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LOCAL UNIFORM LINEAR OPENNESS OF MULTIFUNCTIONS
AND CALCULUS OF BOULIGAND

–SEVERI AND CLARKE TANGENT SETS

Corneliu Ursescu

Abstract. The paper concerns calculus of certain tangent sets in the multifunc-
tion setting. To this end the multifunction linear openness is defined in linear
topological spaces. The relationship with some metric notions is investigated
and some metric openness results are derived.

1. INTRODUCTION

Let X and Y be generic spaces, let F : X → Y be a multifunction, and let
(a, b) ∈ X × Y . In this paper we are concerned with the estimation of certain
tangent sets to F−1(b) at a. A generic tangency concept τ assigns a set τA(a) ⊆ X
to a set A ⊆ X and to a point a ∈ X , and τA(a) is called the τ -tangent set to A
at a. To estimate τF−1(b)(a), we follow the example set by Aubin [1] and define a
multifunction τF (a, b) : X → Y through the equality

graph(τF (a, b)) = τgraph(F )(a, b).

Afterwards we compare the sets τF−1(b)(a) and (τF (a, b))−1(0). The inclusion

(τF (a, b))−1(0) ⊆ τF−1(b)(a)

is expected. Expected inclusions are proved (see Section 4) for some tangency
concepts (see Section 2) by using linear openness of F (see Section 3).
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Multifunction linear openness is further investigated in linear topological spaces
and, in normed spaces, it is characterized through a metric property, namely the
multifunction ω-openness (see Section 5), which is powerful enough to characterize
multifunction metric regularity (see Section 6). A counterexample (see Section 11)
shows that it is possible for a closed graph multifunction F : l2(R) → R to be
ω-open at a point in case ω = 1, but not metrically regular near any point.

Locally closed graph results concerning ω-openness are derived in general metric
spaces (see Section 7) as well as in particular metric spaces, which resemble normed
spaces (see Section 8). These results are refined in normed spaces (see Section 10)
by using an elementary tangency concept and a classical tangency concept (see
Section 9).

The counterexample in Section 11 shows also that some locally closed graph
results concerning ω-openness do not hold in infinite dimensional normed spaces. In
the final Section 12, there are discussed further properties of the tangency concepts
described in Section 2.

2. TANGENCY CONCEPTS

In this section we describe three specific tangency concepts of which definitions
are based on a nonempty family S of nonempty sets S ⊆ (0,+∞) (cf. [28, pp. 106,
107]). The first tangency concept makes sense in linear spaces, whereas the other
two tangency concepts make sense in linear topological spaces.

First, we denote by κ the tangency concept which assigns to a set A ⊆ X and
to a point a ∈ X the set κA(a) of all points x ∈ X with the property that: there
exists S ∈ S such that a + sx ∈ A whenever s ∈ S.

Second, we denote by K the tangency concept which assigns to a set A ⊆ X

and to a point a ∈ X the set KA(a) of all points x ∈ X with the property
that: for every neighborhood U of the origin in X there exists S ∈ S such that
∅ �= (a+ s(x+ U)) ∩A whenever s ∈ S.

Third, we denote by K the tangency concept which assigns to a set A ⊆ X and
to a point a ∈ X a setKA(a) ⊆ X which depends on whether or not a belongs to the
closure A of A. If a �∈ A, then KA(a) = ∅. If a ∈ A, i.e. (a+Γ)∩A �= ∅ whenever
Γ is a neighborhood of the origin in X , then KA(a) is the set of all points x ∈ X

with the property that: for every neighborhood U of the origin in X there exist a
neighborhood Γ of the origin in X and S ∈ S such that ∅ �= (a+γ+s(x+U))∩A
whenever s ∈ S, γ ∈ Γ and a+ γ ∈ A.

Obviously, κA(a) ⊆ KA(a), KA(a) ⊆ KA(a), 0 ∈ κA(a) if a ∈ A, and
0 ∈ KA(a) if a ∈ A.

In the particular case that

(1) S = {S ⊆ (0,+∞); ∀r > 0, ∅ �= (0, r)∩ S},



Local Uniform Linear Openness of Multifunctions and Calculus of Bouligand 2203

the closed cone KA(a) originates from the half-lines which are tangent to A at
a, a notion considered in the same journal volume by Bouligand [5, p. 32] and
Severi [22, p. 99]. The seminal feature of the two papers is emphasized in [14,
p. 133]. A rough sketch of the history of the matter is given in [27].

In the particular case that

(2) S = {S ⊆ (0,+∞); ∃r > 0, (0, r)⊆ S},

the closed cone KA(a) has been considered in [24, p. 151], whereas the closed
convex cone KA(a), which originates from Clarke [6, Proposition 3.7], has been
considered in [21, p. 335, eq. (2.6)].

In the general case, KA(a) and KA(a) are closed, but κA(a), KA(a), andKA(a)
may fail to be cones, whereas KA(a) may fail to be convex. For example, in case
of the family

(3) S = {{1}},

it follows: κA(a) = A − a; KA(a) = A− a; KA(a) = A− a if a ∈ A. Therefore
κA(a) is a cone if and only if A−a is a cone, and so on. On the other hand, κA(a),
KA(a), and KA(a) are always cones provided that tS ∈ S whenever S ∈ S and
t > 0. Each of the families (1) and (2) enjoys this S-property, but the family (3)
does not. Neither does the family

(4) S = {{s}; s ∈ (0, 1]}.

Further S-properties and the corresponding κ-, K-, and K-properties are discussed
in Section 12.

Now, y ∈ κ(a, b)(x) if and only if there exists S ∈ S such that b + sy ∈
F (a + sx) whenever s ∈ S, therefore there always holds not only the expected
inclusion

(κF (a, b))−1(0) ⊆ κF−1(b)(a),

but also the equality
κF−1(b)(a) = (κF (a, b))−1(0).

Further, y ∈ KF (a, b)(x) if and only if for every neighborhood U of the origin
in X and for every neighborhood V of the origin in Y there exists S ∈ S such that

(5) ∅ �= (b+ s(y + V )) ∩ F (a + s(x+ U))

whenever s ∈ S, therefore

KF−1(b)(a) ⊆ (KF (a, b))−1(0),
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and the equality

(6) KF−1(b)(a) = (KF (a, b))−1(0)

is strongly expected.
Finally, y ∈ KF (a, b)(x) if and only if (a, b) ∈ graph(F ) and for every neigh-

borhood U of the origin in X and for every neighborhood V of the origin in Y
there exist a neighborhood Γ of the origin in X , a neighborhood ∆ of the origin in
Y , and S ∈ S such that
(7) ∅ �= (b+ δ + s(y + V )) ∩ F (a+ γ + s(x+ U))

whenever s ∈ S, γ ∈ Γ, δ ∈ ∆, and b + δ ∈ F (a + γ). No elementary relation
involves the sets KF−1(b)(a) and (K−1(a, b))(0), but the inclusion

(8) (KF (a, b))−1(0) ⊆ KF−1(b)(a)

is expected.
In case of the S-family (2), instances of the equality (6) appear in [25, p. 564,

eq. (C)], [31, pp. 148, 149, Theorem 2], whereas instances of the inclusion (8)
appear in [3, p. 74, Corollary 2.2], [20, p. 153, eq. (5.2)], [21, p. 349, eq. (5.16)].

Relations (6) and (8) will be proved (see Section 4), in the particular case that
S ∩ (0, r) ∈ S for all r > 0 and for all S ∈ S . Each of the S-families (1) and (2)
exemplifies the particular case above, but the S-families (3) and (4) do not. In spite
of this shortcoming, the tangency concept κ corresponding to the S-family (4) is
more valuable than the tangency concept K provided by the S-family (1) in that
the K-results of openness can be derived from better κ-results of openness (see
Section 10).

3. LINEAR OPENNESS

To begin with, we recall the notions of multifunction openness and multifunction
near openness. Let X and Y be topological spaces, and let F : X → Y be a multi-
function. The multifunction F is said to be open at a point (x, y) ∈ graph(F ) if for
every neighborhood U of x the set F (U) is a neighborhood of y; the multifunction
F is said to be open on a set W ⊆ graph(F ) if F is open at every (x, y) ∈ W ;
the multifunction F is said to be open if F is open on graph(F ).

A twin definition makes use of the closure of the set F (U). The multifunction
F is said to be nearly open at a point (x, y) ∈ graph(F ) if for every neighborhood
U of x the set F (U) is a neighborhood of y; the multifunction F is said to be
nearly open on a set W ⊆ graph(F ) if F is nearly open at every (x, y) ∈W ; the
multifunction F is said to be nearly open if F is nearly open on graph(F ).
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Openness at a point implies near openness at that point, and the converse holds
too under appropriate hypotheses ([23, p. 439, Lemma 3]).

Note that F is open if and only if F maps open subsets of X into open subsets
of Y , whereas F is nearly open if and only if F maps open subsets of X into nearly
open subsets of Y (cf. [13, p. 160]). Recall that a set S is said to be nearly open
if S is a neighborhood of S. Near openness of sets appears in [17, p. 451]. Near
openness of functions appears in [18, p. 47, Definition 47].

Now, let (x, y) ∈ graph(F ), let U be a base for the neighborhood system of x,
and let V be a base for the neighborhood system of y. Then F is open at (x, y) if
and only if for every U ∈ U there exists V ∈ V such that

V ⊆ F (U),

whereas F is nearly open at (x, y) if and only if for every U ∈ U there exists V ∈ V
such that

V ⊆ F (U).

Further, let X and Y be uniform spaces, let U be a base for the uniformity on
X , and let V be a base for the uniformity on Y . In this case, the family of sets
{U [x];U ∈ U} is a base for the neighborhood system of x, whereas the family of
sets {V [y]; V ∈ V} is a base for the neighborhood system of y. Therefore F is
open at (x, y) if and only if for every U ∈ U there exists V ∈ V such that

(9) V [y] ⊆ F (U [x]),

whereas F is nearly open at (x, y) if and only if for every U ∈ U there exists V ∈ V
such that

(10) V [y] ⊆ F (U [x]).

Special openness and near openness of multifunctions can be defined by using the
special inclusions (9) and (10).

The multifunction F is said to be uniformly open on a set W ⊆ graph(F ) if
for every U ∈ U there exists V ∈ V such that the inclusion (9) holds whenever
(x, y) ∈ W ; the multifunction F is said to be locally uniformly open if for every
(a, b) ∈ graph(F ) there exists a neighborhoodW of (a, b) such that F is uniformly
open on W ∩ graph(F ); the multifunction F is said to be uniformly open if F is
uniformly open on graph(F ).

The multifunctionF is said to be uniformly nearly open on a setW ⊆ graph(F )
if for every U ∈ U there exists V ∈ V such that the inclusion (10) holds whenever
(x, y) ∈ W ; the multifunction F is said to be locally uniformly nearly open if for
every (a, b) ∈ graph(F ) there exists a neighborhood W of (a, b) such that F is
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uniformly nearly open onW∩graph(F ); the multifunctionF is said to be uniformly
nearly open if F is uniformly nearly open on graph(F ).

Uniform openness implies uniform near openness, and the converse holds too
under appropriate hypotheses ([12, p. 202, 36 Lemma]). Local uniform openness
implies local uniform near openness, and the converse holds too under appropriate
hypotheses ([33, p. 145, Theorem 4]).

Sometimes the phrase “almost open” is used instead of the phrase “nearly open”.
The phrases “uniformly open” and “uniformly almost open” appear in [19, p. 505,
(2,1) Theorem]. The properties labelled by these phrases appear earlier in [12,
p. 202, 36 Lemma]. Function openness and function uniform openness, which
appear in [12, pp. 90, 202], are prerequisites for introducing those yet unlabelled
multifunction properties.

Finally, let X and Y be linear topological spaces, let U be a base for the
neighborhood system of the origin in X , and let V be a base for the neighborhood
system of the origin in Y . In this case, the family of sets {x+U ;U ∈ U} is a base
for the neighborhood system of x, whereas the family of sets {y + V ; V ∈ V} is a
base for the neighborhood system of y. Therefore F is open at (x, y) if and only if
for every U ∈ U there exists V ∈ V such that

y + V ⊆ F (x+ U),

whereas F is nearly open at (x, y) if and only if for every U ∈ U there exists V ∈ V
such that

y + V ⊆ F (x+ U).

The two inclusions above suggest for us to consider the special inclusions

(11) y + sV ⊆ F (x+ sU)

(12) y + sV ⊆ F (x+ sU)

and the corresponding special definitions. A first definition introduces the notions
of linear openness and near linear openness.

Definition 1. The multifunction F is said to be linearly open at a point
(x, y) ∈ graph(F ) if for every neighborhood U of the origin in X there exists a
neighborhood V of the origin in Y such that the inclusion (11) holds whenever
s ∈ (0, 1]; the multifunction F is said to be linearly open on a set W ⊆ graph(F )
if F is linearly open at every (x, y) ∈W ; the multifunction F is said to be linearly
open if F is linearly open on graph(F ).

The multifunction F is said to be nearly linearly open at a point (x, y) ∈
graph(F ) if for every neighborhoodU of the origin inX there exists a neighborhood
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V of the origin in Y such that the inclusion (12) holds whenever s ∈ (0, 1]; the
multifunction F is said to be nearly linearly open on a set W ⊆ graph(F ) if F is
nearly linearly open at every (x, y) ∈ W ; the multifunction F is said to be nearly
linearly open if F is nearly linearly open on graph(F ).

A second definition introduces the specialized notions of uniform linear openness
and uniform near linear openness.

Definition 2. The multifunction F is said to be uniformly linearly open on
a set W ⊆ graph(F ) if for every neighborhood U of the origin in X there exists
a neighborhood V of the origin in Y such that the inclusion (11) holds whenever
s ∈ (0, 1] and (x, y) ∈ W ; the multifunction F is said to be locally linearly open
if for every (a, b) ∈ graph(F ) there exists a neighborhood W of (a, b) such that
F is uniformly linearly open on W ∩ graph(F ); the multifunction F is said to be
uniformly linearly open if F is uniformly linearly open on graph(F ).

The multifunction F is said to be uniformly nearly linearly open on a set
W ⊆ graph(F ) if for every neighborhood U of the origin in X there exists a
neighborhood V of the origin in Y such that the inclusion (12) holds whenever
s ∈ (0, 1] and (x, y) ∈W ; the multifunction F is said to be locally nearly linearly
open if for every (a, b) ∈ graph(F ) there exists a neighborhood W of (a, b) such
that F is uniformly nearly linearly open on W ∩ graph(F ); the multifunction F is
said to be uniformly nearly linearly open if F is uniformly nearly linearly open on
graph(F ).

Note uniform linear openness implies local uniform linear openness, but the
converse may fail. The multifunction F : R → R given by graph(F ) = {(r, r); r ∈
R} is uniformly linearly open, whereas the multifunction F : R → R given by
graph(F ) = {(r, r); r ∈ R, |r| < 1} is only locally uniformly linearly open.

4. MAIN RESULTS

Now we are in a position to state the main result concerning relations (6) and (8).

Theorem 1. Let X and Y be linear topological spaces, and let (0, r)∩S ∈ S
for all S ∈ S and for all r > 0. Let the multifunction F be locally uniformly
linearly open. Then the relations (6) and (8) hold for all (a, b) ∈ graph(F ).

The global Theorem 1 above is a straightforward corollary of the point-wise
Theorem 2 below.

Theorem 3. Let X and Y be linear topological spaces, and let (0, r)∩S ∈ S
for all S ∈ S and for all r > 0. Let (a, b) ∈ graph(F ) and let there exist a
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neighborhood W of (a, b) ∈ graph(F ) such that F is uniformly linearly open on
W ∩ graph(F ). Then the relations (6) and (8) hold.

The proof of Theorem 2 will be given at the end of this section. This proof
relies on two lemmas. A first lemma concerns the local character of the tangency
concepts κ, K, and K. We say that a tangency concept τ has a local character if
τA(a) ⊆ τA∩(a+P )(a) whenever P is a neighborhood of the origin in X .

Lemma 1. Let X be a linear topological space and let (0, r)∩ S ∈ S for all
S ∈ S and for all r > 0. Then all of the tangency concepts κ, K , and K have a
local character.

Proof. Let P be a neighborhood of the origin in X . First we assert that, if x ∈
κA(a), then x ∈ κA∩(a+P )(a). Choose a real number r > 0 such that (0, r)x ⊆ P .
By the definition of κ tangency, there exists S ∈ S such that a+ sx ⊆ A whenever
s ∈ S. Note (0, r)∩S ∈ S and let s ∈ (0, r)∩S. Since s ∈ S, it follows a+sx ∈ A.
Since s ∈ (0, r), it follows sx ∈ P . To conclude, a+ su ∈ A ∩ (a+ P ), and our
first assertion is justified.

Second we assert that, if x ∈ KA(a), then x ∈ KA∩(a+P )(a). Let U be a
neighborhood of the origin in X . We can suppose, taking a smaller U if necessary,
that there exists a real number r > 0 such that (0, r)(x+U) ⊆ P . By the definition
of K tangency, there exists S ∈ S such that ∅ �= (a + s(x + U)) ∩ A whenever
s ∈ S. Note (0, r) ∩ S ∈ S and let s ∈ (0, r) ∩ S. Since s ∈ S, it follows there
exists u ∈ U such that a + s(x + u) ∈ A. Since s ∈ (0, r) and u ∈ U , it follows
s(x+u) ∈ P . To conclude, a+ s(x+ u) ∈ A∩ (a+P ), and our second assertion
is justified.

Third we assert that, if x ∈ KA(a), then x ∈ KA∩(a+P )(a). Let U be a
neighborhood of the origin in X . We can suppose, taking a smaller U if necessary,
that there exist a neighborhood Q of the origin in X and a real number r > 0
such that Q + (0, r)(x+ U) ⊆ P . By the definition of K tangency, there exist a
neighborhood Γ of the origin in X and S ∈ S such that ∅ �= (a+γ+s(s+U))∩A
whenever s ∈ S, γ ∈ Γ, and a + γ ∈ A. Note (0, r) ∩ S ∈ S and Γ ∩ Q is a
neighborhood of the origin in X , let s ∈ (0, r) ∩ S, and let γ ∈ Γ ∩ Q such that
a + γ ∈ A ∩ (a+ P ). Since s ∈ S, γ ∈ Γ, and a+ γ ∈ A, it follows there exists
u ∈ U such that a + γ + s(x + u) ∈ A. Since γ ∈ Q, s ∈ (0, r), and u ∈ U , it
follows γ + s(x+ u) ∈ P . To conclude, a+ γ + s(x+u) ∈ A∩ (A+P ), and our
third assertion is justified.

A second lemma concerns stronger versions of the relations (5) and (7), namely
the inclusions

(13) b+ s(y + V ) ⊆ F (a + s(x+ U)),
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(14) b+ δ + s(y + V ) ⊆ F (a+ γ + s(x+ U)).

Lemma 2. Let X and Y be linear topological spaces, and let S ∩ (0, r) ∈ S
for all r > 0 and for all S ∈ S . Let W ⊆ X × Y be an open set such that
the multifunction F is uniformly linearly open on W ∩ graph(F ). Then for every
neighborhood U of the origin in X there exists a neighborhood V of the origin in
Y such that:

• for every (a, b) ∈ W ∩ graph(F ) and for every (x, y) ∈ graph(KF (a, b))
there exists S ∈ S such that the inclusion (13) holds whenever s ∈ S.

• for every (a, b) ∈ W ∩ graph(F ) and for every (x, y) ∈ graph(KF (a, b))
there exist a neighborhood Γ of the origin in X , a neighborhood ∆ of the
origin in Y , and S ∈ S such that the inclusion (14) holds whenever s ∈ S,
γ ∈ Γ, δ ∈ ∆, and b+ δ ∈ F (a + γ).

Proof. Let U be a neighborhood of the origin inX and consider a neighborhood
U ′ of the origin in X such that U ′ + U ′ ⊆ U . Since F is uniformly linearly open
on W ∩graph(F ), it follows that there exists a neighborhood V ′ of the origin in Y
such that b′+sV ′ ⊆ F (a′ +sU ′) whenever s ∈ (0, 1] and (a′, b′) ∈W ∩graph(F ).
Let V be a neighborhood of the origin in Y such that V − V ⊆ V ′. Further, for
every (a′, b′) ∈ X × Y and for every (x, y) ∈ X × Y denote by Σ(a′, b′; x, y) the
set

{s > 0; ∅ �= ((a′, b′) + s((x, y) + (U ′ × V ))) ∩W ∩ graph(F )}.
We assert that, if s ∈ Σ(a′, b′; x, y)∩ (0, 1], then b′ +s(y+V ) ⊆ F (a′ +s(x+U)).
Indeed, if (u′, v′) ∈ U ′×V and (a′, b′)+s((x, y)+(u′, v′)) ∈W ∩graph(F ), then
b′+s(y+V ) ⊆ (b′+s(y+v′))+sV ′ ⊆ F (a′+s(x+u′)+sU ′) ⊆ F (a′+s(x+U)),
and our assertion is justified.

Now, let (a, b) ∈ W ∩ graph(F ) and (x, y) ∈ graph(KF (a, b)). Since the
tangency concept K has a local character and since W is a neighborhood of (a, b),
we get (x, y) ∈ KW∩graph(F )(a, b), hence there exists S ∈ S such that S ⊆
Σ(a, b; x, y). Since S ∩ (0, 1) ∈ S and the inclusion (13) holds whenever s ∈
S ∩ (0, 1), it follows the first part of the conclusion.

Finally, let (a, b) ∈ W ∩ graph(F ) and (x, y) ∈ graph(KF (a, b)). Since the
tangency concept K has a local character and since W is a neighborhood of (a, b),
we get (x, y) ∈ KW∩graph(F )(a, b), hence there exist a neighborhood Γ of the origin
in X , a neighborhood ∆ of the origin in Y , and S ∈ S such that

S ⊆
⋂

(γ, δ) ∈ Γ × ∆
(a + γ, b + δ) ∈ W ∩ graph(F )

Σ(a+ γ, b+ δ; x, y).
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We can suppose, taking smaller Γ and ∆ if necessary, that (a+Γ)× (b+∆) ⊆W .
Since S ∩ (0, 1) ∈ S and the inclusion (14) holds whenever s ∈ S ∩ (0, 1), γ ∈ Γ,
δ ∈ ∆, and b+ δ ∈ F (a + γ), it follows the second part of the conclusion.

Proof of Theorem 2. First, let x ∈ (KF (a, b))−1(0) and let U be a neighborhood
of the origin in X . Since (x, 0) ∈ graph(KF (a, b)), it follows from Lemma 2 that
there exists a neighborhood V of the origin inX and S ∈ S such that b+s(0+V ) ⊆
F (a + s(x + U)) whenever s ∈ S. Since 0 ∈ V , we get b ∈ F (a + s(x + U))
whenever s ∈ S, hence x ∈ KF−1(b)(a), and the equality (6) follows.

Finally, let x ∈ (KF (a, b))−1(0) and let U be a neighborhood of the origin
in X . Since (x, 0) ∈ graph(KF (a, b)), it follows from Lemma 2 that there exist
a neighborhood V of the origin in Y , a neighborhood Γ of the origin in X , a
neighborhood ∆ of the origin in Y , and S ∈ S such that b + δ + s(0 + V ) ⊆
F (a+ γ + s(x+U)) whenever s ∈ S, γ ∈ Γ, δ ∈ ∆ and b+ δ ∈ F (a+ γ). Since
0 ∈ ∆ and 0 ∈ V , we get b ∈ F (a + γ + s(x+ U)) whenever s ∈ S, γ ∈ Γ, and
b ∈ F (a + γ), hence x ∈ KF−1(b)(a), and the inclusion (8) follows.

5. LINEAR OPENNESS IN NORMED SPACES

In this section we characterize uniform linear openness and uniform near linear
openness in the general setting of linear topological spaces and in the particular
setting of normed spaces.

Lemma 3. Let X and Y be linear topological spaces.
The multifunction F is uniformly linearly open on a set W ⊆ graph(F ) if and

only if for every neighborhood U of the origin in X there exist a neighborhood V
of the origin in Y and a real number r > 0 such that the inclusion (11) holds for
all s ∈ (0, r) and for all (x, y) ∈W .

The multifunctionF is uniformly nearly linearly open on a setW ⊆ graph(F ) if
and only if for every neighborhood U of the origin in X there exist a neighborhood
V of the origin in Y and a real number r > 0 such that the inclusion (12) holds
for all s ∈ (0, r) and for all (x, y) ∈W .

Proof. To prove the former part of the result, let W ⊆ graph(F ), denote by
q(U, V ) the statement that the inclusion (11) holds for all s ∈ (0, 1] and for all
(x, y) ∈ W , denote by Q(U, V, r) the statement that the inclusion (11) holds for
all s ∈ (0, r) and for all (x, y) ∈ W , note q(U, V ) implies Q(U, V, 1), Q(U, V, 2)
implies q(U, V ), Q(U, V, r) is equivalent to Q(tU, tV, r/t) whenever t > 0, and
Q(U ′, V ′, r′) implies Q(U, V, r) whenever r ≤ r′, V ⊆ V ′, and U ′ ⊆ U . Now, let
F be uniformly linearly open on W and let U be a neighborhood of the origin in
X . Then there exists a neighborhood V of the origin in X such that q(U, V ) is true
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and therefore there exists a real number r > 0, namely r = 1, such that Q(U, V, r)
is true. Conversely, let for every neighborhood U′ of the origin in X there exist a
neighborhood V ′ of the origin inX and a real number r′ > 0 such that Q(U ′, V ′, r′)
is true, and let U be a neighborhood of the origin in X . Choose a neighborhood U′

of the origin inX such that (0, 1]U ′ ⊆ U , choose a neighborhood V ′ of the origin in
Y and a real number r′ > 0 such thatQ(U ′, V ′, r′) is true, let t = min{r′/2, 1}, and
let V = trV ′. Then Q(U ′, V ′, r′) is equivalent to Q(tU ′, V, r′/t), which implies
Q(U, V, 2), hence q(U, V ) is true, and F is uniformly linearly open on W . The
latter part of the result can be proved in a similar manner.

In case that X and Y are normed spaces, the result above can be further refined
by using the inclusions

(15) B(y, ωε) ⊆ F (B(x, ε)),

(16) B(y, ωε) ⊆ F (B(x, ε)),

where ω > 0 is a real number. Throughout this paper, B(c, r) stands for the open
ball with center c and radius r.

Lemma 4. Let X and Y be normed spaces.
The multifunction F is uniformly linearly open on a set W ⊆ graph(F ) if and

only if there exist a real number ω > 0 and a real number ζ > 0 such that the
inclusion (15) holds for all ε ∈ (0, ζ) and for all (x, y) ∈W .

The multifunction F is uniformly nearly linearly open on a set W ⊆ graph(F )
if and only if there exist a real number ω > 0 and a real number ζ > 0 such that
the inclusion (16) holds for all ε ∈ (0, ζ) and for all (x, y) ∈W .

Proof. Let W ⊆ graph(F ), and recall the definition as well as the properties
of the statement Q(U, V, r) from within the proof of Lemma 3. If F is uniformly
linearly open on W , then there exist a neighborhood V of the origin in Y and a
real number ζ > 0 such that Q(B(0, 1), V, ζ) is true. Choose a real number ω > 0
such that B(0, ω ⊆ V . Then Q(B(0, 1), V, ζ) implies Q(B(0, 1), B(0, ω), ζ), i.e.
inclusion (15) holds for all ε ∈ (0, ζ) and for all (x, y) ∈ W . Conversely, let
Q(B(0, 1), B(0, ω), ζ) be true for some ω > 0 and ζ > 0, and let U be a neighbor-
hood of the origin in X . Choose t > 0 such that B(0, t) ⊆ U , let V = B(0, tω),
and let r = ζ/t. Then Q(B(0, 1), B(0, ω), ζ) is equivalent to Q(B(0, t), V, r),
which implies Q(U, V, r), hence F is uniformly linearly open on W . The second
part of the result can be proved in a similar manner.

The result above can be further rephrased through the metric definitions based
on the metric inclusions (15) and (16). The first definition introduces the notions
of ω-openness and near ω-openness.
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Definition 3. Let X and Y be metric spaces, and let ω > 0 be a real number.
The multifunction F is said to be ω-open at a point (x, y) ∈ graph(F ) if there

exists a real number ζ > 0 such that the inclusion (15) holds for all ε ∈ (0, ζ);
the multifunction F is said to be ω-open on a set W ⊆ graph(F ) if F is ω-open
at every (x, y) ∈ W ; the multifunction F is said to be ω-open if F is ω-open on
graph(F ).

The multifunction F is said to be nearly ω-open at a point (x, y) ∈ graph(F ) if
there exists a real number ζ > 0 such that the inclusion (16) holds for all ε ∈ (0, ζ);
the multifunction F is said to be nearly ω-open on a set W ⊆ graph(F ) if F is
nearly ω-open at every (x, y) ∈W ; the multifunction F is said to be nearly ω-open
if F is nearly ω-open on graph(F ).

The second definition introduces the specialized notions of uniform ω-openness
and uniform near ω-openness.

Definition 4. Let X and Y be metric spaces, and let ω > 0 be a real number.
The multifunction F is said to be uniformly ω-open on a set W ⊆ graph(F ) if

there exists a real number ζ > 0 such that the inclusion (15) holds for all ε ∈ (0, ζ)
and for all (x, y) ∈W ; the multifunction F is said to be locally ω-open if for every
(a, b) ∈ graph(F ) there exists a neighborhoodW of (a, b) such that F is uniformly
ω-open on W ∩ graph(F ); the multifunction F is said to be uniformly ω-open if
F is uniformly ω-open on graph(F ).

The multifunction F is said to be uniformly nearly ω-open on a set W ⊆
graph(F ) if there exists a real number ζ > 0 such that the inclusion (16) holds for
all ε ∈ (0, ζ) and for all (x, y) ∈W ; the multifunction F is said to be locally nearly
ω-open if for every (a, b) ∈ graph(F ) there exists a neighborhoodW of (a, b) such
that F is uniformly nearly ω-open on W ∩ graph(F ); the multifunction F is said
to be uniformly nearly ω-open if F is uniformly nearly ω-open on graph(F ).

Theorem 3. Let X and Y be normed spaces. The multifunction F is uniformly
linearly open on a set W ⊆ graph(F ) if and only if there exists a real number
ω > 0 such that F is uniformly ω-open on W . The multifunction F is uniformly
nearly linearly open on a set W ⊆ graph(F ) if and only if there exists a real
number ω > 0 such that F is uniformly nearly ω-open on W .

In case thatW is a singleton, we obtain a characterization of linear openness and
near linear openness at a point. Let X and Y be normed spaces. The multifunction
F is linearly open at a point (x, y) ∈ graph(F ) if and only if there exists a real
number ω > 0 such that F is ω-open at (x, y). The multifunction F is nearly
linearly open at a point (x, y) ∈ graph(F ) if and only if there exists a real number
ω > 0 such that F is nearly ω-open at (x, y). In view of this characterization, linear



Local Uniform Linear Openness of Multifunctions and Calculus of Bouligand 2213

openness at a point is the multifunction version of the function fatness defined in [34,
p. 545].

In case that W = graph(F ), we obtain characterizations of uniform linear
openness and uniform near linear openness. Let X and Y be normed spaces. The
multifunction F is uniformly linearly open if and only if there exists a real number
ω > 0 such that F is uniformly ω-open. The multifunction F is uniformly nearly
linearly open if and only if there exists a real number ω > 0 such that F is uniformly
nearly ω-open.

Finally, we obtain characterizations of local uniform linear openness and local
uniform near linear openness. Let X and Y be normed spaces. The multifunction
F is locally uniformly linearly open if and only if for every point (a, b) ∈ graph(F )
there exist a neighborhood W of (a, b) and a real number ω > 0 such that F is
uniformly ω-open on W ∩ graph(F ). The multifunction F is locally uniformly
nearly linearly open if and only if for every point (a, b) ∈ graph(F ) there exist a
neighborhoodW of (a, b) and a real number ω > 0 such that F is uniformly nearly
ω-open on W ∩ graph(F ).

A counterexample shows that local uniform linear openness does not necessarily
imply local uniform ω-openness for any ω > 0. Let F : R → R be a continuous,
increasing function. Then F (B(x, ε)) = (F (x − ε), F (x + ε)), so inclusion (15)
means that both F (x − ε) ≤ F (x) − ωε and F (x) + ωε ≤ F (x + ε). Therefore,
if F is differentiable at x and ω-open there for some ω > 0, then ω ≤ F ′(x),
hence F ′(x) > 0. Conversely, if F′(x) > 0, then F is ω-open at x for every
ω ∈ (0, F ′(x)). Now, let F (x) = arctanx. Then F is locally uniformly linearly
open, but there does not exists any ω > 0 which renders F a locally uniformly
ω-open function. In fact, there does not exists any ω > 0 which renders F an
ω-open function, that is, an ω-open function at every point x.

6. METRIC REGULARITY AND ω-OPENNESS

In this section we use multifunction ω-openness to investigate the multifunction
metric regularity, a theory based on the inequality

(17) d(x, F−1(y)) ≤ d(y, F (x))/ω

(cf. Definition 1 and Definition 1 (loc) in [11, p. 507]; see inequality (11) in [4,
p. 235]. Here, d(p, Q) stands for the distance from the point p to the set Q. For a
detailed history of the matter we refer to [14, pp. 159-163, 462-463].

Let X and Y be metric spaces. The multifunction F is said to be metrically
regular on a set W ⊆ X × Y if there exists a real number ω > 0 such that
the inequality (17) holds for all (x, y) ∈ W . The multifunction F is said to be
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metrically regular near a point (a, b) ∈ graph(F ) if there exists a neighborhood
W of (a, b) such that F is metrically regular on W .

Note the inequality (17) holds if and only if y ∈ F (B(x, ε)) whenever ε > 0
and y ∈ B(F (x), ωε) (cf. Definition 2 in [11, p. 508] and Proposition 2 in [11,
p. 509]). Here, B(C, r) stands for the union of the open balls B(c, r) with c ∈ C.

Theorem 4. LetX and Y be normed spaces. The multifunctionF is metrically
regular near a point (a, b) ∈ graph(F ) if and only if there exists a neighborhood
W of (a, b) such that F is uniformly linearly open on W ∩ graph(F ).

Theorem 5 above is a straightforward corollary of Theorem 4 below.

Theorem 5. Let X and Y be metric spaces. The multifunction F is metrically
regular near a point (a, b) ∈ graph(F ) if and only if there exist a neighborhood
W of (a, b) and a real number ω > 0 such that F is uniformly ω-open on W ∩
graph(F ).

Theorem 5 above is a straightforward corollary of Lemma 5 below, a multi-
function version of a remark in [7, pp. 11, 12]. This lemma connects the theory
developed in this paper to the theory exposed in [14, pp. 56-70].

Lemma 5. Let X and Y be metric spaces, let (a, b) ∈ graph(F ), and let
ω > 0. The following two conditions are equivalent:

• there exists a neighborhoodW of (a, b) such that for every (x, y) ∈W there
holds the inequality (17);

• there exists a neighborhood W of (a, b) such that F is uniformly ω-open on
W ∩ graph(F ).

Proof. First, let the former condition be satisfied and choose a neighborhoodW
of (a, b) such that the inequality (17) holds whenever (x, y) ∈W . Further, choose
a neighborhood U of a, a neighborhood V of b, and a real number ζ > 0 such that
U ×B(V, ωζ) ⊆W . Now, let (x, y) ∈ (U ×V )∩graph(F ) and let ε ∈ (0, ζ). We
assert that the inclusion (15) holds. Indeed, if v ∈ B(y, ωε), then (x, v) ∈ W and
v ∈ B(F (x), ωε), hence v ∈ F (B(x, ε)).

Finally, let the latter condition be satisfied, choose a neighborhood W of (a, b)
such that F is uniformly ω-open on W ∩ graph(F ), choose a real number ζ > 0
such that the inclusion (15) holds whenever ε ∈ (0, ζ) and (x, y) ∈W ∩graph(F ).

Since B(b, ωε) ⊆ F (B(a, ε)) whenever ε ∈ (0, ζ),it follows d(a, F−1(y)) ≤
d(y, b)/ω whenever y ∈ B(b, ωζ), hence d(x, F−1(y)) ≤ d(x, a)+d(y, b)/ω when-
ever x ∈ X and y ∈ B(b, ωζ).

Now, choose a real number α > 0 such that 2α ≤ ζ and B(a, α)×B(b, 3ωα) ⊆
W . We assert that the inequality (17) holds whenever (x, y) ∈ B(a, α)×B(b, ωα).
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Obviously, the inequality (17) holds in case d(x, a) + d(y, b)/ω ≤ d(y, F (x))/ω.
It remains to discuss the case d(y, F (x))/ω < d(x, a) + d(b, y)/ω. Let ε > 0
such that d(y, F (x))/ω < ε < d(x, a) + d(y, b)/ω, and choose z ∈ F (x) such that
d(y, z)/ω < ε. Since d(z, b) ≤ d(z, y) + d(y, b) < ωε + d(y, b) < ωd(x, a) +
2d(y, b) < 3ωα, it follows (x, z) ∈ W ∩ graph(F ). Since ε < 2α, it follows
ε ∈ (0, ζ). Further, y ∈ B(z, ωε), hence y ∈ F (B(x, ε)), d(x, F−1(y)) < ε, the
inequality (17) holds, and the conclusion is established.

The counterexample in Section 11 shows that it is possible for a multifunction
to be linearly open at a point even if that multifunction is not metrically regular at
any point.

7. LOCALLY CLOSED GRAPH RESULTS; THE GENERAL METRIC SETTING

In this section we investigate quantitative aspects of the qualitative property of
local uniform ω-openness.

Let X and Y be metric spaces, let F : X → Y be a multifunction, and let
ω > 0 be a real number. In the following R stands for the set of real extended
numbers, that is, R = R ∪ {±∞}.

A necessary and sufficient condition that F be ω-open is that there exist a
positive function η : graph(F ) → R such that the inclusion (15) holds for all
(x, y) ∈ graph(F ) and for all ε ∈ (0, η(x, y)). In such a case we say η materializes
ω-openness of F .

A necessary and sufficient condition that F be locally uniformly ω-open is that
there exist a positive function η : graph(F ) → R which materializes the ω-openness
of F and which enjoys the additional condition that for every (a, b) ∈ graph(F )
there exists a neighborhood W of (a, b) such that

0 < inf
(x,y)∈W∩graph(F )

η(x, y).

This additional condition holds if, for example, the positive function η is lower semi
continuous. In the following we focus our attention on the Lipschitz inequality

η(x′, y′) ≤ η(x, y) + sup{d(x, x′), d(y, y′)/ω}.

which is always satisfied by the nonnegative function ηω below, of which positivity
characterizes local closeness of graph(F ).

Denote by ηω : graph(F ) → R the function which assigns to every (x, y) ∈
graph(F ) the supremum of the real numbers ε > 0 such that

(B(x, ε) ×B(y, ωε)) ∩ graph(F ) ⊆ graph(F ).
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By convention, sup ∅ = 0. Note that graph(F ) is closed if and only if ηω(x, y) =
+∞ for some (x, y) ∈ graph(F ), in which case ηω(x, y) = +∞ for all (x, y) ∈
graph(F ). Note also that graph(F ) is locally closed if and only if ηω(x, y) > 0
for all (x, y) ∈ graph(F ).

To prove that ηω satisfies the Lipschitz inequality, we use the abbreviations
η = ηω, z = (x, y), z′ = (x′, y′), and

d(z, z′) = sup{d(x, x′), d(y, y′)/ω},

and we note the equality

B(z, ε) = B(x, ε) × B(y, ωε).

We have to show that η(z′) ≤ η(z)+ d(z, z′). The inequality is obvious if η(z′) ≤
d(z, z′). Now, let d(z, z′) < η(z′) and ε ∈ (d(z, z′), η(z′)). Since B(z′, ε) ∩
graph(F ) ⊆ graph(F ) and B(z, ε − d(z, z′)) ⊆ B(z′, ε), it follows B(z, ε −
d(z, z′))∩graph(F ) ⊆ graph(F ), hence ε−d(z, z′) ≤ η(z). To conclude, η(z′)−
d(z, z′) ≤ η(z), and the desired inequality is established.

Now, denote by Hω the family of nonnegative functions η : graph(F ) → R
which satisfies the Lipschitz inequality as well as the inequality η(x, y) ≤ η ω(x, y)
for all (x, y) ∈ graph(F ). Clearly, ηω ∈ Hω and Hω contains at least a positive
function, namely ηω, if and only if F has a locally closed graph.

The next result characterizes the positive functions η ∈ Hω which materialize
ω-openness of F through the rather technical relation

(18) ∅ �= B(v, d(v, y)− θωε) ∩ B(y, ωε) ∩ F (B(x, ε)).

Lemma 6. Let the metric spaces X and Y be complete, and let the multifunc-
tion F : X → Y have a locally closed graph. Let η ∈ Hω be a positive function.
Then the following conditions are equivalent:

• for every (x, y) ∈ graph(F ) and for every ε ∈ (0, η(x, y)) there holds the
inclusion (15);

• for every (x, y) ∈ graph(F ), for every v ∈ B(y, ω · η(x, y)) \ {y}, and
for every θ ∈ (0, 1) there exists ε ∈ (0, d(v, y)/(θω)) such that there holds
relation (18).

Proof. To show that the former condition implies the latter one, let (x, y) ∈
graph(F ), let v ∈ B(y, ω · η(x, y)) \ {y}, let θ ∈ (0, 1), set

I = (d(v, y)/ω, d(v, y)/(θω))∩ (0, η(x, y)),
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note the interval I is nonempty, and choose any ε ∈ I . Then v belongs to the right
hand side of the relation (18), and the relation (18) holds.

Let now the latter condition be satisfied, let (x, y) ∈ graph(F ), let ε ∈
(0, η(x, y)), and let v ∈ B(y, ωε) \ {y}. We must show that v ∈ F (B(x, ε)).
Let θ ∈ (d(v, y)/(ωε), 1). Following the spirit of some ideas in [2, p. 195], [3,
p. 76], [10, p. 572], and [15, p. 30] (cf. also [26, p. 222], [29, pp. 81, 82], [30,
p. 404], [32, p. 208]), we endow the space X × Y with the metric

dω((p, q), (p′, q′)) = sup{d(p, p′), d(q, q′)/ω},

and we apply the variational principle of Ekeland [8, p. 324] to the function

(p, q) ∈ graph(F ) → d(v, q) ∈ R

in order to get a point (a, b) ∈ graph(F ) such that

d(v, b)+ θωdω((a, b), (x, y)) ≤ d(v, y)

(see [2, p. 195] and [16, p. 815]) and such that

d(v, b)< d(v, q) + θωdω((p, q), (a, b))

for all (p, q) ∈ graph(F )\{(a, b)}. Since d(v, y)< θωε, it follows from the former
inequality of the Ekeland principle that dω((a, b), (x, y)) < ε, hence a ∈ B(x, ε)
and b ∈ B(y, ωε). Since ε < ηω(x, y), it follows (a, b) ∈ graph(F ), hence
b ∈ F (a) ⊆ F (B(x, ε)). We have to show that v = b. Suppose, to the contrary,
that b �= v. Since d(v, y)< θωη(x, y), it follows from the former inequality of the
Ekeland principle that

d(v, b)+ θωdω((a, b), (x, y))< θωη(x, y) ≤ θωη(a, b) + θωdω((a, b), (x, y)),

therefore d(v, b) < θωη(a, b). Since v ∈ B(b, ωη(a, b)) \ {b}, it follows from the
second condition of the theorem that there exists α ∈ (0, d(v, b)/(θω)) such that
the set

S = B(v, d(v, b)− θωα) ∩ B(b, ωα) ∩ F (B(a, α))

is nonempty. Let q ∈ S. Since q ∈ F (B(a, α)), it follows there exists p ∈ B(a, α)
such that q ∈ F (p). Since d(q, b) < ωα, it follows

dω((p, q), (a, b))< α.

Since d(q, v) < d(v, b) − θωα, it follows q �= b, therefore (p, q) ∈ graph(F ) \
{(a, b)}. Further, it follows from the latter inequality of the Ekeland principle that
d(v, b)< [d(v, b)− θωα] + [θωα], a contradiction. To conclude, v = b.
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We have not stated Lemma 6 only in case η = ηω because an example shows
it is possible for the two equivalent η-conditions to be false (hence useless) for
η = ηω, but true (hence useful) for some η �= ηω.

Let the metric spaceX consists of the vertices a, b, and c of an isosceles triangle
of which base ab has the length 1, and of which legs ac and bc have the length 2.
Further, let graph(F ) = {(a, a), (b, b)} and let ω = 1. Then ηω(x, y) = +∞ for all
(x, y) ∈ graph(F ), but the inclusion (15) does not hold for any (x, y) ∈ graph(F )
and for any ε ∈ (2, ηω(x, y)) because B(y, ε) = X �⊆ F (X) = F (B(x, ε)). Finally,
let η(x, y) = 1 for all (x, y) ∈ graph(F ). Then the inclusion (15) does hold for all
(x, y) ∈ graph(F ) and for all ε ∈ (0, η(x, y)) because B(y, ε) = {y} = F (x) =
F (B(x, ε)).

In the next section we show that the anomaly above does not hold in a particular
metric setting.

8. LOCALLY CLOSED GRAPH RESULTS: A PARTICULAR METRIC SETTING

Recall that the metric space Y is said to resemble normed spaces if

B(B(y, δ), δ′) = B(y, δ + δ′)

for all y ∈ Y , δ > 0, and δ′ > 0 (see Definition 2.2 in [32, p. 204] and the
definition of γ-convexity in [9, p. 271]). Equivalently, Y resembles normed spaces
if and only if B(y, δ) ∩B(y′, δ′) �= ∅ whenever y ∈ Y , y′ ∈ Y , δ > 0, δ′ > 0, and
δ + δ′ > d(y, y′).

Lemma 7. Let the metric spaces X and Y be complete, let the metric space
Y resemble normed spaces, and let the multifunction F : X → Y have a locally
closed graph. Then the following conditions are equivalent:

• for every (x, y) ∈ graph(F ) and for every ε ∈ (0, ηω(x, y)) there holds the
inclusion (15);

• for every (x, y) ∈ graph(F ), for every v ∈ Y \ {y}, and for every θ ∈ (0, 1)
there exists ε ∈ (0, d(v, y)/(θω)) such that there holds the relation (18).

Proof. To show that the former condition implies the latter one, let (x, y) ∈
graph(F ), let v ∈ B(y, ω · η(x, y)) \ {y}, let θ ∈ (0, 1), set

I = (d(v, y)/ω, d(v, y)/(θω))∩ (0, η(x, y)),

note the interval I is nonempty, and choose any ε ∈ I . Then B(v, d(v, y)− θωε) ∩
B(y, ωε) is a nonempty subset of F (B(x, ε)), and the relation (18) holds. The fact
that the latter condition implies the former one follows from Lemma 6.
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Theorem 6. Let X and Y be complete metric spaces, let the metric space
Y resemble normed spaces, and let the set graph(F ) be locally closed. Then the
following conditions are equivalent:

• for every (x, y) ∈ graph(F ) and for every ε ∈ (0, ηω(x, y)) there holds the
inclusion (15);

• the multifunction F is locally uniformly ω-open;
• the multifunction F is ω-open;
• the multifunction F is nearly ω-open;
• for every (x, y) ∈ graph(F ) and for every ζ > 0 there exists ε ∈ (0, ζ) such
that there holds the inclusion (16).

Proof. It suffices to show that the last condition of the result implies the latter
condition of Lemma 7. Let (x, y) ∈ graph(F ), let v ∈ Y \ {y}, and let θ > 0.
According to the last condition of the result, there exists ε ∈ (0, d(v, y)/(θω)) such
that there holds the inclusion (16). Since Y resembles normed spaces it follows the
intersection of the open balls B(y, ωε) and B(v, d(v, y)− θωε) is nonempty. Since
this intersection is a nonempty open subset of F (B(x, ε)), the relation (18) holds,
the latter condition of Lemma 7 is satisfied, and the proof is accomplished.

Theorem 6 extends Theorem 2.4 in [32, p. 205], where graph(F ) is closed. It
extends also part of Theorem 7 in [30, p. 408], where X and Y are Banach spaces.
To close this section, we recall a result which derives linear openness of

(19) F = G−H−1
1 − · · · −H−1

n

from linear openness of G and from linear openness of each Hi. Here the multi-
function G : X → Y and the multifunctionsHi : Y → X provide the multifunction
F : X → Y through the equality

F (x) = G(x)−H−1
1 (x) − · · · −H−1

n (x),

which implies the equality

domain(F ) = domain(G) ∩ range(H1) ∩ · · · ∩ range(Hn).

The result in [30, p. 405, 406] derives ω-openness of F from ψ-openness of G and
from χi-openness of each Hi in case that

(20) ω = ψ − χ−1
1 − · · · − χ−1

n

is a positive real number.
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Theorem 7. Let X and Y be Banach spaces, and let F be given by (19). Let
domain(F ) be nonempty. Let graph(G) and each graph(Hi) be locally closed. If
G is ψ-open, if each Hi is χi-open, and if ω given by (20) is positive, then F is
ω-open.

If ω given by (20) is null, then F given by (19) may lack linear openness.
A counterexample is provided in case graph(G) = {(x, ψx); x ∈ R} and each
graph(Hi) = {(x, χix); x ∈ R}, in which case graph(F ) = {(x, ωx); x ∈ R}.

9. ELEMENTARY VS. CLASSICAL TANGENCY

In this section we discuss the relationship between the tangency concept K pro-
vided by the S-family (1) and the tangency concept κ provided by the S-family (4).
We refer to these tangency concepts as the classical K and the elementary κ.

In the beginning of this section, we consider the linear topological setting. In
case of the elementary tangency concept κ, the equalities

κA(a) =
⋃

s∈(0,1]

(1/s)(A− a) =
⋃
t≥1

t(A − a)

imply the inclusion A − a ⊆ κA(a), hence F (u) − y ⊆ κF (x, y)(u− x) for every
u ∈ X . Therefore no matter which openness property of F at (x, y) implies the
corresponding openness property of κF (x, y) at (0, 0). For example, linear openness
at (x, y) of F implies linear openness at (0, 0) of κF (x, y), but the converse may
fail. A counterexample is provided by

graph(F ) = {(r, r); r ∈ R, r = ±1/n, n ∈ N},

in which case F is not linearly open at (0, 0), although κF (0, 0) is linearly open at
(0, 0), for

graph(κF (0, 0)) = {(r, r); r ∈ R}
However, near linear openness at (0, 0) of all of the multifunctions κF (x, y) with
(x, y) ∈ graph(F ) may be equivalent to linear openness of F (see Section 10).

In case of the classical tangency concept K, the equalities

KA(a) =
⋂
r>0

⋃
s∈(0,r)

(1/s)(A− a) =
⋂
r>0

⋃
t>r

t(A − a)

imply the inclusion KA(a) ⊆ κA(a), hence

graph(KF (x, y)) ⊆ graph(κF (x, y)).
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The topological Lemma 8 below shows that no matter which near openness
property of KF (x, y) implies the corresponding property of κF (x, y).

Lemma 8. Let X and Y be topological spaces, and let F : X → Y and
G : X → Y be multifunctions. Then graph(F ) ⊆ graph(G) if and only if F (U) ⊆
G(U) for every open set U ⊆ X .

Proof. First, let graph(F ) ⊆ graph(G), let U ⊆ X be an open set, let
y ∈ F (U), and let V be a neighborhood of y. We have to show that there exists
v ∈ V such that v ∈ G(U). Since y ∈ F (x) for some x ∈ U and since U × V is a
neighborhood of (x, y) ∈ graph(G), it follows there exists u ∈ U and v ∈ V such
that (u, v) ∈ graph(G). To conclude, v ∈ G(U).

Conversely, let F (U) ⊆ G(U) for every open setU ⊆ X , let (x, y) ∈ graph(F ),
and let W be a neighborhood of (x, y). We have to show that there exists (u, v) ∈
W such that (u, v) ∈ graph(G). Choose an open neighborhood U of x and a
neighborhood V of y such that U × V ⊆ W . Since y ∈ G(U), it follows there
exists v ∈ V such that v ∈ G(U). Choose u ∈ U such that v ∈ G(u). To conclude,
(u, v) ∈W and (u, v) ∈ graph(G).

Since tκA(a) ⊆ κA(a) whenever t ≥ 1, it follows
(21) tκF (x, y)(u) ⊆ κF (x, y)(tu)

whenever u ∈ X and t ≥ 1, and we obtain some useful characterizations of linear
openness as well as near linear openness of κF (x, y) at (0, 0).

Recall that linear openness of κF (x, y) at (0, 0) means that for every neighbor-
hood U of the origin in X there exists a neighborhood v of the origin in Y such
that for every s ∈ (0, 1] there holds the inclusion
(22) sV ⊆ κF (x, y)(sU).

Because the inclusion (21) holds for all t ≥ 1, we get the equivalence of the
following three conditions:

• for every neighborhood U of the origin in X there exists a neighborhood v
of the origin in Y such that for every s > 0 there holds the inclusion (22);

• κF (x, y) is linearly open at (0, 0);
• for every neighborhood U of the origin in X there exists a neighborhood v
of the origin in Y such that for every r > 0 there exists s ∈ (0, r) such that
there holds the inclusion (22).

Recall also that near linear openness of κF (x, y) at (0, 0) means that for every
neighborhood U of the origin in X there exists a neighborhood U of the origin in
Y such that for every s ∈ (0, 1] there holds the inclusion

(23) sV ⊆ κF (x, y)(sU).
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Because the inclusion (21) holds for all t ≥ 1, we get the equivalence of the
following three conditions:

• for every neighborhood U of the origin in X there exists a neighborhood V
of the origin in Y such that for every s > 0 there holds the inclusion (23);

• κF (x, y) is nearly linearly open at (0, 0);
• for every neighborhood U of the origin in X there exists a neighborhood V
of the origin in Y such that for every r > 0 there exists s ∈ (0, r) such that
there holds the inclusion (23).

Since tKA(a) ⊆ KA(a) whenever t > 0, it follows tKA(a) = KA(a) whenever
t > 0, hence

tKF (x, y)(u) = KF (x, y)(tu)

whenever u ∈ X and t > 0, and we obtain some useful characterizations of linear
openness as well as near linear openness of KF (x, y) at (0, 0).

The multifunction KF (x, y) is linearly open at (0, 0) if and only if for every
neighborhood U of the origin in X there exists a neighborhood V of the origin in
Y such that

(24) V ⊆ KF (x, y)(U).

The multifunction KF (x, y) is nearly linearly open at (0, 0) if and only if for
every neighborhood U of the origin inX there exists a neighborhood V of the origin
in Y such that

(25) V ⊆ KF (x, y)(U).

Linear openness and near linear openness of KF (x, y) at (0, 0) are equivalent
if the linear topological space X is finite dimensional. Indeed, if X is finite dimen-
sional, then we can rephrase the two openness properties by using only compact
neighborhoods U of the origin in X , and the two inclusions (24) and (25) coincide
because the closed graph multifunctionKF (x, y)maps compact sets into closed sets
(see [12, pp. 203, 204]).

In view of Lemma 8, κF (x, y) is nearly linearly open at (0, 0) if so is KF (x, y).
If X is finite dimensional, then the converse implication holds too, i.e. κF (x, y) is
nearly linearly open at (0, 0) if and only if so is KF (x, y). The counterexample in
Section 11 shows that the equivalence above may fail if the space X is not finite
dimensional. There graph(KF (x, y)) = {(0, 0)}, although graph(F ) is closed and
the inclusion (15) holds for all ε > 0. The equivalence above follows from Lemma 9
below, which concerns the inclusion

(26)
⋂
γ>0

⋃
s∈(0,r)

(1/s)κF (x, y)(sU) ⊆ KF (x, y)(U).
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Lemma 9. Let X and Y be linear topological spaces. Let κ be the ele-
mentary tangency concept and let K be the classical tangency concept. Then the
inclusion (26) holds for every point (x, y) ∈ X × Y and for every compact set
U ⊆ X .

Proof. Let (x, y) ∈ X × Y , let U ⊆ X be a compact set, let v be a point
of the left hand side of the inclusion (26), and suppose by contradiction that v �∈
KF (x, y)(U), i.e.

(U × {v})∩Kgraph(F )(x, y) = ∅.
Equivalently, for every u ∈ U there exist a neighborhoodW of the origin in X×Y
and a real number r > 0 such that

((x, y) + (0, r)((u, v)+W )) ∩ graph(F ) = ∅.

Since U ×{v} is compact, it follows there exist a neighborhood W of the origin in
X × Y and a real number r > 0 such that

((x, y) + (0, r)((U × {v}) +W )) ∩ graph(F ) = ∅

(see [28, p. 108, Lemma 3 (a)]). Since sv ∈ κF (x, y)(sU) for some s ∈ (0, r)
and since V ′ = {v′; (0, v′) ∈ W} is a neighborhood of the origin in Y , it follows
there exists v′ ∈ V ′ such that s(v + v ′) ∈ κF (x, u)(sU). Further there exists
u ∈ U such that s(v+ v ′) ∈ κF (x, y)(su). Further there exists σ ∈ (0, 1] such that
y+σs(v+v′) ∈ F (x+σsu). To conclude, (x, y)+(σs)((u, v)+(0, v′)) ∈ graph(F )
and σs ∈ (0, r), a contradiction.

10. LOCALLY CLOSED RESULTS: THE NORMED SPACE SETTING

Let X and Y be normed spaces, let F : X → Y be a multifunction and let
ω > 0 be a real number.

The first result of this section equates ω-openness of F at all the points (x, y) ∈
graph(F ) to either ω-openness or near ω-openness of all the multifunctions κF (x, y)
at (0, 0). Here κ is the elementary tangency concept, i.e. the tangency concept
corresponding to the S-family (4).

Recall ω-openness of κF (x, y) at (0, 0) means that there exists a real number
ζ > 0 such that

(27) B(0, ωε) ⊆ κF (x, y)(B(0, ε))

for all ε ∈ (0, ζ). Because the inclusion (21) holds for all t ≥ 1, we get the
equivalence of the following three conditions:
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• for every ε > 0 there holds the inclusion (21);
• the multifunction κF (x, y) is ω-open at (0, 0);
• for every ζ > 0 there exists ε ∈ (0, ζ) such that there holds the inclusion (27).

Recall also near ω-openness of κF (x, y) at (0, 0) means that there exists a real
number ζ > 0 such that

(28) B(0, ωε) ⊆ κF (x, y)(B(0, ε))

for all ε ∈ (0, ζ). Because the inclusion (21) holds for all t ≥ 1, we get the
equivalence of the following conditions:

• for every ε > 0 there holds the inclusion (28);

• the multifunction κF (x, y) is nearly ω-open at (0, 0);

• for every ζ > 0 there exists ε ∈ (0, ζ) such that there holds the inclusion (28).

The last two conditions above should be compared to the last two conditions in
Theorem 6.

Theorem 8. Let X and Y be Banach spaces, and let the set graph(F ) be
locally closed. Let κ be the elementary tangency concept. The following conditions
are equivalent:

• the multifunction F is ω-open;
• for every (x, y) ∈ graph(F ) the multifunction κF (x, y) is ω-open at (0, 0);
• for every (x, y) ∈ graph(F ) the multifunction κF (x, y) is nearly ω-open at

(0, 0).

Proof. It suffices to show that the last condition of the theorem implies the latter
condition of Lemma 7. Let (x, y)∈graph(F ), let v∈Y \{y}, and let θ ∈ (0, 1). Ac-
cording to the last condition of the theorem, there exists ε ∈ (0, d(v, y)/(θω)) such
that there holds the inclusion (28). Since the intersection of the open balls B(0, ωε)
and B(v − y, d(v, y) − θωε) is a nonempty open subset of κF (x, y)(B(0, ε)), it
follows the set

Q = B(0, ωε) ∩ B(v − y, d(v, y)− θωε) ∩ κF (x, y)(B(0, ε))

is nonempty. Let q ∈ Q. Since q ∈ κF (x, y)(B(0, ε)), it follows there exists
p ∈ B(0, ε) such that q ∈ κF (x, y)(p), hence there exists s ∈ (0, 1] such that
y + sq ∈ F (x + sp) ⊆ F (B(x, sε)). Note sε ∈ (0, d(v, y)/(θω)). Since d(y +
sq, v) = ‖(1− s)(y− v) + s(y− v+ q)‖ ≤ (1− s)d(v, y)+ sd(q, v− y) and since
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q ∈ B(v−y, d(v, y)−θωε), it follows d(y+sq, v) ≤ d(v, y)−θωsε. To conclude,
y + sq belongs to the set

B(v, d(v, y)− θωsε) ∩ B(y, ωsε) ∩ F (B(x, sε)),

the latter condition of Lemma 7 is satisfied, and the proof is accomplished.

The second result of this section derives ω-openness of F at all the points
(x, y) ∈ graph(F ) from near ω-openness of all the multifunctions KF (x, y) at
(0, 0). Here K is the classical tangency concept, i.e. the K tangency concept
corresponding to the family (1).

Note KF (x, y) is ω-open at (0, 0) if and only if

(29) B(0, ω) ⊆ KF (x, y)(B(0, 1)),

whereas KF (x, y) is nearly ω-open at (0, 0) if and only if

(30) B(0, ω) ⊆ KF (x, y)(B(0, 1)).

Theorem 9. Let X and Y be Banach spaces, and let the set graph(F ) be
locally closed. Let K be the classical tangency concept. If for every (x, y) ∈
graph(F ) the multifunction KF (x, y) is nearly ω-open at (0, 0), then the multi-
function F is ω-open.

Proof. Let (x, y) ∈ graph(F ). Since KF (x, y) is nearly ω-open at (0, 0), it
follows from Lemma 8 that also κF (x, y) is nearly ω-open at (0, 0). According to
Theorem 8, F is ω-open.

Theorem 10 below improves on Theorem 9 above in the particular setting of
finite dimensional spaces X . The result equates ω-openness of F at all the points
(x, y) ∈ graph(F ) to either ω-openness or near ω-openness of all the multifunctions
KF (x, y) at (0, 0).

Theorem 10. Let X and Y be Banach spaces, let the space X be finite
dimensional, and let the set graph(F ) be locally closed. Let K be the classical
tangency concept. Then the following conditions are equivalent:

• the multifunction F is ω-open;
• for every (x, y) ∈ graph(F ) the multifunctionKF (x, y) is ω-open at (0, 0);
• for every (x, y) ∈ graph(F ) the multifunction KF (x, y) is nearly ω-open at

(0, 0).
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Proof. In view of Theorem 9, we have to show that the first condition im-
plies the second one. Let F be ω-open and let (x, y) ∈ graph(F ). Since F
is also nearly ω-open at (x, y), it follows κF (x, y) is nearly ω-open at (0, 0).
According to Lemma 9, B(0, ω) ⊆ KF (x, y)

(
B(0, 1)

)
. Further, B(0, σω) ⊆

KF (x, y)(B(0, σ)) ⊆ KF (x, y)(B(0, 1)) for all σ ∈ (0, 1), hence the inclusion (29)
holds, and KF (x, y) is ω-open at (0, 0).

At the end of this section we note the condition of ω-openness of F connects
Theorem 6 and each of the Theorems 8, 9, and 10.

11. A COUNTEREXAMPLE

Consider the infinite dimensional Hilbert space l 2(R), which means that, if
x ∈ l2(R), then ‖x‖ =

√∑
r∈R |x(r)|2. For every s ∈ R define the Kronecker

function δs : R → R by δs(r) = 1 if r = s as well as by δs(r) = 0 if r �= s, and
note δs ∈ l2(R) as well as ‖δs‖ = 1. Define the multifunction F : l2(R) → R
by domain(F ) = {sδs; s ∈ R} and F (sδs) = {s}. Obviously 0 ∈ F (0) and F is
1-open at (0, 0), namely

F (B(0, ε)) = B(0, ε)

for all ε > 0. Nevertheless, in case of the classical tangency concept K, the
multifunction KF (0, 0) is not open at (0, 0) because

graph(KF (0, 0)) = {(0, 0)}.

To prove this equality, let q ∈ KF (0, 0)(p), which means there exist sequences
εn ∈ (0, 1/n), pn ∈ B(p, 1/n), and qn ∈ B(q, 1/n) such that εnqn ∈ F (εnpn).
Further there exits a sequence sn ∈ R such that εnpn = snδsn and εnqn = sn.
Clearly, sn/εn converges to q and |sn|/εn converges to ‖p‖, hence ‖p‖ = |q|. We
assert that (p, q) = (0, 0). Suppose, by contradiction, that q �= 0. We can suppose,
taking a subsequence in necessary, that |qn| �= 0, hence sn �= 0. Since sn converges
to 0, we can suppose, taking a further subsequence if necessary, that sn �= sn′

whenever n �= n′. Then δsn = (εn/sn)pn converges to (1/q)p, which contradicts
the fact that ‖δsn − δsn′ ‖ =

√
2 whenever sn �= sn′ .

Since ‖sδs − s′δs′‖ =
√|s|2 + |s′|2 whenever s �= s′, it follows

domain(F ) ∩ B(sδs, |s|) = ∅

whenever s �= 0, hence F has a closed graph, and moreover, F is not open at any
point (x, y) ∈ graph(F ) \ {(0, 0)}. According to Theorem 5, the multifunction F
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is not metrically regular near (0, 0). A direct proof of this fact follows. If x = sδs,
y = s′, and s �= s′, then d(x, F−1(y))/d(y, F (x)) =

√|s|2 + |s′|2/|s− s′|, so

sup
(x,y)∈W

d(x, F−1(y))
d(y, F (x))

= +∞

for every neighborhood W of (0, 0).

12. MISCELLANEA

Let S be a nonempty family of nonempty sets S ⊆ R, and consider the tangency
concepts κ, K, and K described in Section 2.

Resuming our general discussion, we note that κA(a) ⊆ KA(a), KA(a) and
KA(a) are closed sets, KA(a) ⊆ KA(a), and moreover, 0 ∈ KA(a) ⊆ KA(a)
whenever a ∈ A.

If t > 0 and if (1/t)S ∈ S whenever S ∈ S , then tκA(a) ⊆ κA(a), tKA(a) ⊆
KA(a), and tKA(a) ⊆ KA(a). A proof of the K-inclusion is given next. Let
x ∈ KA(a). We have to show that tx ∈ KA(a). Let U be a neighborhood of the
origin in X . Since (1/t)U is a neighborhood of the origin in X , it follows there
exists a neighborhood Γ of the origin in X and S ∈ S such that ∅ �= (a + γ +
s(x+ (1/t)U))∩A whenever s ∈ S, γ ∈ Γ, and a+ γ ∈ A. Note (1/t)S ∈ S , let
s ∈ (1/t)S, and let γ ∈ Γ such that a+ γ ∈ A. Then ∅ �= (a+ γ+ s(tx+U))∩A
because (a + γ + s(tx + U) = (a + γ + (st)(x + (1/t)U) and st ∈ S, hence
tx ∈ KA(a).

A corollary of the statement above is that, if tS ∈ S whenever t > 0 and S ∈ S ,
then the sets κA(a), KA(a), and KA(a) are cones.

If S′ ∩ S ′′ ∈ S whenever S′ ∈ S and S ′′ ∈ S , and if (0, r)∩ S ∈ S whenever
S ∈ S and r > 0, then KA(a)+KA(a) ⊆ KA(a). A proof of this inclusion is given
next. Let x′ ∈ KA(a) and let x′′ ∈ KA(a). We have to show that x′ +x′′ ∈ KA(a).
Let U be a neighborhood of the origin inX . Choose a neighborhoodU∗ of the origin
in X such that U ∗+U∗ ⊆ U . By the definition of K tangent sets, there exist S′ ∈ S
and a neighborhood Γ′ of the origin in X such that ∅ �= (a+ γ + s(x′ + U∗)) ∩A
whenever s ∈ S′, γ ∈ Γ′ , and a+ γ ∈ A. Since K tangency has a local character,
it follows x′′ ∈ KA∩(a+Γ′)(a), hence there exist S ′′ ∈ S and a neighborhood Γ′′

of the origin in X such that ∅ �= (a + γ + s(x′′ + U∗)) ∩ A ∩ (a + Γ′) whenever
s ∈ S ′′, γ ∈ Γ′′ and a + γ ∈ A ∩ (a + Γ′). Note S′ ∩ S ′′ ∈ S and Γ′ ∩ Γ′′

is a neighborhood of the origin in X , let s ∈ S, and let γ ∈ Γ′ ∩ Γ′′ such that
a + γ ∈ A. Since s ∈ S′′, γ ∈ Γ′′, and a + γ ∈ A ∩ (a + Γ′), it follows there
exists u′′ ∈ U∗ such that a + γ + s(x′′ + u′′) ∈ A ∩ (a + Γ′). Since s ∈ S′,
γ + s(x′′ + u′′) ∈ Γ′, and a+ γ + s(x′′ + u′′) ∈ A, it follows there exists u′ ∈ U∗
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such that a + γ + s(x′′ + u′′) + s(x′ + u′) ∈ A. Since u′ + u′′ ∈ U it follows
∅ �= (a+ γ + s(x′ + x′′ + U)) ∩A, hence x′ + x′′ ∈ KA(a).

A convexity proof is given in [20, p. 146, 147, Theorem 1].
Let {Xi}i∈I be a family of linear topological spaces and let the cartesian product

X =
∏

i∈I Xi be endowed with the product topology. Further, for every i ∈ I let
Ai ⊆ Xi and ai ∈ Xi, and let a = (ai)i∈I and A =

∏
i∈I Ai. Then there hold the

inclusions

κA(a) ⊆
∏
i∈I

κAi(ai),

KA(a) ⊆
∏
i∈I

KAi(ai),

KA(a) ⊆
∏
i∈I

KAi(ai).

A proof of the K-inclusion is given next. The inclusion is obvious if a �∈ A, because
KA(a) = ∅. Assume that a ∈ A, i.e. ai ∈ Ai whenever i ∈ I , let x ∈ KA(a), let
x = (xi)i∈I , let i ∈ I , and let Ui be a neighborhood of the origin in Xi. Further,
let Uj = Xj for every j ∈ I \ {i} and note U =

∏
j∈I Uj is a neighborhood of the

origin in X . By the definition of K tangent sets, there exist a neighborhood Γ of
the origin in X and S ∈ S such that the specific relation

∅ �= (a+ γ + s(x+ U)) ∩A
holds whenever s ∈ S, γ ∈ Γ and a + γ ∈ A. Further, there exists a family
{Γj}j∈J such that

∏
i∈I Γi ⊆ Γ and Γj is a neighborhood of the origin in Xj

whenever j ∈ I . Finally, let s ∈ S and γi ∈ Γi such that ai + γi ∈ Ai. By
hypothesis, for every j ∈ I \ {i} there exists γj ∈ Γj such that aj + γj ∈ Aj . Now
let γ = (γj)j∈I . Since γ ∈ Γ, it follows the specific relation above holds, hence
∅ �= (ai + γi + s(xi + Ui)) ∩ Ai, xi ∈ KAi(ai), and x ∈ ∏

i∈I(KAi(ai)).
If S′ ∩ S ′′ ∈ S whenever S′ ∈ S and S ′′ ∈ S , then the three inclusions above

can be improved to the corresponding equalities

κA(a) =
∏
i∈I

κAi(ai),

KA(a) =
∏
i∈I

KAi(ai),

KA(a) =
∏
i∈I

(KAi(ai)).

A proof of the K-equality is given next. We have to prove the K-inclusion∏
i∈I

(KAi(ai)) ⊆ KA(a), which is obvious if ai �∈ Ai for some i ∈ I , becauseKAi(ai) =
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∅ for that i ∈ I . Assume that ai ∈ Ai whenever i ∈ I , let xi ∈ KAi(ai) for every
i ∈ I , let x = (xi)i∈I , and let U be a neighborhood of the origin in X . Then, there
exist a family {Ui}i∈I and a finite family J ⊆ I such that

∏
i∈I Ui ⊆ U , Ui is a

neighborhood of the origin in Xi whenever i ∈ I , and Ui = Xi whenever i �∈ J .
By the definition of K tangent sets, for every i ∈ J there exist a neighborhood Γi

of the origin in Xi and Si ∈ S such that the i-specific relation
∅ �= (ai + γi + s(xi + Ui)) ∩ Ai

holds whenever s ∈ Si, γi ∈ Γi and ai +γi ∈ Ai. Let S = ∩i∈JSi and note S ∈ S .
Further, let Γi = Xi for all i �∈ I , let Γ =

∏
i∈I Γi, and note Γ is a neighborhood of

the origin in X . Finally, let s ∈ S and γ ∈ Γ such that a+γ ∈ A. Let γ = (γi)i∈I .
If i ∈ J , then the i-specific relation above holds because s ∈ Si, γi ∈ Γi, and
ai + γi ∈ Ai. If i �∈ J , then the i-specific relation above holds because Ui = Xi

and Ai is nonempty. To conclude, ∅ �= (a+ γ + s(x+ U)) ∩A, and x ∈ KA(a).
The equality KA×B(a, b) = KA(a) ×KB(b) has been proved in [25, p. 569].
The elementary tangency concept κ does not have a local character, i.e. the in-

clusion κA(a) ⊆ κA∩U (a) may fail if U is a neighborhood of a. Therefore, if W is
a neighborhood of (x, y) and FW : X → Y is given by the equality graph(FW ) =
W∩graph(F ), then the inclusion graph(κF (x, y)) ⊆ graph(κ(FW

)(x, y))may fail,
and moreover, if (x, y) ∈ graph(F ), then neither ω-openness nor near ω-openness
of κF (x, y) at (0, 0) would imply the corresponding openness of κ(FW )(x, y). Nev-
ertheless the two implications above do hold.

To justify the latter implication above we have to show that, if κF (x, y) is
nearly ω-open at (0, 0), then for every ζ > 0 there exists ε ∈ (0, ζ) such that the
W -inclusion

B(0, ωε) ⊆ κ(FW )(x, y)(B(0, ε))

holds. Let ζ > 0. We can suppose, taking a smaller ζ if necessary, that B(x, ζ)×
B(y, ζω) ⊆ W . Now, choose ε ∈ (0, ζ) such that the inclusion (28) holds. We
assert that theW -inclusion holds too. Let v ∈ B(0, ωε) and let V be a neighborhood
of v. We can suppose, taking a smaller V if necessary, that V ⊆ B(0, ωε). Then
there exist v′ ∈ V and u′ ∈ B(0, ε) such that v ′ ∈ κF (x, y)(u′). Further, there
exists s ∈ (0, 1] such that y + sv ′ ∈ F (x + su′). Since x + su′ ∈ B(x, ζ) and
y + sv′ ∈ B(y, ωζ), it follows y + sv′ ∈ FW (x, y)(x+ su′), v′ ∈ κFW

(x, y)(u′),
and v belongs to the right hand side of the W -inclusion.
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