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SOME PROPERTIES OF NEWTON’S METHOD
FOR POLYNOMIALS WITH ALL REAL ZEROS

A. Melman

Abstract. We prove an overshooting property of a multistep Newton method
for polynomials with all real zeros, a special case of which is a classical
result for the double-step Newton method. This result states, in essence, that a
double Newton step from a point to the left of the smallest zero of a polynomial
with all real zeros never overshoots the first critical point of the polynomial.
Our result here states, in essence, that a Newton (k + 1)-step from a point
to the left of the smallest zero never overshoots the kth critical point of the
polynomial, thereby generalizing the double-step result. Analogous results
hold when starting from a point to the right of the largest zero.

We also derive a version of the aforementioned classical result that, unlike
that result, takes into account the multiplicities of the first or last two zeros.

1. INTRODUCTION

Newton’s method is a well-known iterative method for solving the equation
f(z) = 0, defined by

zk+1 = zk − f(zk)
f ′(zk)

,

for an appropriate z0. We will consider an accelerated Newton method when f(z)
is a polynomial with all real zeros. There exists a classical result (see, e.g., [2,
Theorem 5.5.9]), apparently originally proved by William Kahan in the early 1960’s,
which essentially states that a double-step Newton method, started from a point to
the left (right) of the smallest (largest) zero of a polynomial with all real zeros,
never overshoots the first (last) critical point of that polynomial. It also shows
that if it overshoots that smallest (largest) zero, then one can proceed from such an

Received December 20, 2006, accepted May 19, 2007.
Communicated by Robert Finn.
2000 Mathematics Subject Classification: 65H05.
Key words and phrases: Newton, Multistep, Double-step, Zero, Root, Polynomial, Multiplicity, Over-
shooting.

2315



2316 A. Melman

overshoot without having to backtrack to a pre-overshoot iterate. This is a fairly
curious property of Newton’s method and we will show that it can be generalized
for a Newton multistep method, where the Newton step is multiplied by any positive
integer that is less than or equal to the degree of the polynomial.

Specifically (and in its simplest case), our generalization concerns a Newton
(k + 1)-step from a point to the left of the smallest zero. We will show that
such a step never overshoots the kth critical point of the polynomial and that if it
overshoots the kth zero, then the next Newton k-step is better than a Newton k-step
from the original point. Our result is strengthened if information is available about
the multiplicity of the (k+1)th zero: if that multiplicity is equal to q, then the same
results hold for a Newton (k + d)-step, where 1 ≤ d ≤ min{k, q}. An analogous
result holds for a starting point to the right of the largest zero. Our proof is quite
different from the one in [2], which at first sight does not seem to allow for an easy
generalization.

We will also show that this property can easily be specialized for the computation
of the first zero if that zero’s and the second zero’s multiplicities are known with,
once again, an analogue for the computation of the largest zero. It is intriguing
that it is not only the multiplicity of the extreme zero that plays a role, but that of
the next distinct zero as well. For comparison, let us consider an example where
the first and second distinct zeros’ multiplicities are 4 and 6, respectively. In that
case, our result allows us to multiply the Newton step from a point to the left of
the smallest zero by 8. By contrast, the result in [2] would only allow a doubling
of that Newton step.

We point out that, as in [2, Theorem 5.5.9], we do not make any statement about
the relative merits of the accelerated Newton method versus the regular one.

The paper is organized as follows. In Section 2, we present some notation and
lemmas that will be needed in Section 3, which states and proves the main results.

2. PRELIMINARIES

A polynomial with only real zeros is either convex or concave to the left and
to the right of its smallest and largest zeros, respectively, which causes Newton’s
method to converge monotonically to the smallest or largest zero, when started from
an initial point to the left or right of the smallest or largest zero, respectively.

The logarithmic derivative of a polynomial p(x) = anΠn
j=1(x − xj) is φ(x) =

p′(x)/p(x) and one can easily see that

φ(x) =
p′(x)
p(x)

=
n∑

j=1

1
x − xj

·
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We will assume throughout that x1 ≤ x2... ≤ xn are all real. Denoting the zeros of
p′(x) by x′

1 ≤ x′
2... ≤ x′

n−1, which are then also all real, it is a direct consequence
of Rolle’s theorem that x1 ≤ x′

1 ≤ x2 ≤ x′
2... ≤ x′

n−1 ≤ xn.
The function φ(x) is singular at each zero of p(x) and zero at each zero of

p′(x) that does not coincide with a zero of p(x). It is strictly decreasing on intervals
between different zeros of p(x). If xk < xk+1, then the graph of φ(x) on [xk, xk+1]
looks as in Figure 1.

xk xk+1

x′
k

φ(x)

Fig. 1. The graph of φ(x) = p′(x)
p(x) ·

The following lemma states that taking a Newton s-step, i.e., a Newton step
multiplied by a positive integer s ≤ n, for a polynomial p(x) = an(x − x1)(x −
x2)...(x− xn) with all real zeros x1 ≤ x2 ≤ ... ≤ xn at a point x̄ < x1, will never
overshoot the sth zero of the polynomial, counting multiplicities.

Lemma 2.1. Let p(x) be a polynomial of degree n ≥ 2 with all real zeros
x1 ≤ x2 ≤ ... ≤ xn and let s ≤ n − 1 be a positive integer. Then for any x̄ < x 1,

one has that x̄−s
p(x̄)
p′(x̄)

< xs. If p(x) has no zero of multiplicity n, then the lemma

holds with s ≤ n.

Proof. We first consider the case s ≤ n − 1. Since

s∑
j=1

1
xj − x̄

<
n∑

j=1

1
xj − x̄

=
∣∣∣∣p′(x̄)
p(x̄)

∣∣∣∣ , we have that


1

s

s∑
j=1

1
xj − x̄




−1

> s

∣∣∣∣ p(x̄)
p′(x̄)

∣∣∣∣ ·
The left-hand side in this inequality is the harmonic mean of the positive numbers

(x1 − x̄), (x2 − x̄), ..., (xs − x̄), and is therefore always less than or equal to the
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largest of these numbers, which is xs − x̄. This means that s

∣∣∣∣ p(x̄)
p′(x̄)

∣∣∣∣ < xs − x̄,

which concludes the proof for s ≤ n − 1. For s = n, the proof proceeds as in
the case s ≤ n − 1, except that the strict inequality is now caused by the fact
that the harmonic mean is always strictly less than the largest number, unless all
numbers are equal. But that is made impossible by the requirement that no zero be
of multiplicity n.

Remarks. For a zero of multiplicty n, we have p(x) = an(x − x1)n and it is

easy to show that in this case x̄ − n
p(x̄)
p′(x̄)

= x1. Analogous results to the ones in

this lemma are obtained for x̄ > xn.
The following optimization problem will play an important role in our main

result in the next section.

Lemma 2.2. An optimal solution of the optimization problem

max




m∑
j=1

αj

1 − awj
:

m∑
j=1

αjwj = b ; w1 ≥ wj (∀j �= 1) ; wj ≥ 0 (∀j)


 ,

where m and the αj ’s are fixed positive integers, and a and b are fixed constants
with a > 0 and b < α1/a, is obtained for w1 = b/α1 and wj = 0 (j ≥ 2).

Proof. First, on the feasible set we have w1 ≤ b/α1 < 1/a and therefore also
wj < 1/a (j ≥ 2) because w1 ≥ wj (j ≥ 2). As a consequence, 1 − awj > 0 for
all j so that the objective function is continuous on the feasible region, which forms
a compact set. A continuous function on a compact set achieves its maximum on
this set and to find the solution it is therefore sufficient to examine the points which
satisfy the optimality conditions. To satisfy the first-order optimality conditions (see,
e.g., [1]), we need to find Lagrange multipliers λ, {νj}m

j=2, and {µj}m
j=1, such that

(1)
aα1

(1− aw1)2
− α1λ −

m∑
j=2

νj − µ1 = 0

(2)
aαj

(1− awj)2
− αjλ + νj − µj = 0 (j ≥ 2) ,

with νj ≥ 0 (j ≥ 2), µj ≥ 0 (∀j), (wj − w1)νj = 0 (j ≥ 2), and wjµj = 0 (∀j).
We must have that w1 > 0 because otherwise the constraints w1 ≥ wj ≥ 0 (j �= 1)
would also make all other variables vanish, thereby violating the equality constraint.
This implies that µ1 = 0. (In fact, we could have simply left out the constraint
w1 ≥ 0 from the beginning since it is implied by the other constraints.)
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We will now show that at the optimal solution it is not possible to have nonzero
variables wj (j �= 1) with a different (and necessarily smaller) value than the value
of w1. We proceed by contradiction: assume that there exist nonzero wj’s that have
values that are different from the value of w1. For such wj’s we have that the
corresponding νj = µj = 0 and therefore that

(3)
aαj

(1− awj)2
− αjλ = 0 , which implies

a

(1 − awj)2
= λ .

Since 1−awj > 0 for all j, it follows that all such wj’s must have the same value.
We denote that value by w̄ and we define J1 = {j : wj = w1}. If J1 �= {1}, then
for � ∈ J1 \ {1}, and using the expression for λ from (3) in (2), we have

aα�

(1 − aw1)2
− α�λ + ν� = 0 =⇒ aα�

(1 − aw1)2
− aα�

(1 − aw̄)2
= −ν�.

But w1 > w̄ so that the left-hand side in the last equation is strictly positive.
However, the right-hand side is nonpositive and we have arrived at a contradiction
when J1 �= {1}. If J1 = {1}, then νj = 0 for all j ≥ 2 and we have from (1)

aα1

(1 − aw1)2
− α1λ = 0 =⇒ aα1

(1 − aw1)2
=

aα1

(1 − aw̄)2
·

But this is impossible because w1 > w̄ so that we have arrived at a contradiction
in this case as well. This means that, at the optimal solution, for j ≥ 2, we either
have wj = w1 or wj = 0. Without loss of generality, let us assume that {wj}k

j=2

(k ≤ m) are the variables equal to w1 with the remainder of the variables, if there
are any, equal to zero. The equality constraint then gives

w1 =
b∑k

j=1 αj

·

We now show that the solution with k = 1 is optimal. Substituting our candidate
solution into the objective function and using the fact that ab < α1, we obtain

 m∑
j=1

αj −
k∑

j=1

αj


+

∑k
j=1 αj

1 − ab/
∑k

j=1 αj

=


 m∑

j=1

αj


+

ab

1 − ab/
∑k

j=1 αj

≤

 m∑

j=1

αj


+

ab

1 − ab/α1
·

Since 
 m∑

j=1

αj


+

ab

1 − ab/α1
=


 m∑

j=2

αj


+

α1

1 − ab/α1
,
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this upper bound on the objective function corresponds to the value obtained for the
feasible solution w1 = b/α1 and wj = 0 for j ≥ 2.

This lemma immediately leads to the following corollary.

Corollary 2.1. An optimal solution of the optimization problem

max




m∑
j=1

αj

1 − awj
:

m∑
j=1

αjwj = b ; w1 ≥ w2 ≥ ... ≥ wm ≥ 0


 ,

where m and the αj ’s are fixed positive integers, and a and b are fixed constants
with a > 0 and b < α1/a, is obtained for w1 = b/α1 and wj = 0 (j ≥ 2).

Proof. The feasible set of this optimization problem is contained in the feasible
set of the optimization problem in Lemma 2.2 and its objective function is the same.
The maximum value obtained in Lemma 2.2 must therefore be an upper bound on
the maximum value that is obtainable here. Because the solution of the problem in
Lemma 2.2 also satisfies the constraints in the current problem, that solution must
then also be optimal for this problem.

3. OVERSHOOTING THEOREMS

In this section we generalize Theorem 5.5.9 in [2] by considering the overshoot-
ing properties of a Newton (k +1)-step from a point to the left of the smallest zero,
as we explained in the introduction. The result is strengthened if information about
the multiplicity of the (k + 1)th zero is available. We subsequently use this result
to derive a version of Theorem 5.5.9 in [2], which, like that theorem, concerns the
first two (or last two) zeros of the polynomial, but also, unlike that theorem, takes
into account the multiplicities of those zeros.

Here is the first result.

Theorem 3.1. Let p(x) be a polynomial of degree n ≥ 2 with all real zeros
x1 ≤ x2 ≤ ... ≤ xn, let x′

1 ≤ x′
2 ≤ ... ≤ x′

n−1 be the zeros of p′(x), and let q,
with 1 ≤ q ≤ n − k, be the largest positive integer such that x k+1 = xk+q for

1 ≤ k ≤ n − 1. Set y = x̄− (k + d) p(x̄)
p′(x̄) for a point x̄ < x1 and for any positive

integer d, satisfying 1 ≤ d ≤ min{k, q}. Require also that when k = n − q and
d = q, p(x) cannot have a zero of multiplicity n.

Then y < x′
k and if y ≥ xk, then xk < xk+1, and

(4) x̄ − k
p(x̄)
p′(x̄)

≤ y − k
p(y)
p′(y)

≤ xk ,
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where the rightmost inequality is strict when y > x k .
When k = 1, then if y < xk:

(5) x̄ − p(x̄)
p′(x̄)

< y − p(y)
p′(y)

< x1 .

If there is a zero of multiplicity n when k = n − q and d = q, then y = x 1 =
x2 = ... = xn = x′

n−1.

Fig. 2. Positioning of relevant points in Theorem 3.1 when y > xk.

Proof. Throughout the proof we will use the fact that, because x̄ < x1,
φ(x̄) = p(x̄)/p′(x̄) < 0. We begin by observing that xk ≤ x′

k so that if y < xk,
then y < x′

k.

If y ≥ xk, then with Lemma 2.1 we have that xk ≤ y < xk+d = xk+1 so that
xk < xk+1. We note that we are able to use Lemma 2.1 because, unless d = q,
k + d < k + q ≤ n, so that k + d ≤ n − 1. If d = q, then we can use the lemma
because of the requirement that there be no zero of multiplicity n in this case when
k + q = n; if there were such a zero when k = n − q and d = q, then the remark
following Lemma 2.1 implies that y = x1 = x2 = ... = xn, so that y = x′

n−1.
Having established that xk < xk+1, we obtain as an immediate consequence that
xk < x′

k . Therefore, when y = xk, y < x′
k. Also, the inequalities in (4) when

y = xk follow directly from Lemma 2.1.
We are left with the case y > xk for which we already know that xk < xk+1.

For convenience we define γj = (|φ(x̄)|(xj − x̄))−1, where φ(x) is the same as
before. With this definition of γj , we have that γ1 ≥ γ2 ≥ ... ≥ γn > 0 and also
that

∑n
j=1 γj = 1. We now examine φ(y):

φ(y) =
n∑

j=1

1
x̄ − (k + d)/φ(x̄) − xj

=
n∑

j=1

φ(x̄)
(x̄ − xj)φ(x̄)− (k + d)

= |φ(x̄)|
n∑

j=1

1
(k + d) − (xj − x̄)|φ(x̄)|
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= |φ(x̄)|
n∑

j=1

1
(k + d) − γ−1

j

=
|φ(x̄)|
k + d


n −

n∑
j=1

1
1 − (k + d)γj




≥ |φ(x̄)|
k + d


n −

k∑
j=1

1
1 − (k + d)γj

− max
{

d

1 − (k + d)γk+1

+
n∑

j=k+d+1

1
1 − (k + d)γj




 ·

Because
∑n

j=1 γj = 1, we impose the constraints for the maximization problem
as dγk+1 +

∑n
j=k+d+1 γj = 1−∑k

j=1 γj and γk+1 ≥ γk+d+1 ≥ ... ≥ γn ≥ 0. Our
assumption that x̄ − (k + d)/φ(x̄) > xk implies that γk > 1/(k + d) and therefore
also that γj > 1/(k + d) for 1 ≤ j ≤ k. As a consequence,

1−
k∑

j=1

γj < 1 − k

d + k
=

d

d + k
·

The solution of the maximization problem then follows directly from Corollary 2.1
of Lemma 2.2 withm = n−(k+d)+1, α1 = d, αj = 1 (j ≥ 2), b = 1−∑k

j=1 γj ,
and a = k + d, which yields

φ(y)

≥ |φ(x̄)|
k+d


n−

k∑
j=1

1
1−(k+d)γj

− d

1−(k+d)
1
d

(
1−∑k

j=1 γj

)−(n−(k+d))




(6) =
|φ(x̄)|
k + d


k + d +

k∑
j=1

1
(k + d)γj − 1

− d2∑k
j=1((k + d)γj − 1)


 ·

Since (k + d)γj − 1 > 0 for 1 ≤ j ≤ k, we can use the harmonic arithmetic means
inequality to obtain

1

1
k

k∑
j=1

((k + d)γj − 1)

≤ 1
k

k∑
j=1

1
(k + d)γj − 1

,

or
k2

k∑
j=1

((k + d)γj − 1)

≤
k∑

j=1

1
(k + d)γj − 1

·
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Using this inequality in (6), we obtain

φ(y) ≥ |φ(x̄)|
k+d

(
k+d+

k2∑k
j=1((k + d)γj − 1)

− d2∑k
j=1((k+d)γj−1)

)

=
|φ(x̄)|
k + d

(
k + d +

k2 − d2

(k + d)
∑k

j=1 γj − k

)

≥ |φ(x̄)|
k + d

(
k + d +

k2 − d2

(k + d)
∑n

j=1 γj − k

)

=
|φ(x̄)|
k + d

(
k + d +

(k − d)(k + d)
(k + d) − k

)

(7) =
k

d
|φ(x̄)| ,

so that φ(y) > 0. Since xk < y < xk+1, Figure 1 allows us to conclude that
y < x′

k.
From (7) we also have

y − k

φ(y)
= x̄ +

k + d

|φ(x̄)| −
k

φ(y)
≥ x̄ +

k + d

|φ(x̄)| −
kd

k|φ(x̄)| = x̄ − k

φ(x̄)
·

Next, we recall that xk < y < xk+1 and that φ(y) > 0. From this follows that

y − k

φ(y)
= y − k

k∑
j=1

1
y − xj

+
n∑

j=k+1

1
y − xj

< y − k
k∑

j=1

1
y − xj

< y − k

k

y − xk

= xk .

The only thing left to prove is that (5) holds. If y < x1, then we have immedi-
ately from Lemma 2.1 (or from the fact that a polynomial is either strictly convex

or strictly concave to the left of its smallest zero) that y− p(y)
p′(y)

< x1 and therefore

that
x̄ − p(x̄)

p′(x̄)
< y < y − p(y)

p′(y)
< x1 .

This concludes the proof.

Remarks. If xk < xk+1, then q in the statement of the theorem is the multi-
plicity of xk+1. If q is unknown, then one can simply apply the theorem with d = 1.
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An analogous theorem can be obtained for a point x̄ to the right of the largest zero,
which for k = 1 reduces to Theorem 5.5.9 in [2].

The following theorem is a direct consequence of the first theorem as applied
to the first (or last) two zeros of the polynomial. It provides a version of Theorem
5.5.9 in [2] that takes into account the multiplicities of those zeros.

Theorem 3.2. Let p(x) be a polynomial of degree n ≥ 2 with all real zeros
x1 ≤ x2 ≤ ... ≤ xn, let x′

1 ≤ x′
2 ≤ ... ≤ x′

n−1 be the zeros of p′(x), let
x1 = x2 = ... = xs, where s is a positive integer, let q be the largest positive
integer such that xs+1 = xs+2 = ... = xs+q and let the multiplicity of x 1 be strictly

less than n. Set y = x̄ − (s + d)
p(x̄)
p′(x̄)

for a point x̄ < x1 and for any positive

integer d, satisfying 1 ≤ d ≤ min{s, q}. Then y < x ′
s and

(8) x̄ − s
p(x̄)
p′(x̄)

≤ y − s
p(y)
p′(y)

≤ x1.

The inequalities in (8) are strict when y < x 1 and the rightmost inequality is strict
when y > x1.

If the multiplicity of x1 is equal to n, then s = n and y= x̄−n
p(x̄)
p′(x̄)

=x1 = x′
s.

Proof. We first recall that p(x̄)/p′(x̄) < 0. If y = x̄−(s+d) p(x̄)
p′(x̄) < x1 = xs,

then, because there are no zeros of multiplicity n, we have from Lemma 2.1 that

y − s
p(y)
p′(y)

< xs and therefore that

x̄ − s
p(x̄)
p′(x̄)

< y < y − s
p(y)
p′(y)

< xs = x1 ≤ x′
s ,

so that both y < x′
s and (8) are satisfied. For y ≥ x1 = xs we have, with Lemma

2.1, that x1 = xs ≤ y < xs+d = xs+1, so that xs < xs+1. The rest of the proof
then follows directly from Theorem 3.1. with k = s.

Remarks. If xs < xs+1 then s and q are the multiplicities of xs and xs+1,
respectively. If one does not know q, then one can simply set d = 1. If s is also
unknown, then our theorem reduces to Theorem 5.5.9 in [2]. Once again, analogous
results hold for a point x̄ to the right of the largest zero of the polynomial.

REFERENCES

1. A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Uncon-
strained Minimization Techniques, J. Wiley and Sons, New York, 1968.



Newton’s Method for Polynomials 2325

2. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New
York, 1980.

A. Melman
Department of Applied Mathematics,
School of Engineering,
Santa Clara University,
Santa Clara, CA 95053,
U.S.A.
E-mail: amelman@scu.edu


