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A LOOP GROUP FORMULATION FOR CONSTANT
CURVATURE SUBMANIFOLDS OF PSEUDO-EUCLIDEAN SPACE

David Brander and Wayne Rossman

Abstract. We give a loop group formulation for the problem of isometric im-
mersions with flat normal bundle of a simply connected pseudo-Riemannian
manifoldMm

c,r , of dimensionm, constant sectional curvature c �= 0, and signa-
ture r, into the pseudo-Euclidean spaceRm+k

s , of signature s ≥ r. In fact these
immersions are obtained canonically from the loop group maps correspond-
ing to isometric immersions of the same manifold into a pseudo-Riemannian
sphere or hyperbolic space Sm+k

s or Hm+k
s , which have been known for some

time. A simple formula is given for obtaining these immersions from those
loop group maps.

1. INTRODUCTION

Many special submanifolds can be formulated as maps into loop groups which
admit various techniques to produce or analyse solutions (see, for example, [4, 11, 9],
and associated references). Concerning the present article, it was shown by Ferus
and Pedit [8] that isometric immersions with flat normal bundle, Qm

c → Qm+k
c̃ ,

between simply connected Riemannian space forms, where c �= c̃ and c �= 0 �= c̃,
admit a loop group formulation. They come in natural families parameterised by
a spectral parameter λ in either R∗, iR∗ or S1, and the constant curvature of the
immersion varies with λ. They also showed how to produce many local solutions
using the AKS theory, when k ≥ m − 1. If c < c̃, then k = m − 1 is the minimal
codimension for even a local isometric immersion, and in this critical codimension
the normal bundle is automatically flat.

In [3], it was shown that these loop group maps can also be constructed from
flat immersions, using a generalised DPW method. In [2], each map was shown,
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moreover, to correspond to different immersions into different target spaces, de-
pending on whether the map was evaluated for values of the spectral parameter λ
in R∗, iR∗ or S1, showing that various global isometric immersion problems are
equivalent.

The immersions obtained for λ in iR∗ and S1 shrink to a point as λ approaches
the degenerate values ±i, and so it is of interest to find another way to interpret the
loop group map at these values, to complete the above picture. On the other hand,
apart from the case of pseudo-spherical surfaces in R3, which were studied by M
Toda [12, 13] using a different approach, the case c̃ = 0 has still not been given
a loop group formulation in general. This is therefore also of interest. In this note
we will simultaneously solve both of these problems.

We first prove, in Theorem 2.1, that isometric immersions with flat normal
bundle from a simply connected pseudo-Riemannian manifold Mm

c,r, of constant
curvature c �= 0 and signature r, to a pseudo-Riemannian sphere or hyperbolic space,
Sm+k

s or Hm+k
s , of signature s, correspond, in a very natural way, to isometric

immersions with flat normal bundle of the same manifold, Mm
c,r, into a pseudo-

Euclidean space Rm+k
s . We give a simple, coordinate free, proof of this result,

which generalises to an arbitrary situation what had, in effect, been shown earlier [1]
for the special case that the space being immersed is Riemannian, the codimension
is m − 1, and such that the principle normal curvatures are never equal to c − c̃,
which guaranteed the existence of principle coordinates.

In Sections 3 and 4, we look at the loop group formulation mentioned above,
which generalises easily to pseudo-Riemannian space forms of arbitrary signatures.
Previously, Cieśliński and Aminov [7], had shown locally and for the special case
of isometrically immersing the hyperbolic space Hm into the sphere S2m−1, that,
by allowing the target space to grow so that the curvature induced on the immersion
remains fixed as the parameter λ varies, one obtains, in the limit as the radius of
the spherical target space approaches infinity, an isometric immersion of Hm in
Euclidean space E2n−1. They also gave a formula of Sym type for the immersion
into E2n−1.

We prove, Theorem 4.1, that this result holds globally, and for arbitrary signa-
tures and codimension. The limit as the target space approaches pseudo-Euclidean
space corresponds to the above-mentioned degenerate spectral parameter values
λ = ±i, and the immersion into pseudo-Euclidean space obtained at λ = i is
the same as the one given in Theorem 2.1. We also prove that, conversely, every
isometric immersion with flat normal bundleMm

c,r → Rm+k
s is associated to one of

these loop group maps.
The Sym-type formula (4.4) allows one to obtain the immersion into pseudo-

Euclidean space directly from the loop group map. Thus the loop group methods
for producing constant curvature immersions into pseudo-Riemannian spheres and
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hyperbolic spaces, which have already been developed in [8] and [3], automatically
and explicitly produce isometric immersions of the same manifold into pseudo-
Euclidean space, with the same codimension.

2. CONSTANT CURVATURE IMMERSIONS WITH FLAT NORMAL BUNDLE INTO
PSEUDO-RIEMANNIAN SPACE FORMS

Here, we adopt the approach of moving frames, which entails lifting an immer-
sion into a homogeneous space G/H to a frame in G.

Let Rn
s denote the pseudo-Euclidean space Rn with metric of signature s, and

Sn
s denote the unit sphere in Rn+1

s . The isometry group of Sn
s is SOs(n +

1, R) = {A ∈ GL(n + 1, R) | AtJA = J}, where J is a diagonal matrix,
diag(ε1, ..., εn+1), whose entries εi are all ±1, and where s of these entries are
negative. Let ASOs(n, R) denote the group of pseudo-Euclidean motions of Rn

s ,
that is the subgroup of GL(n + 1, R) consisting of matrices of the form[

T a

0 1

]
,

where T ∈ SOs(n, R) and a is a column vector.
Let M be a manifold of dimension m, and f̂ : M → Rm+k

s an immersion
such that the pull-back metric has signature r. An adapted frame for f̂ is a map,
F̂ :→ ASOs(m + k), which has the form

F̂ =
[

T f̂
0 1

]
,

where T = [ê1, ..., êm, n̂1, ..., n̂k], and the column vectors êi and n̂j span the tangent
and normal spaces respectively to the image of f̂ . We fix the matrix J which defines
SOs(n, R) to be of the form

J =
[

J1 0
0 J2

]
,

where J1 is m × m and of signature r, and J2 is k × k of signature s − r. J1

encodes the signature of the induced metric.
The Maurer-Cartan form for F̂ is the pull-back of the Maurer-Cartan form on

ASOs(m + k), namely,

(2.1) Â = F̂−1dF̂ =


 ω̂ β̂ θ̂

α̂ η̂ 0
0 0 0


 ,
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where, if Ω(M) denotes the vector space of real valued 1-forms on M , then ω̂ =
[ω̂i

j] ∈ sor(m) ⊗ Ω(M) and η̂ = [η̂i
j] ∈ sos−r(k) ⊗ Ω(M) are the connections for

the tangent and normal bundles respectively, β̂ = [β̂i
j] is the second fundamental

form, α̂ = −J2β̂
tJ1, and the components of θ̂ = [θ̂1, ..., θ̂m]t make up the coframe

dual to êi. To verify this, one uses the fact that T−1 = JT tJ and checks that the
following equations are satisfied:

df̂ =
∑

j

θ̂j êj ,

dêi =
∑

j

ω̂
j
i êj +

∑
j

α̂
j
i n̂j,

dn̂i =
∑

j

β̂j
i êj +

∑
j

η̂j
i n̂j .

Given such an immersion f̂ , an adapted frame always exists locally. If X and
Y are matrix-valued 1-forms, their wedge product is defined to have components
(X ∧ Y )i

j :=
∑

k X i
k ∧ Y k

j . The Maurer-Cartan form satisfies the Maurer-Cartan
equation

(2.2) dÂ + Â ∧ Â = 0.

Conversely, given a 1-form of the form (2.1), defined on a simply connected subset
U ⊂ M , such that the components θ̂i are all linearly independent 1-forms, and
which satisfies (2.2), then Â integrates to an adapted frame F̂ for an immersion
f̂ : U → Rm+k .

Let Qn
s (ε) denote the pseudo-Riemannian sphere Sn

s and hyperbolic space Hn
s ,

for ε = 1 and ε = −1 respectively. The pseudo-Riemannian hyperbolic space is
defined as Hn

s := {x ∈ Rn+1
s+1 | xtJx = −1}, where J is the metric on Rn+1

s+1 .
Now suppose we have an immersion f : M → Qm+k

s (ε), with induced metric of
signature r. Then one has the analogue of the above description for an adapted frame
F : M → SOs+δ(m+k+1), where δ = 1

2 (1−ε), and this time J = diag(J1, J2, ε),

F = [e1, ..., em, n1, ..., nk, f ],

and

(2.2) A = F−1dF =


 ω β θ

α η 0
−εθtJ1 0 0


 .

Here ω, β, θ, η and α all have the same form and interpretation as their correspond-
ing objects in the affine case above.
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In any of the above cases, constant sectional curvature c and flatness of the
normal bundle for the immersion are characterised respectively by the following
equations and their analogues, replacing an object x with x̂ where appropriate:

dω + ω ∧ ω = cθ ∧ θtJ1,(2.4)

dη + η ∧ η = 0.(2.5)

Theorem 2.1. Let M be a simply connected manifold of dimension m.

(1) Let f : M → Sm+k
s be a smooth immersion with flat normal bundle, such that

the induced metric has signature r, and constant curvature c ∈ (−∞, 0) ∪
(1,∞). Then there is, uniquely up to an action by the isometry group of
Rm+k

s , a canonically defined immersion with flat normal bundle f̂ : M →
Rm+k

s , with the same induced metric. The same statement holds with the
roles of Sm+k

s and Rm+k
s reversed.

(2) Statement (1) is also valid substituting H m+k
s for Sm+k

s and (−∞,−1) ∪
(0,∞) for (−∞, 0) ∪ (1,∞).

Proof. Let f : M → Qm+k
s (ε) be the map from either the first or the second

case. Fix a base point p of M . Without loss of generality, we assume that f(p) =
[0, ..., 0, 1]t. Choose an adapted frame F for f on a simply connected neighbourhood
U of p, normalised to the identity at p. This frame is unique up to right multiplication
by a smooth map G : U → SOr(m, R)× SOs−r(k, R) ⊂ SOs+δ(m + k + 1, R),
which has the form

G = diag(G1, G2, 1), G(p) = I.(2.6)

This corresponds to a change of orthonormal frames for the tangent and normal
bundles, while fixing the last column, f .

Let A be the Maurer-Cartan form for F , with components labeled as in the
equation (2.3). Now set

(2.7) Â =




ω i
√

εc√
1−εc

β θ
i
√

εc√
1−εc

α η 0
0 0 0


 .

The allowed ranges for c ensure that the factor i
√

εc√
1−εc

is real, so Â is a 1-form with
values in the Lie algebra of ASOs(m + k, R). It is a straightforward computation
to verify that A satisfies the integrability condition (2.2) together with the equations
(2.4) and (2.5) if and only Â does also. In the computation, one uses (2.4) to obtain
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the equivalence of the first diagonal components of the Maurer-Cartan equations,
which for A and Â are, respectively,

dω + ω ∧ ω + β ∧ α − θ ∧ εθtJ1 = 0,

dω + ω ∧ ω − εc

1− εc
β ∧ α = 0,

and the equation (2.5) is needed for the second diagonal components. Thus constant
curvature and flatness of the normal bundle are essential here.

Now we can integrate Â on U to get a unique adapted frame F̂ for the desired
immersion f̂ , with the initial condition F̂ (p) = I . The freedom for the choice
of adapted frame for F̂ is also post-multiplication by a smooth map Ĝ : U →
SOr(m, R) × SOs−r(k, R) ⊂ ASOs(m + k, R), which has the same form as
(2.6), and has exactly the same effect on the Maurer-Cartan form Â, whether it
is applied first to F , and then constructing Â as prescribed above, or whether it
is applied to F̂ after the construction from F and then differentiating F̂ . Hence
the map f̂ is uniquely determined by our choice of normalisation point p, which
corresponds to an action of the isometry group ASOs(m + k, R).

For the global picture, one observes that for any point q in M , there is a simply
connected neighbourhood Uq of q, which contains p, and an adapted frame Fq on
Uq, normalised at p. Thus the same procedure can be carried out on Uq. On the
overlap, Uq∩U , F and Fq differ only by right multiplication by a matrix of the form
(2.6), which has already been taken into account in our construction of f̂ described
above.

The induced metric for both f and f̂ is given in terms of the local coframe,
J1θ =: [θ1, ..., θm]t, by the formula θ2

1 + ...+ θ2
m, and thus is identical. Clearly the

same argument holds with the roles of the target spaces reversed.

3. THE LOOP GROUP FORMULATION

The loop group formulation for isometric immersions of space forms given in
[8] works also for the pseudo-Riemannian case. Here is a brief outline of the
formulation of Ferus and Pedit, the only difference here being that we allow non-
Riemannian signatures. The computations are easily verified to go through exactly
as in [8].

Let M be a simply connected pseudo-Riemannian space form, with constant
curvature c �= 0 and of signature r, and fix a base point p of M . Given an isometric
immersion with flat normal bundle, f , of M into the pseudo-Riemannian sphere
or hyperbolic space, Qm+k

s (ε), and an adapted frame F , one inserts a complex
parameter λ into the Maurer-Cartan form (2.2), to obtain a family of 1-forms,
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(3.1) Aλ =




ω
√

εc

2
√

1−εc
(λ − λ−1)β

√
εc
2 (λ + λ−1)θ

√
εc

2
√

1−εc
(λ − λ−1)α η 0

−ε
√

εc
2 (λ + λ−1)θtJ1 0 0


 .

The original Maurer-Cartan form is obtained at λ0 = 1√
εc

(1 +
√

1− εc). The
assumptions that f has constant curvature and flat normal bundle are equivalent
to the assumption that Aλ satisfies the Maurer-Cartan equation (2.2) for all λ

in the punctured plane C∗. Depending on the original curvature value c, Aλ is
real for λ in one of iR∗, R∗, or S1, and integrates to an adapted frame Fλ =
[eλ

1 , ..., eλ
m, nλ

1 , ..., nλ
k, fλ] for a family of immersions with flat normal bundle, with

constant curvature in one of the corresponding ranges (−∞, 0), (0, 1), or (1,∞),
for the case ε = 1, and their reflections about 0 for the case ε = −1. The family
Fλ is unique with the normalisation Fλ(p) = I . As mentioned in the introduction,
there are several methods for producing the loop group maps Fλ, for k ≥ m − 1,
using techniques from integrable systems.

Remark 3.1. An important point for our discussion in the next section is that,
even though a single global adapted frame may not exist for f , one can nevertheless
show, [2], that the family fλ is well defined globally on M .

The coframe of the immersion fλ, is given, from (3.1), by

(3.2) θλ =
√

εc

2
(λ + λ−1)θ,

and the curvature tensor turns out to be given by the expression

dω + ω ∧ ω = cθ ∧ θtJ1

=
4ε

(λ + λ−1)2
θλ ∧ θt

λJ1.

Thus, the constant curvature, which varies with λ, is given by the formula

cλ =
4ε

(λ + λ−1)2
.

Because the original map, f = fλ0 , is an immersion, it follows from (3.2) that fλ

is an immersion for all λ �= ±i. However, f±i maps M to a single point, because
its coframe is zero. If we take the normalisation Fλ(p) = I , for some p ∈ M , then

f±i = [0, ..., 0, 1]t.
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4. INTERPRETATION OF THE LOOP GROUP MAP AT λ = ±i

We seek an interpretation of the map Fλ at λ = ±i. Our argument is similar to
that in [7]; the loop group setting is what makes our approach work globally. The
idea of “blowing up” the ambient space has been used in various places before, for
example in [5, 6, 10].

If we scale the space that we are immersing into, so that the curvature of the
immersion is unchanged, instead of varying with λ, then, as λ approaches ±i, we
must have the target space approaching flat space, and so, in the limit, we hope to
have a constant curvature immersion f̂ : M → Rm+k

s .
To carry this out, set

(4.1) f̃λ :=
2√

εc(λ + λ−1)
fλ.

As with the expression (3.1), it is easy to verify that f̃λ is real for values of λ in the
appropriate ranges corresponding to c and ε, described above. Thus f̃λ is a map from
M into Qm+k

s (ε|R|) := {x ∈ Rm+k+1
s+δ | xtJx = εR2}, where R := 2√

εc(λ+λ−1)
.

Now the image of f̃ can be identified with the image of f if we scale the ambient
space Rm+k+1

s+δ by a factor of R. This has the effect of scaling the metric by a
constant conformal factor of R2, and the curvature by 1

R2 . Thus f̃λ has constant
curvature

cλ
εc(λ + λ−1)2

4
= c.

Because all we have done is scale the target space, an adapted frame, F̃λ ∈
ASOs+δ(m + k + 1, R), for f̃λ : M → Rm+k+1

s+δ , is

F̃λ =
[

eλ
1 ... eλ

m nλ
1 ... nλ

k fλ f̃λ

0 0 0 1

]
,

where eλ
i and nλ

i are the same as in the unscaled frame Fλ. The unscaled fλ is now
the (k + 1)’st unit normal vector. The Maurer-Cartan form for F̃λ is

(4.2) Ãλ=




ω
√

εc

2
√

1−εc
(λ − λ−1)β

√
εc
2 (λ + λ−1)θ θ

√
εc

2
√

1−εc
(λ − λ−1)α η 0 0

−ε
√

εc
2 (λ + λ−1)θtJ1 0 0 0

0 0 0 0


 .

The frame F̃λ is obtained by integrating this with the initial condition

F̃ (p) =

[
Im+k+1 [0, ..., 0, 2√

εc(λ+λ−1)
]t

0 1

]
.
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Now F̃λ is not defined at λ = ±i, because f̃λ is not. However, Ãλ is defined
at λ = ±i, and at that point reduces to

Ã±i =




ω (±i)
√

εc√
1−εc

β 0 θ
(±i)

√
εc√

1−εc
α η 0 0

0 0 0 0
0 0 0 0


 .

If we apply a translation to our initial condition for f̃λ, and integrate Ãλ with the
initial condition F̂ (p) = Im+k+2, we get an adapted frame F̂λ which satisfies

F̂±i =
[

e±i
1 ... e±i

m n±i
1 ... n±i

k [0, ..., 0, 1]t f̂±i

0 0 0 1

]
,

and we see that f̂±i maps into the hyperplane perpendicular to the vector [0, ..., 0, 1]t.
In other words, it is an immersion into Rn+k

s ⊂ Rn+k+1
s+δ , with flat normal bundle

and constant curvature c. Comparing the Maurer-Cartan form of F̂±i with (2.7),
we have shown that the interpretation of the loop group map Fλ at i is just the
immersion into pseudo-Euclidean space obtained from Theorem 2.1.

Finally, since f̃λ = f̂λ+[0, ...0, 2√
εc(λ+λ−1)

]t, we obtain, using (4.1), the formula

(4.3) f̂λ =
2√

εc(λ + λ−1)
(fλ − [0, ..., 0, 1]t).

Setting µ := λ + λ−1 and g(µ) := fλ(µ), we obtain a Sym-type formula for f̂±i:

f̂±i =
2√
εc

lim
µ→0

g(µ)− g(0)
µ

=
2√
εc

∂λ

∂µ

∂

∂λ
fλ

∣∣∣
λ=±i

=
1√
εc

∂

∂λ
fλ

∣∣∣
λ=±i

.

This formula is independent of the choice of adapted frame, F , and is therefore, by
Remark 3.1, valid globally.

Conversely, given an isometric immersion with flat normal bundle f : M →
Rm+k

s , it follows from the converse part of Theorem 2.1 that there are unique
loop group maps Fλ, normalised at p, with Maurer-Cartan forms of the form (3.1),
corresponding to f . We summarise this discussion as:

Theorem 4.1. Let f : Mm
c,r → Qm+k

s (ε) be an isometric immersion with flat
normal bundle of a simply connected m-dimensional pseudo-Riemannian manifold
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Mm
c,r, of signature r, constant curvature c and with base point p, into the pseudo-

Riemannian sphere or hyperbolic space, for ε = 1, or ε = −1 respectively. Suppose
that c ∈ (−∞, 0) ∪ (1,∞) if ε = 1, and c ∈ (−∞,−1) ∪ (0,∞) if ε = −1.

Let fλ be the associated family of immersions given by the last column of the
frame obtained by integrating the 1-form defined by (3.1), normalised at p. Then
the corresponding isometric immersion f̂ : Mm

c,r → Rm+k
s from Theorem 2.1 is

given by the formula:

(4.4) f̂ =
1√
εc

πm+k

{
∂

∂λ
fλ

∣∣
λ=i

}
,

where πm+k is the projection onto the first m + k coordinates.
Conversely, every isometric immersion with flat normal bundle f : M m

c,r →
Rm+k

s+δ is obtained in this way.

Remark 4.2. The formula (4.3) for f̂λ gives a continuous deformation of
the original immersion f − [0, ..., 0, 1]t into (the displaced) Qm+k

s (ε), obtained at
λ = λ0, through to the immersion into Rm+k

s ⊂ Rm+k+1
s , obtained at λ = ±i.

Example 4.3. As a simple test case, here is an example of a family, from the
loop group construction described above, of immersions into H3

1 of the de Sitter
spaces S2

cλ,1 with constant sectional curvature cλ ∈ (0,∞), for values of λ in
iR∗ \ {±i} :

fλ(u, v) = [−ia cosh u sinv, −ia sinh u, ab(1 − cos v cosh u), a2 cos v cosh u − b2]t,

Fλ =




cos v sin v sinh u −ib cosh u sinv −ia cosh u sin v

0 cosh u −ib sinh u −ia sinh u

ib sinv −ib cos v sinh u a2 − b2 cos v cosh u ab(1 − cos v cosh u)
−ia sin v ia cos v sinh u ab(cos v cosh u − 1) a2 cos v cosh u − b2


 ,

a :=
1
2
(λ + λ−1) b :=

1
2
(λ − λ−1).

For any c ∈ (0,∞), we apply the above formula at λ = i to obtain

f̂(u, v) =
1√
c
[− coshu sin v, − sinh u, 1 − cos v cosh u]t,

an embedding of the de Sitter space S2
c,1 of constant curvature c into R3

1.
Analogous test cases with other signatures can be similarly constructed. A

Riemannian example can be computed using the example in [2].
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