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MINIMAL ZERO-SUM SEQUENCES IN FINITE CYCLIC GROUPS

Jujuan Zhuang* and Pingzhi Yuan

Abstract. Let Cn be the cyclic group of order n, n ≥ 20, and let S =∏k
i=1 gi be a minimal zero-sum sequence of elements in Cn. We say that S

is insplitable if for any gi ∈ S and any two elements x, y ∈ Cn satisfying
x+y = gi, Sg−1

i xy is not a minimal zero-sum sequence any more. We define
Index(S) = min(m,n)=1{

∑k
i=1 |mgi|}, where |x| denotes the least positive

inverse image under homomorphism from the additive group of integers Z

onto Cn. In this paper we prove that for an insplitable minimal zero-sum
sequence S, if Index(S) = 2n, then |S| ≤ �n

2
�+ 1.

1. INTRODUCTION AND MAIN RESULTS

Let G be a finite abelian group (written additively). A sequence in G is a
multi-set in G and will be written in the form S =

∏k
i=1 gi =

∏
g∈G gvg(S), where

vg(S) ∈ N0 is the multiplicity of g in S, and a sequence T is a subsequence of S if
vg(T ) ≤ vg(S) for every g ∈ G, denoted by T |S. Let ST−1 denote the sequence
obtained by deleting the terms of T from S. We call |S| = k the length of S. By
σ(S) we denote the sum of S, that is σ(S) =

∑k
i=1 gi =

∑
g∈G vg(S)g ∈ G.

Let S be a sequence in G, we call S a zero-sum sequence if σ(S) = 0; a zero-
sum free sequence if for any subsequence W of S, σ(W ) �= 0. We call S a minimal
zero-sum sequence if it is a zero-sum sequence and every proper subsequence is
zero-sum free.

Let Cn be the cyclic group of order n. For every x ∈ Cn, we define |x| to be
the least positive inverse image under homomorphism from the additive group of
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integers Z onto Cn. Let S =
∏k

i=1 gi be a sequence in Cn, by |S|n we denote the
sum

∑k
i=1 |gi|. Define

Index(S) = min
(m,n)=1

{|mS|n}

and
I(Cn) = max

S
{Index(S)}

where S runs over all minimal zero-sum sequences of elements in Cn.
The question of considering equivalence classes of minimal zero-sum sequences(

see Chapter 5 in [3]) arose when the following problem was posed at Algebra
Conference in Marseille, France:

Let p be a prime, whether we have Index(S) = p for any minimal zero-sum
sequence S in Cp?

The answer to this question is no (see Theorem 2 of [1]). In addition, Gao [2]
began to consider the minimal integer t such that every minimal zero-sum sequence
S of at least t elements in Cn satisfies Index(S) = n, which defined as l(Cn). The
papers [4, 5] separately got the final value of l(Cn), that is l(Cn) = �n

2 � + 2 if
n �∈ {2, 3, 4, 5, 7}, and l(Cn) = 1 if n ∈ {2, 3, 4, 5, 7}.

In [2], The author considered the following kind of sequences:

Definition 1.1. Let S be a minimal zero-sum (resp. zero-sum free) sequence
of elements in an abelian group G, we say S is splitable if there exists an element
g ∈ S and two elements x, y ∈ G such that x + y = g and Sg−1xy is a minimal
zero-sum (resp. zero-sum free) sequence as well, otherwise we say S is insplitable.

For some real number x ∈ R, let �x� = max{m ∈ Z|m ≤ x} and �x� =
min{m ∈ Z|m ≥ x}.

In this paper, we are to prove the following two results:

Theorem 1.2. For any k, n ≤ kn ≤ I(Cn), there exists minimal zero-sum
sequence S such that Index(S) = kn.

Theorem 1.3. Let S be a minimal zero-sum sequence in Cn, n ≥ 20. If
Index(S) = 2n and S is insplitable, then |S| ≤ � n

2 � + 1.

2. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1.2. Let S =
∏t

i=1 gi be a minimal zero-sum sequence and
Index(S) = I(Cn) = ln, without loss of generality, say g1 ≤ g2 ≤ · · · ≤ gt and∑t

i=1 gi = ln. Consider the sequence

S1 = |g1 + g2|
t∏

i=3

gi,
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then S1 is minimal and Index(S1) = Index(S)+ δ, where δ = 0 or −n. If δ = −n,
then Index(S1) = I(Cn)− n; if δ = 0, set

S1 = |g1 + g2 + g3|
t∏

i=4

gi,

then Index(S1) = Index(S) + δ, where δ = 0 or −n. If δ = −n, then Index(S1) =
I(Cn)− n; otherwise, set

S1 = |g1 + g2 + g3 + g4|
t∏

i=5

gi,

and continue the discussion. Then, we can derive a minimal zero-sum sequence
S1, such that Index(S1) = I(Cn) − n. Continue this process and we will get
minimal zero-sum sequences S2, S3, · · · , Sl−1, such that Index(S2) = I(Cn)− 2n,
Index(S3) = I(Cn)− 3n, · · · , Index(Sl−1) = n. This process can be got since we
have the minimal zero-sum sequence S0 = |g1 + g2 + · · ·+ gt| with Index(S0) = n.
This completes the proof.

The following two simple lemmas play an important part in our proof of Theorem
1.3.

Lemma 2.4. Let S = gk
∏r

i=1 xi be an insplitable minimal zero-sum sequence
in Cn, k ≥ 1. If xi = tg, t > 1 a positive integer, then t ≥ k + 2.

Proof. Without loss of generality, say x1 = tg, t > 1. Since S is an insplitable
minimal zero-sum sequence, the sequence S

′
= gk+1 · (t − 1)g

∏r
i=2 xi contains a

proper zero-sum subsequence W with (t − 1)g|W or gk+1|W . If (t − 1)g|W , we
claim that t − 1 ≥ k + 1, i.e. t ≥ k + 2, otherwise, t − 1 ≤ k, replace (t − 1)g in
W by gt−1, we get that W ((t − 1)g)−1gt−1 is a proper zero-sum subsequence of
S, a contradiction. If gk+1|W , we also get t ≥ k + 2, otherwise, the subsequence
Wg−(k+1)x1g

k+1−t of S has the same sum as W , which is a contradiction.

Lemma 2.5. Let S = 3t
∏r

i=1 xi, xi �= 3, be a minimal zero-sum sequence in
Cn, if σ(S) = Index(S) = 2n, then t < �n

3 �.
Proof. If n ≡ 0( mod 3), it is evident that t < � n

3 �. Now we suppose that
n ≡ i( mod 3), i = 1 or 2. If r ≥ 2, then there exists a subsequence W of
S3−t such that σ(W ) ≡ i( mod 3). If σ(W ) > n , then t ≤ �2n−σ(W )

3 � < �n
3 �;

otherwise there is a positive integer k satisfying σ(W ) + 3k = n and thus t < k =
n−σ(W )

3 < �n
3 �. If r = 1, note that (3, n) = 1, there exists m such that (m, n) = 1

and mS = 1t|mx1|, then σ(mS) = n < Index(S) since t < 2n
3 and |mx1| < n,

which is a contradiction.
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Proof of Theorem 1.3. Note that for n ≥ 8

S =




(1, · · · , 1︸ ︷︷ ︸
n
2
−2

, n
2 , n+2

2 , n+2
2 ), if n is even,

(1, · · · , 1︸ ︷︷ ︸
n−5

2

, n+3
2 , n+3

2 , n−1
2 ), if n is odd.

is an insplitable minimal zero-sum sequence with Index(S) = 2n, the length of
which is |S| = �n

2 � + 1.
Let S be the longest (in length) minimal zero-sum sequence in Cn satisfying

the conditions in the theorem, then |S| ≥ � n
2 � + 1. Without loss of generality, set

S = 1k
∏r

i=1 xi, where σ(S) = k +
∑r

i=1 xi = 2n. By Lemma 2.1 and note that
S is minimal zero-sum, we get

k + 2 ≤ xi ≤ n − k − 1, for all i ∈ {1, · · · , r},
and thus we derive k + 2 ≤ n − k − 1, that is k ≤ � n−3

2 �. Note that 2n = σ(S) =
k +

∑r
i=1 xi ≥ k + (k + 2)(�n

2 � + 1 − k), when n is big enough, say n ≥ 20, we
get k ≤ 2 or �n

2 � − 2 ≤ k ≤ �n−3
2 �.

Now we suppose n ≥ 20, and distinguish the following cases:

Case 1. �n
2 � − 2 ≤ k ≤ �n−3

2 �.
Set S = 1k

∏r
i=1 xi, by Lemma 2.1 we get xi ≥ �n

2 � − 2 + 2 = �n
2 �, thus

r ≤ 3 since σ(S) = 2n. If n is even, then |S| ≤ k + 3 ≤ �n−3
2 � + 3 = �n

2 � + 1.
If n is odd, we have |S| ≤ k + 3 ≤ �n−3

2 � + 3 = �n
2 � + 2, if there exists S with

|S| = �n
2 � + 2, then S = 1

n−3
2 · (n+1

2 )3 since xi ≥ �n−3
2 � + 2 = n+1

2 , it is evident
that Index(S) = n, a contradiction. Therefore |S| �= �n

2 �+2, that is |S| ≤ �n
2 �+1.

Case 2. k = 2. Set S = 12
∏r

i=1 xi, where xi ≥ k + 2 = 4 according to
Lemma 2.1. If n is even, then |S| ≤ 2 + �2n−2

4 � = �n
2 � + 1. If n ≡ 1( mod 4),

the sequence S∗ = 124
2n−2

4 contains a zero-sum subsequence; and if n ≡ 3(
mod 4), set n = 4l+3, then the sequence S∗ = 124

2n−2
4 has Index(S∗) = n, since

|(l + 1)S|n = 2(l + 1) + 2n−2
4 = n. Therefore, if n is odd, S∗ = 124

2n−2
4 is not a

minimal zero-sum sequence with Index(S) = 2n, so there must exist some number
xi > 4 in S, and thus |S| < 2 + � 2n−2

4 � = �n
2 � + 2, that is |S| ≤ �n

2 � + 1.

Case 3. k = 1.
By Lemma 2.1, we can set S = 1·3s

∏r
i=1 xi. If s = 0, then |S| ≤ 1+�2n−1

4 � ≤
�n

2 �+1 and we are done, so we assume that s ≥ 1. Also we have s < �n
3 � according

to Lemma 2.2.
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By Lemma 2.1, if xi ≡ 0( mod 3), then xi ≥ 3(s+2) ≥ 9, so 6 can’t occur in
S. Since S is insplitable, that is, if we split 3 into 1+2, there exist two subsequences
U and V of S(1, 3)−1 such that σ(U) = σ(V ) = n − 2. Set v3(U) = u ≥ �s−1

2 �.
Now we consider the following subcases.

Subcase 1. s − u ≥ 2.
Then u ≥ 1 since u ≥ � s−1

2 �. There exist subsequences of U such that the
sums of which are n − 2 and n − 5 respectively. Therefore V contains no 4, 5
otherwise we can get a proper zero-sum subsequence of S. Now we consider U , if
4|U , then n − 2 − 4 = n − 6 can be expressed as a sum of a subsequence of U ,
now we take (3, 3) from SU−1 since s−u ≥ 2, and get a zero-sum subsequence of
S, a contradiction; if 5|U , then n − 7 can be expressed as a sum of a subsequence
of U , note (1, 3, 3)|SU−1, and also we derive a zero-sum subsequence of S, a
contradiction. Therefore, each term in S is bigger than or equal to 7 except 1 and
3, and thus |S| < 1 + �n

3 � + �n−1
7 � ≤ �n

2 � + 1.

Subcase 2. s − u = 1.
If s=1, then |S| ≤ 1 + 1 + �2n−4

4 � = �n
2 � + 1.

Now we assume s ≥ 2, u = s − 1 ≥ 1. There exist subsequences of U such
that the sums of which are n−2−3i, i = 0, 1, · · · , s−1 respectively. Therefore the
numbers 3i+1, i = 1, 2, · · · , s−1 can’t occur in V , since 1|SU−1 and 1+3i+1+
n−2−3i = n, and 3i+2, i = 1, 2, · · · , s−1 either since n−2−3i+3i+2 = n. Also
for any numbers of the form 3i, i > 1, we have 3i ≥ 3(s+ 2). Therefore each term
in V is not smaller than 3s+1 ≥ 7, and thus |S| ≤ � n−2

3 �+1+1+�n−2
7 � ≤ �n

2 �+1.

Case 4. k = 0.
Set S = 2s3t

∏r
i=1 xi, where s, t, r are nonnegative integers. If s + t ≤ 2, we

clearly have |S| ≤ 2 + �2n−4
4 � = �n

2 �+ 1. Now suppose s + t ≥ 3, we distinguish
three subcases.

Subcase 1. s = 0.
S = 3t

∏r
i=1 xi, t ≥ 3. By Lemma 2.1 we get xi �= 6. Since S is insplitable,

there exist subsequences U, V of S3−1, such that σ(U) = n − 1, σ(V ) = n − 2.
Set v3(U) = u, v3(V ) = v, u + v = t − 1. We have t < �n

3 � according to Lemma
2.2.

(i) If u ≥ � t−1
2 �.

(1). t − u ≥ 3.

If u ≥ 3, there are subsequences of U such that the sums of which are n−1,
n− 4, n− 7, n− 10 respectively. Therefore, there is no 4, 7 in V , and 5 can
occur at most one time since n − 10 + 5 + 5 = n. In U , there is no 5 and at
most one 4 , since n− 1− 5+ 3+ 3 = n and n− 1− 4− 4+ 3 + 3 + 3 = n.
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Therefore, the terms in S are not smaller than 7 except 3 and one 4 and one
5, and thus |S| < �n

3 � + 2 + �n−4−5
7 � ≤ �n

2 � + 1.

If u = 2, then t = 5. Note that there is no 4 in V , |S| ≤ 5 + �n−1−3−3
4 � +

�n−2−3−3
5 � ≤ �n

2 � + 1.

(2). t − u ≤ 2.

If u ≥ 3, according to the discussion above, there is no 4, 6, 7 in V , and 5
exists at most one time. So, |S| ≤ 2 + �n−1

3 � + �n+1−6−5
8 � ≤ �n

2 � + 1.

If u ≤ 2, then t ≤ 4, and |S| ≤ 4 + �2n−12
4 � = �n

2 � + 1.
(ii) If v ≥ � t−1

2 �.
(1). t − v ≥ 4.

Since v ≥ � t−1
2 � ≥ 3, there are subsequences of V such that the sum of

which are n − 2, n − 5, n − 8, n − 11 respectively. Therefore 5 can’t occur
in U , and 4 occurs at most one time since n − 8 + 4 + 4 = n. In V , there is
no 4, 7 since n − 2 − 4 + 3 + 3 = n and n − 2 − 7 + 3 + 3 + 3 = n, and 5
can only occur one time since n− 2− 5− 5 + 3 + 3 + 3 + 3 = n. Therefore,
|S| ≤ �n

3 � + 2 + �n−4−5
7 � ≤ �n

2 � + 1.

(2). t − v ≤ 3.

If v ≥ 3, using the same methods as above, there is no 5, 6 in U , and 4 exists
at most one time. So, |S| ≤ 3 + 1 + �n−2

3 � + �n+2−4−9
7 � ≤ �n

2 � + 1.

If v ≤ 2, and t ≤ 4, then|S| ≤ 4 + �2n−12
4 � = �n

2 � + 1. Otherwise we have
v = 2 and t = 5, then there is no 5, 6 in U , and 4 occurs at most one time,
and thus |S| ≤ 5 + 1 + � n−2−6

4 � + �n+2−4−9
7 � ≤ �n

2 � + 1.

Subcase 2. s = 1.
S = 2 · 3t

∏r
i=1 xi, t ≥ 2. Just as the discussion in the subcase s = 0, we have

xi �= 4, 6, and t < �n
3 �. Since S is insplitable, there exists subsequence U of S2−1,

such that σ(U) = n − 1 and v3(U) = u ≥ � t
2� ≥ 1.

(i) t − u ≥ 2. Then u ≥ 2.

Using the same methods as in subcase s = 0 (i), we derive that each term in
S is not smaller than 8 except 2 and 3, and thus |S|≤� n

3�+1+�n−2
8 �≤�n

2 �+1.

(ii) t − u ≤ 1.

If t ≥ 3, from the discussion above, we get that 4, 5, 6, 7 can’t occur in SU−1,
so |S| ≤ 1 + 1 + �n−1

3 � + �n−1−3
8 � ≤ �n

2 � + 1.

If t = 2, and note that xi �= 4, therefore, |S| ≤ 1 + 2 + �2n−2−6
5 � ≤ �n

2 �+ 1,
and we are done.
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Subcase 3. s ≥ 2.
Let S = 2s

∏r
i=1 xi. There exist subsequences U, V such that σ(U) = σ(V ) =

n − 1, suppose u = v2(U) ≥ v2(V ), that is u ≥ � s−1
2 �.

By Lemma 2.1 and note that S is minimal zero-sum, just as the discussion
above, we derive the following conclusions:

(a) If xi is even, then xi ≥ 2(s + 2);
(b) If xi is odd in U , then xi ≥ 2(s− u) + 1;
(c) If xi is odd in V , then xi ≥ 2u + 3;
(d) If n is odd, and xi is odd, then xi ≤ n − 2s − 2;
(e) If n is even, and xi is even, then xi ≤ n − 2s − 2.

In order to get the upper bound of s, we consider the following two cases.

(i) n is odd.

If there is an odd number xi in V , then 2� s−1
2 �+3 ≤ 2u+3 ≤ xi ≤ n−2s−2,

and we get s ≤ �n−4
3 �.

If there are two even numbers in V except 2, then 4(s + 2) ≤ n − 1, so
s ≤ �n−9

4 �.
Now we assume that there is only one term x1 in V except 2, and x1 is an
even number. In this case, if there are k odd numbers in U , then k ≥ 2, and
|S| ≤ s − u + 1 + k + �n−1−k(2(s−u)+1)

2 � ≤ �n
2 � + 1; otherwise, there are

only even numbers in U , and |S| is maximal when U contains only 2, that is
u = n−1

2 , and n − 1 = 2(s− u− 1) + xi ≥ 2(s− u− 1) + 2(s + 2), we get
s ≤ �2n−4

4 �, and thus |S| = s + 1 < �n
2 � + 1.

(ii) n is even.

If there is an even number xi in S except 2, then 2(s+2) ≤ xi ≤ n−2s−2,
that is s ≤ �n−6

4 �. Now suppose each term in S is odd except 2, note
that σ(V ) = σ(U) = n − 1, there are odd numbers in V . If V contains
at least 3 odd numbers, then 6� s−1

2 � + 9 ≤ 3(2u + 3) ≤ n − 1, that is
s ≤ �n−7

3 �, otherwise, set there are k ≥ 1 odd numbers in U , then |S| ≤
s − u + 1 + k + �n−1−k(2(s−u)+1)

2 � ≤ �n
2 � + 1.

According to the discussion above, we only need to prove the theorem in the
case of s ≤ �n−4

3 �.
(i) s − u ≥ 4.

Then u ≥ 3. By the conclusions a,b,c before, we derive that each term in S

is bigger than or equal to 9 except 2, and thus |S| ≤ �n−4
3 �+ �2n−2�n−4

3
�

9 � ≤
�n

2 � + 1.
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(ii) 2 ≤ s − u ≤ 3.

If u ≥ 5, then except 2 the terms in U are not smaller than 5, and in V are not
smaller than 13, so |S| ≤ �n−4

3 � + �n−1−2
13 � + �n−1+4−2�n−4

3
�

5 � ≤ �n
2 � + 1.

If 3 ≤ u ≤ 4, then 5 ≤ s ≤ 7. Note that except 2 the terms in V are not
smaller than 9, and in u are not smaller than 5, so |S| ≤ 7 + � n−1−2

9 � +
�n−1−6

5 � ≤ �n
2 � + 1.

If u ≤ 2, then s ≤ 5, and each term in S is bigger than or equal to 5, therefore
|S| ≤ 5 + �2n−2×5

5 � ≤ �n
2 � + 1.

(iii) s − u = 1.

If u ≥ 8, then except 2 the terms in V are not smaller than 19, and thus
|S| ≤ �n−4

3 � + �n−1
19 � + �n−1−2(�n−4

3
�−1)

3 � ≤ �n
2 � + 1.

If u ≤ 7, then s = u + 1 ≤ 8, we can check that |S| ≤ s + � n−1
2u+3� +

�n−1−2u
3 � ≤ �n

2 � + 1.

This completes the proof.
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