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A NOTE ON POINTWISE CONVERGENCE FOR EXPANSIONS
IN SURFACE HARMONICS OF HIGHER

DIMENSIONAL EUCLIDEAN SPACES

Ming-gang Fei and Tao Qian

Abstract. We study the Fourier-Laplace series on the unit sphere of higher di-
mensional Euclidean spaces and obtain a condition for convergence of Fourier-
Laplace series on the unit sphere. The result generalizes Carleson’s Theorem
to higher dimensional unit spheres.

1. INTRODUCTION

We start with reviewing the basic notations and results. Let f ∈ L1([−π, π]),
then the Fourier coefficients ck are all well-defined by

ck =
1
2π

∫ π

−π

f(t)e−iktdt, k ∈ Z, (1)

where Z denotes the set of all integers.
By sN (f)(x) we denote the partial sum

sN (f)(x) =
∑
|k|≤N

cke
ikx, x ∈ [−π, π], N ∈ N0, (2)

of the Fourier series of f , where N0 denotes the set of all natural numbers.
Then we have,

sN (f)(x) =
1
π

∫ π

−π
f(t)DN(x − t)dt, (3)

where
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DN (x) =




sin(N + 1
2 )x

2 sin x
2

for x ∈ [−π, π]\{0},

N +
1
2

for x = 0,

is the N-th Dirichlet kernel.
Since L2([−π, π]) ⊂ L1([−π, π]), the Fourier coefficients of L2 functions are

also well-defined. The famous Carleson’s Theorem is stated as follows.

Theorem 1. [1]. If f ∈ L2([−π, π]), then

sN (f)(x) → f(x) a.e. x ∈ [−π, π], as N → +∞.

L. Carleson proved this theorem in 1966. The next year, R.A. Hunt [4] further
extended this result to f ∈ Lp([−π, π]), 1 < p < ∞.

One naturally asks what is the analogous result for the unit sphere Ωn in the
n-dimensional Euclidean space Rn? For any f ∈ L2(Ωn), there is an associated
Fourier-Laplace series:

f ∼
∞∑

k=0

fk, (4)

where fk is the homogeneous spherical harmonics of degree k. There has been
literature for the study of convergence and summability of Fourier-Laplace series
of various kinds on unit sphere of higher dimensional Euclidean spaces (see [99, 5,
10]). However, except for the very lowest dimensional case, pointwise convergence,
being the initial motivation of various summabilities, could be said to be very little
known. The case n = 2 seems to be the only well studied case ([12], [1]). Dirichlet
([2]) gave the first detailed study on the case n = 3, on the so called Laplace series.
Koschmieder ([6]) studied the case n = 4. Roetman ([9]) and Kalf ([5]) considered
the general cases, and, under certain conditions, reduced the convergence problem
for n = 2k + 2 to n = 2; and n = 2k + 3 to n = 3. Among others, Meaney
([7]) addressed some related topics, including the Lp cases. In this note, we further
study convergence of the series (4) in view of the classical Carleson’s Theorem and
the fundamental properties of Legendre polynomials. Based on the results obtained
in [9] and [5], we further obtain a weaker condition that ensures the pointwise
convergence of the Fourier-Laplace series of functions in Sobolev spaces. The
result is a generalization of Carleson’s Theorem to higher dimensional Euclidean
spaces.
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2. PRELIMINARIES

Referring the reader to Erdélyi([3]), Müller ([8]) and Roetman ([9]) for de-
tails, we recall here some notations and main results for surface spherical harmonics
that we shall need. Let (x1, · · · , xn) be the coordinates of a point of Rn with norm

|x|2 = r2 = x2
1 + · · ·+ x2

n.

Then x = rξ, where ξ = (ξ1, · · · , ξn) is a point on the unit sphere Ωn in Rn.
Denote by An the total surface area of Ωn and by dωn the usual Hausdorff surface
measure on the (n − 1)-dimensional unit sphere,

An =
∫

Ωn

dωn.

If e1, · · · , en denote the orthonormal basis vectors in Rn, then we can represent the
points of Ωn by

ξ = ten + (1 − t2)
1
2 ξ̃, (5)

where −1 ≤ t ≤ 1, t = ξ · en and ξ̃ is a vector in the subspace Rn−1 generated by
e1, · · · , en−1. In the coordinates (r, t, ξ̃) the surface measure has the form

dωn = (1 − t2)λ− 1
2 dtdωn−1, (6)

where λ = n−2
2 .

In accordance with (4), there associates a function f ∈ L2(Ωn) with a series of
surface harmonics

S(f ; n; ξ) ∼
∞∑

k=0

Yk(f ; n; ξ), (7)

where

Yk(f ; n; ξ) = αk(n)
∫

Ωn

Pk(n; ξ · η)f(η)dωn(η), (8)

Pk(n; s) are Legendre polynomials [8] defined by the generating relation

(1 + x2 − 2xs)−λ =
∞∑

k=0

ck(n)xkPk(n; s),

where

ck(n) =
(n − 2)N (n, k)

2k + n − 2
, αk(n) =

N (n, k)
An

,
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and

N (n, k) =




1 for k = 0,

(2k + n − 2)Γ(k + n − 2)
Γ(k + 1)Γ(n − 1)

for k ≥ 1.

The Legendre polynomials of dimension n > 3 are related to the Gegenbauer poly-
nomials by Cλ

k (s) = ck(n)Pk(n; s).
In particular, we have

N (2, k) = 2; N (3, k) = 2k + 1, k ∈ N0 ∪ {0}; (9)

and

Pk(2; t) = cos(k cos−1 t), t ∈ [−1, 1], (10)

being the well-known Chebyshev polynomial; and

Pk(3; t) =
(−1)k

2kk!
(

d

dt
)k(1 − t2)k (11)

being the ordinary Legendre polynomial. For n ≥ 3, Müller [8], p.15, gives that
the Legendre polynomials are orthogonal polynomials in the sense

∫ 1

−1

Pk(n; t)Pl(n; t)(1− t2)
n−3

2 dt =
An

An−1
· 1
N (n, k)

· δkl. (12)

Let SN (f ; n; ξ) denote the partial sum through the term with index N for the series
(7). Then

SN (f ; n; ξ) =
∫

Ωn

f(η){
N∑

k=0

αkPk(n; ξ · η)}dωn(η). (13)

One is interested in the convergence properties of SN(f ; n; ξ) at ξ as N goes to
infinity. Hold ξ fixed and write η = tξ + (1 − t2)

1
2 η̃, where η̃ is orthogonal to

ξ. Let Ω(ξ) denote the unit ball in the (n − 1)-dimensional space orthogonal to ξ.
Equation (13) then yields

SN(f ; n; ξ) =
∫ 1

−1
{

N∑
k=0

αkAn−1Pk(n; t)}Φξ(t)(1− t2)λ− 1
2 dt, (14)

where

Φξ(t) =
1

An−1

∫
Ω(ξ)

f(tξ + (1− t2)
1
2 η̃)dωn−1(η̃) (15)
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is the average of f over the (n− 1)-sphere of radius (1− t2)
1
2 centered at tξ in the

hyperplane orthogonal to ξ.
By [8] and [9], we have

SN(f ; 2; ξ) =
∫ 1

−1
DN(t)Φξ(t)(1 − t2)−

1
2 dt, (16)

where

DN (t) =
sin((N + 1

2 ) cos−1 t)
π sin 1

2 cos−1 t
(17)

is a substitution of the Dirichlet kernel(see section 1 or [12]), and if n = 2l + 2,
l ∈ N0,

SN(f ; 2l + 2; ξ) =
2−l

√
πΓ(l + 1

2)

·
∫ 1

−1

dl+1

dtl+1

[
1

N+l
PN+l(2; t)+

1
N+l+1

PN+l+1(2; t)
]
Φξ(t)(1−t2)l−1

2dt;

(18)

SN(f ; 3; ξ) =
∫ 1

−1
KN (t)Φξ(t)dt, (19)

where

KN(t) =
1
2
(P

′
N (3; t) + P

′
N+1(3; t)), (20)

and if n = 2l + 3, l ∈ N0,

SN(f ; 2l + 3; ξ) =
2−l−1

Γ(l + 1)

·
∫ 1

−1

dl+1

dtl+1
[PN+l(3; t) + PN+l+1(3; t)]Φξ(t)(1− t2)ldt.

(21)

3. MAIN RESULTS

Let n > 3. We use W [ n−1
2

]([−1, 1]) for the Sobolev space

W [ n−1
2

]([−1, 1]) =
{
g ∈ L2([−1, 1];

dµ(t))| dl

dtl
g ∈ L2−µ([−1, 1]; dµ(t)), l = 1, 2, · · · ,

[n − 1
2

]}
,
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where dµ(t) = (1− t2)−
µ
2 dt, µ is defined by the relation 1− µ = n mod 2, i.e., µ

equals to 0 or 1. This definition is also valid when n is 2 or 3, (l = 0).
Then we have our main theorem,

Theorem 2. Let Φξ(t) ∈ W [ n−1
2

]([−1, 1]), if Φξ(1) = limt→1 Φξ(t) exists,
then

lim
N→∞

SN(f ; n; ξ) = Φξ(1).

If, in particular, f is continuous at ξ, then

lim
N→∞

SN (f ; n; ξ) = f(ξ).

Proof. Define on −1 ≤ t ≤ 1

Ψµ
ξ (t) =

(−1)lΓ(µ
2 )2−l

Γ(l + 1 − µ
2 )

(1 − t2)
µ
2

dl

dtl
[Φξ(t)(1− t2)l−µ

2 ], (22)

By integration by parts, the partial sums of (18) and (21) reduce to

SN(f ; 2l + 2; ξ) =
∫ 1

−1
DN+l(t)Ψ1

ξ(t)(1− t2)−
1
2 dt (23)

and

SN (f ; 2l + 3; ξ) =
∫ 1

−1

KN+l(t)Ψ0
ξ(t)dt. (24)

Now we distinguish two cases.
(a) n even. Let n = 2l + 2, l ∈ N0. From (22), we have

Ψ1
ξ (t) =

(−1)lΓ( 1
2 )

2lΓ(l + 1
2)

(1 − t2)
1
2

dl

dtl

[
Φξ(t)(1− t2)l− 1

2

]

=
(−1)lΓ( 1

2 )
2lΓ(l + 1

2)
(1 − t2)

1
2

{
Φξ(t)

dl

dtl
(1 − t2)l− 1

2

+
l∑

j=1

C
j
l Φ(j)

ξ (t)
dl−j

dtl−j
(1 − t2)l− 1

2

}

= Φξ(t)tl + (1− t2)
1
2

l∑
j=1

Cj
l Φ(j)

ξ (t)(1− t2)j− 1
2 Pl−j(t)

= Φξ(t)tl + (1− t2)
1
2

l∑
j=1

Φ(j)
ξ (t)(1− t2)j− 1

2 Ql−j(t),
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where Pl−j(t) and Ql−j(t) are polynomials of degree ≤ l − j.
Then (23) becomes

SN(f ; 2l + 2; ξ)

=
∫ 1

−1
DN+l(t)Φξ(t)tl(1− t2)−

1
2 dt

+
∫ 1

−1

DN+l(t)
l∑

j=1

Φ(j)
ξ (t)(1 − t2)j− 1

2 Ql−j(t)dt

=
1
π

∫ π

0

sin(N + l + 1
2)θ

sin 1
2θ

Φξ(cos θ)(cos θ)ldθ

+
2
π

l∑
j=1

∫ π

0
sin(N + l +

1
2
)θΦ(j)

ξ (cos θ)(sin θ)2j−1Ql−j(cos θ) cos
1
2
θdθ.

Since Φξ(t) ∈ W [ n−1
2

]([−1, 1]), then

Φξ(cos θ) ∈ L2([0, π]) and Φ(j)
ξ (cos θ) ∈ L1([0, π]), j = 1, 2, · · · , l.

Further,

Φξ(cos θ)(cos θ)l ∈ L2([0, π])

and

Φ(j)
ξ (cos θ)(sin θ)2j−1Ql−j(cos θ) cos

1
2
θ ∈ L1([0, π]), j = 1, 2, · · · , l.

Therefore, using Carleson’s Theorem for the first part of the above expression and
using Riemann-Lebesgue Lemma for the second part, we have

lim
N→∞

SN(f ; 2l + 2; ξ) = Φξ(cos 0)(cos0)l + 0

= Φξ(1).

(b) n odd. Let n = 2l + 3, l ∈ N0. From (22), we have

Ψ0
ξ(t) =

(−1)l

2lΓ(l + 1)
dl

dtl
[Φξ(t)(1− t2)l].

Let Gξ(t) = Φξ(t)(1− t2)l, then (24) becomes

SN(f ; 2l + 3; ξ) =
(−1)l

2l+1Γ(l + 1)

∫ 1

−1
[P

′
N+l(3; t) + P

′
N+l+1(3; t)]G(l)

ξ (t)dt.
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Since Φξ(t) ∈ W [ n−1
2

], i.e. dk

dtk
Φξ(t) ∈ L2([−1, 1]), k = 0, 1, · · · , l + 1.

Then

dk

dtk
Gξ(t) ∈ L2([−1, 1]), k = 0, 1, · · · , l + 1.

Thus, we can integrate the above integral by parts to obtain

SN (f ; 2l + 3; ξ)

=
(−1)l

2l+1Γ(l + 1)
{[PN+l(3; t) + PN+l+1(3; t)]G(l)

ξ (t)|1−1

−
∫ 1

−1
[PN+l(3; t) + PN+l+1(3; t)]G(l+1)

ξ (t)dt}

= Φξ(1)− (−1)l

2l+1Γ(l + 1)

∫ 1

−1
[PN+l(3; t) + PN+l+1(3; t)]G(l+1)

ξ (t)dt.

So, the assertion of the theorem follows if we can show
∫ 1

−1
|Pm(3; t)G(l+1)

ξ (t)|dt → 0, as m → ∞.

From (12) we have
∫ 1

−1
|Pm(3; t)|2dt =

2
2m + 1

, m ∈ N0.

By Hölder’s inequality, we have

∫ 1

−1
|Pm(3; t)G(l+1)

ξ (t)|dt ≤
(∫ 1

−1
|Pm(3; t)|2dt

) 1
2

·
(∫ 1

−1
|G(l+1)

ξ (t)|2dt

) 1
2

= ‖G(l+1)
ξ ‖L2 ·

√
2

2m + 1
.

Owing to the assumption of Φξ(t), we have G
(l+1)
ξ (t) ∈ L2([−1, 1]), then

lim
m→∞

∫ 1

−1
|Pm(3; t)G(l+1)

ξ (t)|dt = 0.

Thus,

lim
N→∞

SN (f ; 2l + 3; ξ) = Φξ(1).

Remark 1. The above proof of Theorem 2 is also valid for n = 2 and, in fact,
directly reduced to Carleson’s Theorem. It is observed that for n = 2, i.e., l = 0.
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In the first part of Theorem 2, the average Φξ(t) becomes simply evaluation at two
endpoints of the interval (− cos−1 t, cos−1 t),

Φξ(t) =
1
2
[f(θξ + cos−1 t) + f(θξ − cos−1 t)],

where θξ is the angle between ξ and e1. The required Sobolev space reduces to
L2 space. From the condition of Theorem 2, let t = cos θ, the Dirichlet kernel is
just the same as the one in the complex plane, and Φξ ∈ L2([0, π]) if and only if
1
2 [f(θξ + θ) + f(θξ − θ)] ∈ L2([0, π]). In particular, if ξ = 1, Theorem 2 reduces
to the classical Carleson’s Theorem.

Remark 2. By the result of R.A. Hunt [4], we can obviously extend the first
part of Theorem 2, which n is an even number, to Lp cases, 1 < p < ∞.

Remark 3. We prefer to impose the condition on the average of f , but not on
f , since the former is weaker than the latter. By the definition of Φξ(t) and the
Whitney’s extension theorem(see [10] or [9]), the continuity property of Φξ(t) can
be inherited from f . But the L2-bounded property can not. In general, f ∈ Lp(Ωn),
p ≥ 1, implies Φξ(t) ∈ Lp([−1; 1]; (1− t2)λ− 1

2 dt), in fact, by Jensen’s Inequality,
since xp, p ≥ 1, is a convex function when x ≥ 0,

∫ 1

−1
|Φξ(t)|p(1− t2)λ− 1

2 dt

=
∫ 1

−1

|
∫

Ω(ξ)

f(tξ + (1− t2)
1
2 η̃)dωn−1(η̃)/An−1|p(1− t2)λ− 1

2 dt

≤
∫ 1

−1
(
∫

Ω(ξ)
|f(tξ + (1 − t2)

1
2 η̃)|dωn−1(η̃)/An−1)p(1 − t2)λ− 1

2 dt

≤
∫ 1

−1

∫
Ω(ξ)

|f(tξ + (1 − t2)
1
2 η̃)|pdωn−1(η̃)/An−1)(1 − t2)λ− 1

2 dt

=
∫

Ωn

|f(η)|pdωn(η).

In particular, when n = 3, for any p ≥ 1, f ∈ Lp(Ωn) implies Φξ(t) ∈ Lp([−1; 1])
since λ − 1

2 = 0 in the case. Note that, Φξ(t) ∈ Lp([−1; 1]) implies Φξ(t) ∈
Lp([−1; 1]; (1− t2)λ− 1

2 dt) for any p ≥ 1, but not vice versa.
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