n) = M_{\varphi_n}$ converges to A in $\mathcal{B}(X)$. Then for each f in X,

$$Af = \lim_{n} M_{\varphi_n} f = \lim_{n} \varphi_n f$$

and so $\{\varphi_n f\}_n$ is convergent in X. Note that by the continuity of point evaluations, $\varphi_n f$ converges pointwise to φf . Thus Af is analytic on G and agrees with φf on G. Hence $A = M_{\varphi}$ and so by the closed graph theorem L is continuous. This implies that there is a constant c > 0 such that

$$\begin{split} \|L\| &= \sup\{\|L(\varphi)\|: \quad \|\varphi\|_{G_1} \leq 1\} \\ &= \sup\{\|M_{\varphi}\|: \quad \|\varphi\|_{G_1} \leq 1\} \\ &\leq c. \end{split}$$

Hence $||M_{\varphi}|| \leq c ||\varphi||_{G_1}$ for all φ in $H^{\infty}(G_1)$. But $||p||_G = ||p||_{G_1}$ for all polynomials p, hence $||M_p|| \leq c ||p||_G$ for every polynomial p. This completes the proof.

ACKNOWLEDGMENT

The authors are grateful to the referee for helpful comments and valuable suggestions.

REFERENCES

 H. Bercovici, C. Foias, J. Langsam, and C. Pearcy, (BCP)- operators are reflexive, Mich. Math. J., 29 (1982), 371-379.

- P. S. Bourdon and J. H. Shapiro, Spectral and common cyclic vectors, *Michigan Math. J.*, 37 (1990), 71-90.
- 3. J. B. Conway, The theory of subnormal operators, Amer. Math. Soc., 1991.
- 4. C. C. Cowen and B. D. McCluer, *Composition operators on spaces of analytic functions*, CRC Press, 1995.
- J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc., 28 (1971), 509-512.
- 6. J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, *Linear Algebra and Appl.*, **10** (1975), 89-93.
- 7. T. Gamelin, Uniform algebras, Chelsea, N.Y., 1984.
- R. Olin and J. Thomson, Algebras of subnormal operators, J. Functional Anal., 37 (1980), 271-301.
- 9. H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, New York, 1971.
- D. Sarason, Invariant subspaces and unstarred operator algebras, *Pacific J. Math.*, 17 (1966), 511-517.
- 11. D. Sarason, Weak star generators of H^{∞} , Pacific J. Math., 17 (1966), 519-528.
- 12. K. Seddighi and B. Yousefi, On the reflexivity of operators on function spaces, *Proc. Amer. Math. Soc.*, **116** (1992), 45-52.
- 13. A. Shields and L. Wallen, The commutants of certain Hilbert space operators, *Ind. Univ. Math. J.*, **20** (1971), 777-788.
- 14. B. Yousefi, On the eighteenth question of Allen Shields, *International Journal of Mathematics*, **16**(1) (2005), 37-42.

Bahmann Yousefi and A. Khaksari Department of Mathematics, Payame-Noor University, Iran

Shiraz, Moallem Square, South Iman Street, Shiraz Payame-Noor University, P. O. Box 71345-1774, Shiraz, Iran E-mail: bahmann@spnu.ac.ir ahmadkh2001@yahoo.com