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CHEN IDEAL KAEHLER HYPERSURFACES

Zerrin Şentürk and Leopold Verstraelen

Abstract. The concept of Chen ideal submanifolds is illustrated by char-

acterizing the complex hypercylinders in the complex Euclidean spaces and

the complex hyperquadrics in the complex projective space forms in terms of

equalities involving their intrinsic and normal scalar curvatures and simplest

“delta” curvatures.

1. INTRODUCTION

The study of the differential geometry of “complex Riemannian manifolds”,

i.e. of Kaehler geometry, was initiated around 1930 by Kaehler and Schouten and

van Dantzig. And after Calabi’s first contributions dating from the early 1950’s,

the differential geometry of complex and other submanifolds of Kaehler and other

related ambient spaces became a widely and succesfully studied field of research

up till now, starting with the work of Smyth in 1967 [23], at the school of Nomizu,

which set up the basic framework for the study of the Kaehler hypersurfaces in

the complex space forms and illustrated its use in a global classification of such

Einstein Kaehler hypersurfaces, and with the works of the late 1960’s and early

1970’s of among others Nomizu, Kobayashi, Chern, Abe, Ryan, Takahashi, Tanno,

Yano, Ishihara, Chen, Kon, Ogiue, ...(see, for instance, several concerning Chapters

in [15], most in particular Chapter 3 by B.Y. Chen [3], and their references).

On the other hand, ultimately going back to the inequalityK ≤ H2 of Euler for

surfaces M2 in Euclidean space E
3 between the intrinsic Gauss curvature K and

the extrinsic mean curvature H of M 2 in E
3 and whereby at every point equality

is achieved if and only if M2 is part of either a plane or a round sphere in E
3,

essentially since the works of Chen of the early 1990’s [4, 5] (see, e.g., also [3,
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6, 7, 9, 24]), several kinds of similar as well as of new types of such generally

holding fundamental inequalities between intrinsic and extrinsic characteristics of

arbitrary dimensional submanifolds Mn in arbitrary dimensional Euclidean (and

other ambient) spaces E
n+m have been obtained and the submanifolds classified for

which actually equalities are achieved. The, in some sense, direct generalizations of

the above Euler inequality, giving for general submanifolds an inequality between

the scalar curvature τ of the Riemannian geometry of Mn and the squared mean

curvature H 2 of the submanifold Mn in E
n+m (or in real or complex or Sasakian

space forms, etc.) will be called Euler-Chen inequalities. Those linking the so-

called δ curvatures of Chen to the squared mean curvature H 2 will be called Chen

inequalities; at this place we restrict to mentioning just one of the two most simple

such curvatures, namely δ(2) = τ −min K, whereby K is the sectional curvature

function on M n. The inequalities of the form ρ ≤ H2 − ρ⊥, whereby ρ and ρ⊥ are
the normalized scalar curvature of the Riemannian manifoldM n and the normalized

scalar normal curvature of the submanifoldM n in E
n+m (or other ambient spaces),

respectively, will be calledWintgen inequalities; since their appearance around 1980

for n = m = 2 in [26], Rouxel and Guadalupe and Rodriguez extended them for
dimension n = 2 and arbitrary codimensionm and De Smet, Dillen, Vrancken and

one of the authors for codimensionm = 2 and arbitrary dimension n. Submanifolds
which, at every point, actually do realise the equalities in such general inequalities

were called “ideal” submanifolds by Chen, since, roughly speaking, they can be

considered as assuming those special shapes in their ambient spaces, for which the

corresponding extrinsic curvatures, which can be interpreted as some stresses created

in the submanifolds precisely as a result of the shapes they assume, amongst all the

shapes which are possible in principle in view of their fixed intrinsic natures, are

as small as can be.

Our purpose in the present article is twofold. First: to consider some of the

above kinds of inequalities for the Kaehler hypersurfaces of complex Euclidean

spaces; in particular, it turns out that the complex hypercylinders appear as the ideal

complete such hypersurfaces for the most simple of Chen’s inequalities as well as

for Wintgen inequality. Second: to introduce, by way of concrete example, namely

for the Kaehler hypersurfaces of complex projective space forms, further kinds

of general inequalities between scalar valued curvatures of submanifolds, namely

inequalities involving in particular also the extrinsic analogon, say δ⊥ curvatures,
of the intrinsic δ curvatures of Chen, and for which the complex hyperquadrics turn
out to be ideal; this was announced in [17] and we look forward to see results of

more deep studies of such δ⊥ curvatures in the near future.
Finally, we would like to point out that ideal submanifolds in general do manifest

basic intrinsic symmetries belonging to the class of Deszcz symmetries (pseudo-

symmetries for instance of the curvature tensors of Riemann-Christoffel, Ricci or
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Weyl), which recently were geometrically characterized in terms of new intrinsic

curvature invariants (like the so-called double sectional curvatures of Riemannian

manifolds), and among the ideal 4−dimensional Lorentz submanifolds of pseudo-
Euclidean spaces do appear some of the more beautiful space-times of general

relativity [12, 13, 15, 17-19, 25].

For the basic definitions and formulas appearing in this paper we refer to Vol 2

of Nomizu-Kobayashi’s “Foundations of Differential Geometry” [21] and to Chen’s

“Geometry of Submanifolds” [8].

2. THE SIMPLEST CHEN INVARIANT AND CHEN INEQUALITIES

In the present and in the following section we are concerned with Kaehler hy-
persurfaces M n of arbitrary complex dimension n in a complex Euclidean space
Cn+1. The Kaehler metric and the complex structure of the ambient space Cn+1 as
well as the induced Kaehler metric and the induced complex structure on the hyper-
surfaceMn will be denoted by g and J , respectively. The Levi-Civita connection on

the ambient space Cn+1 and on the submanifold Mn will be denoted by ∇̃ and ∇,
respectively. Let η, ζ, ... be normal vector fields and let X, Y, ... be tangent vector

fields onMn in Cn+1. Then, the formula of Gauss reads ∇̃XY = ∇XY +h(X, Y )
and the formula of Weingarten reads ∇̃Xη = −Aη(X) + ∇⊥

Xη, whereby, via these

canonical decompositions of the vector fields ∇̃XY and ∇̃Xη into their tangent and
normal components with respect to the complex hypersurface Mn in Cn+1, the sec-
ond fundamental form h, the shape operator A η associated with η and the normal

connection ∇⊥ are well defined, and g(h(X, Y ), η) = g(Aη(X), Y ). It is al-
ways possible locally to choose an adapted orthonormal frame field e1, ..., en, e1∗ =
Je1, ..., en∗ = Jen, ξ, Jξ on Mn such that e1, ..., en, e1∗ , ..., en∗ are tangent and
such that ξ, Jξ are normal to Mn in Cn+1, respectively, and this can be done in
such a way that the shape operators A = Aξ and AJξ = JA are given by

Aξ =




λ1 · · · 0
...

. . .
...

0 · · · λn

|
|
|

0 · · · 0
...

. . .
...

0 · · · 0
− − − − − − −
0 · · · 0
...

. . .
...

0 · · · 0

|
|
|

−λ1 · · · 0
...

. . .
...

0 · · · −λn




,

AJξ =




0 · · · 0
...

. . .
...

0 · · · 0

|
|
|

λ1 · · · 0
...

. . .
...

0 · · · λn− − − − − − −
λ1 · · · 0
...

. . .
...

0 · · · λn

|
|
|

0 · · · 0
...
. . .

...
0 · · · 0




,
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i.e. such that A(ei) = λiei and A(ei∗) = −λiei∗ , (i, j, ... ∈ {1, 2, ..., n}), whereby
λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0 [23] (and this remains possible also when the ambient
space is e.g. a non-flat complex space-form). In particular, this shows that as a

complex submanifold of a complex ambient space, the hypersurface Mn is minimal

in Cn+1, i.e. has vanishing mean curvature H = {g(
−→
H,

−→
H)} 1

2 , whereby
−→
H = 1

n
trace h is the mean curvature vector field on Mn in Cn+1. Further, we remark that

the eigen directions ei and ei∗ do determine specific “eigen” planes πij = ei ∧ ej ,

πij∗ = ei ∧ ej∗ and πi∗j∗ = ei∗ ∧ ej∗ , (i �= j), which are totally real planes π, (i.e.

for which J(π)⊥π), and “eigen” planes πii∗ = ei ∧ ei∗ which are holomorphic

planes π, (i.e. for which J(π) = π), for the Kaehler Mn in Cn+1.

From the Gauss equation,

R(X, Y, Z, W ) = g(h(X, W ), h(Y,Z))− g(h(X, Z), h(Y,W )),

whereby R denotes the (0, 4)−curvature tensor of Riemann-Christoffel of M n, we

thus find the following values for the sectional curvatures of M n:

Kij = R(ei, ej, ej, ei) = λiλj ,

Ki∗j∗ = R(ei∗ , ej∗, ej∗ , ei∗) = λiλj ,

Kij∗ = R(ei, ej∗, ej∗ , ei) = −λiλj ,

Kii∗ = R(ei, ei∗, ei∗ , ei) = −2λi
2 ,

(i �= j), and, hence the following value for the scalar curvature

τ = Σα<βKαβ = −2Σiλi
2

of Mn, (whereby α and β run over all tangent indices i and j∗). Consequently, we
obtain the following well-known result.

Proposition 2.1. For every Kaehler hypersurface M n in Cn+1 the scalar

curvature τ satisfies τ ≤ 0, and a Kaehler hypersurface M n is totally geodesic in

C
n+1, i.e. is part of a complex linear hyperplane Cn in Cn+1, if and only if τ = 0
at all points of M n.

The δ(2) curvature of Chen is defined by δ(2) = τ − min K, whereby K
denotes the sectional curvature function of Mn, and so, in the present situation, is

given by

δ(2) = τ − K11∗ = −2Σk>1λ
2
k.

Thus results the following Chen inequality.
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Proposition 2.2. For every Kaehler hypersurface M n in Cn+1, the δ(2)
curvature of Chen satisfies δ(2) ≤ 0 and, at any point of M n, δ(2) = 0 if and only
if (real) rank A ≤ 2 at that point.

Hence, from Abe’s complex version of the Hartman-Nirenberg cylinder theorem

[1], we have the following.

Theorem 2.1. The complex hypercylinders Cn in Cn+1, i.e. the products of any

complex curve C in a complex 2−dimensional plane C 2 in Cn+1 with complex (n−
1)−dimensional complex linear subspaces Cn−1 of Cn+1 which are perpendicular

to the plane C2 of the curve C, are the complete Kaehler hypersurfaces M n in

C
n+1 for which the δ(2) curvature of Chen vanishes identically, δ(2) ≡ 0.

We remark that the minimum K11∗ of K for Kaehler Mn in Cn+1 coincides

with minimum of the sectional curvatures for the holomorphic “eigen” planes of

Mn, since Kii∗ = K(πii∗) = H(ei) = H(ei∗), whereby H here denotes the

holomorphic sectional curvature function on the Kaehler manifold M n.

We remark that, whereas the complex hyperplanes Cn of Cn+1 which occur

in Proposition 2.1 can also be characterised as those Kaehler hypersurfaces Mn

in Cn+1 which are flat, from Ryan’s work it is known that the complex hyper-

cylinders Cn in Cn+1 can be characterized as the Kaehler hypersurfaces Mn in

Cn+1 which are semi-symmetric [22], i.e. geometrically and roughly speaking, as

those Mn for which the sectional curvature K(p, π) at any point p of Mn for any

real 2−dimensional plane section π of the tangent space of Mn at p is invariant
under the parallel translation of π all the way around any infinitesimal co-ordinate

parallellogram cornered at p [19, 20].

3. THE WINTGEN INEQUALITY

The Ricci equation of Mn in Cn+1 is given by

R⊥(X, Y, η, ζ) = g([Aη, Aζ](X), Y ),

whereby [Aη, Aζ] = AηAζ − AζAη and R⊥ denotes the normal curvature tensor
of Mn in Cn+1, i.e. the curvature tensor of the normal bundle of Mn in Cn+1

associated with the normal connection ∇⊥. Calculated in the above “eigen” frame
e1, ..., en, e1∗ , .., en∗, ξ, Jξ we thus find the following absolute values for the compo-
nents of R⊥ (the eventual positive or negative signs of these components themselves
basically depending on arbitrary choices of orientations, we will rather not take them
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into consideration here):

|K⊥
ii∗| = |R⊥(ei, ei∗, ξ, Jξ)| = 2λi

2 ,

|K⊥
ij | = R⊥(ei, ej, ξ, Jξ) = 0 ,

|K⊥
i∗j∗ | = R⊥(ei∗ , ej∗ , ξ, Jξ) = 0 ,

|K⊥
ij∗| = R⊥(ei, ej∗ , ξ, Jξ) = 0 ,

(i �= j), (whereby in the notation of those components we did drop reference to the

normals ξ and Jξ because they are essentially the only possible choice), and hence
the following value for the scalar normal curvature:

τ⊥ = {Σα<β(K⊥
αβ)2} 1

2 = 2(Σiλi
4)

1
2 .

This then gives the following Wintgen inequality.

Proposition 3.1. For every Kaehler hypersurface M n in Cn+1 the scalar

curvature τ and the normal scalar curvature τ ⊥ satisfy τ ≤ −τ⊥, and, at any
point of M n, τ = −τ⊥ if and only if (real) rank A ≤ 2 at that point.

Consequently, we also have the following.

Theorem 3.1. The complex hypercylinders Cn in Cn+1 are the complete

Kaehler hypersurfaces M n in Cn+1 for which τ + τ⊥ ≡ 0.

4. AN INEQUALITY INVOLVING ALSO “NORMAL DELTA CURVATURES”

The previous inequalities are in fact merely some explicitations in some special

cases of very general optimal inequalities for submanifolds of Euclidean spaces or

of much wider classes of ambient spaces, and further the above results consist in

giving the geometrical interpretations of the characteristic expressions of the second

fundamental forms of the corresponding ideal submanifolds, i.e. of the submanifolds

which at all their points actually do realize the equality in these inequalities. As such,

for instance, with respect to the above Wintgen inequality, one has the following.

Theorem 4.1. (DDVV, [11]). Let Mm be a real m−dimensional submanifold
of real codimension 2 in a real space form N m+2(c) of sectional curvature c. Then,
at every point of N m:

τ ≤ m(m− 1)
2

H2 − τ⊥ +
m(m− 1)

2
c,
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and equality holds at some point p of N m if and only if there exists an orthonormal

basis e1, ..., em of the tangent space and an orthonormal basis ξ 1, ξ2 of the normal

space of N m in Nm+2(c) at p such that

Aξ1 =




λ µ | 0 · · · 0
µ λ | 0 · · · 0
− − − − − −
0 0 | λ · · · 0
...

... | ...
. . .

...

0 0 | 0 · · · λ




,

Aξ2 =




µ 0 | 0 · · · 0
0 −µ | 0 · · · 0
− − − − − −
0 0 | 0 · · · 0
...

... | ...
. . .

...

0 0 | 0 · · · 0




.

Specialization to the case of Kaehler hypersurfaces Mn = N 2n = Nm in

Cn+1 = E
2n+2 = E

m+2 readily gives Proposition 3.1; in particular, in this special

case the ambient space is flat (c = 0) and the submanifolds are minimal (H = 0),
the inequality thus reducing to τ ≤ −τ⊥. Moreover we remark that amongst

the examples of ideal submanifolds Nm in Nm+2(c) for this inequality which are
listed in [11], also the complex hypercylinders Cn in Cn+1 of course were discussed

already (in the context of superminimal surfaces in E4). After finishing the present

work, we learned, and here want to point out, that Dillen and coworkers succeeded in

proving the conjecture τ ≤ m(m−1)
2 H2−τ⊥ from [11] for the invariant submanifolds

of complex Euclidean spaces and of Sasakian spheres [13].

Since the non-flat complex space forms do not admit Kaehler hypersurfaces like

the complex hypercylinders Cn in Cn+1, above we could restrict to flat ambient

spaces. And, for the result we have in mind next, concerning complex hyperspheres

as ideal Kaehler hypersurfaces in complex space forms, it similarly suffices at present

to restrict to the study of complex hypersurfaces Mn of complex projective spaces

CPn+1(c) of constant holomorphic sectional curvature c (> 0). The curvature tensor
R̄ of the Study-Fubini metric g on CPn+1(c) is given by

R̄(A, B, C, D) =
c

4
{g(B, C)g(A, D)− g(A, C)g(B, D)

+g(JB, C)g(JA, D)− g(JA, C)g(JB, D)

−2g(JA, B)g(JC, D)} ,
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whereby A, B, C and D denote arbitrary vector fields on CPn+1(c). The equations
of Gauss and Ricci for a Kaehler hypersurface Mn in CPn+1(c) are respectively
given by

R(X, Y, Z, W) = g(h(X, W ), h(Y,Z))−g(h(X,Z), h(Y,W ))+R̄(X, Y, Z, W ) ,

R⊥(X, Y, η, ζ) = g([Aη, Aζ](X), Y )+R̄(X, Y, η, ζ) .

Calculated in an “eigen” frame e1, ..., en, e1∗, .., en∗, ξ, Jξ adapted to the Kaehler
hypersurface Mn in CPn+1(c), we thus find the following values for the sectional
curvatures of Mn:

Kij = λiλj +
c

4
,

Ki∗j∗ = λiλj +
c

4
,

Kij∗ = −λiλj +
c

4
,

Kii∗ = −2λi
2 + c ,

(i �= j), (which, of course, corresponds to the calculations made before in the case
of the flat ambient space Cn+1, taking into account now that the planes πii∗ and

the planes πij , πi∗j∗ and πij∗ (i �= j) are holomorphic and totally real planes,
respectively, on Mn in CPn+1(c)). Hence the scalar curvature of M n is given by

τ = −2Σiλ
2
i + n(2n − 1)c.

Now, we recall that when Chen introduced his new scalar valued Riemannian

curvature invariants in the 1990’s, later called Chen’s δ curvatures [4-7], actually
two different kinds of such curvatures were launched. Later on, most attention so

far was focussed on the first one of those two kinds, this probably being caused

naturally by the types of studies undertaken in their respect till now. And, from

this first series of δ curvatures, the simplest is δ(2) = τ − min K. Similarly,
from the second series of δ curvatures, the simplest is δ̂(2) = τ − max K. From

the intrinsic Riemannian geometrical point of view, δ(2) and δ̂(2), (as well as the
more sophisticated δ(n1, n2, ..., nk) and δ̂(n1, n2, ..., nk) curvatures), a priori both
enjoy an equal status . At this stage we would like to observe that, in our opinion,

whereas general studies on the geometry of Riemannian manifolds with respect to

min K and max K are rare (see e.g. Berger’s “A panoramic view of Riemannian

geometry” [2]), Chen’s idea of studying minK and max K as while incorporated in

his curvatures δ(2) and δ̂(2), rather than “on their own”, made it possible to obtain
significant and general results in this direction. In this connection, and recalling
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the above made observation that δ(2) = τ − min K = τ − min H(e) = κ(2),
H(e) denoting the sectional curvature function on a Kaehler hypersurface Mn in a

complex space form for its holomorphic “eigen” planes π = e ∧ Je, in our study

of the Kaehler Mn in CPn+1(c), we would further also like to consider the scalar
curvature function defined by κ̂(2) = τ − max H(e). In the present situation, we
find that

κ̂(2) = −2Σl<nλl
2 + (n − 1)(2n + 1)c.

Since c > o, we obtain the following absolute values of the components of the

normal curvature tensor R⊥ of Mn in CPn+1(c):

|K⊥
ij | = |K⊥

i∗j∗ | = |K⊥
ij∗ | = 0 ,

|K⊥
ii∗ | = | − 2λi

2 − c

2
| = 2λi

2 +
c

2
,

(i �= j) and whereby we use the same notational conventions as before, namely we
put K⊥

αβ = R⊥(eα, eβ, ξ, Jξ). In view of the special character of the orthonormal
frame e1, ..., en, e1∗ , .., en∗ it makes sense to define, as an alternative scalar normal

curvature of Mn in CPn+1(c), the quantity

δ⊥ = Σα<β|K⊥
αβ| = 2Σiλi

2 +
n

2
c.

(If one would like to proceed along these lines for general submanifolds Nm in

arbitrary Riemannian manifolds Nm+q of any dimensions m and codimensions q,
when then α, β and u, v would run over the tangent and normal indices of an
orthonormal frame e1, ..., em, ξ1, ..., ξq, respectively, for properly defining a scalar

normal curvature invariant in the above sense, one should for instance consider

quantities like suprema or infima of Σα<βΣu<v |R⊥(eα, eβ, ξu, ξv)| to be taken over
all such frames, but we will not go into this any further here and now). And,

similarly as in Chen’s δ curvatures, one may then define e.g. the following scalar

normal δ curvature: δ̂⊥(2) = δ⊥ − max |K⊥|. For Kaehler hypersurfaces Mn in

CPn+1(c) we see from the above that

δ̂⊥(2) = 2Σk>1λ
2
k +

n − 1
2

c.

Thus results the following general inequality for Kaehler hypersurfaces Mn in

CPn+1(c):

κ̂(2) ≤ −δ̂⊥(2) +
(n − 1)(4n + 3)

2
c.

Moreover equality holds at a point of Mn if and only if λ2
1 = λ2

n, i.e. if and only

if λ1 = λn, and so, by the choice of “eigen” frame, if and only if λ1 = λ2 = ... =
λn−1 = λn = λ ∈ R+, and this holds at all points of M n if and only if either
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Mn is totally geodesic in CPn+1(c), (λ = 0), or Mn is a complex hypersphere in

CPn+1(c), (λ2 = c
4 ). In the first case, Mn is part of a complex projective space

CPn(c) of the same constant holomorphic sectional curvature c as CPn+1(c) and
which can be described as an hypersurface given in CPn+1(c) by putting one of
the complex homogeneous co-ordinates z0, z1, ..., zn+1 equal to zero. In the second

case, as known from the local study by Chern of the Einstein Kaehler hypersurfaces

of complex space forms [10], Mn is locally isometric to the complex quadric Qn

in CPn+1(c), which is the complex variety defined in CPn+1(c) by the quadratic
equation z0

2 + z1
2 + .. + zn+1

2 = 0. Summarizing, we thus obtain the following.

Theorem 4.2. For every Kaehler hypersurface M n in the complex projective

space CPn+1(c) the scalar valued curvatures κ̂(2) and δ̂⊥(2) always satisfy the
following inequality:

κ̂(2) ≤ −δ̂⊥(2) +
(n − 1)(4n + 3)

2
c.

And the only Kaehler hypersurfacesM n inCPn+1(c) which are ideal in this respect,
i.e. for which the equality holds at all of their points, are parts either of the totally

geodesic complex space forms CPn(c) or of the complex quadricsQn in CPn+1(c).
In relation with a comment made in the introduction, we finally remark that these

ideal complex hypersurfaces Mn of CPn+1(c), which are of constant holomorphic
sectional curvature and Einstein, respectively, are both locally symmetric.
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