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Abstract. There are several works [6] (and [13]), [8], [2] and [14] enumerat-
ing four-dimensional parallelotopes. Engel [9] was the first who distinguished
17 zonotopal parallelotopes among them. Each zonotopal parallelotope is the
Minkowski sum of segments whose generating vectors form a unimodular sys-
tem. We show that there are exactly 17 four-dimensional unimodular systems.
Hence there are 17 four-dimensional zonotopal parallelotopes. We prove that
other 35 four-dimensional parallelotopes are: the regular 24-cell {3, 4, 3} and
34 sums of the 24-cell with non-zero zonotopal parallelotopes. We give a
detailed description of the construction of these 35 parallelotopes.

1. INTRODUCTION

A parallelotope is a convex polytope which fills the space facet to facet by its
translation copies without intersecting by inner points. Such a filling by parallelo-
topes is a tiling. The centers of the tiles form a lattice. A parallelotope of dimension
n is called primitive if exactly n + 1 adjacent parallelotopes meet in each vertex of
its lattice tiling. Voronoi defines an L-type of a parallelotope, which is (in modern
terms) the isomorphism class of the face order lattice of the parallelotope. A special
kind of a parallelotope is the Voronoi polytope of a lattice. The Voronoi polytope at
a lattice point v is the set of points which are at least as close to v as to any other
lattice point. Voronoi conjectured that every parallelotope of a class of parallelo-
topes of the same L-type is affinely equivalent to a Voronoi polytope (of course, of
the same L-type), and he proved this conjecture for primitive parallelotopes.

In four-dimensional space, Voronoi [17] determined all the 3 types of primitive
parallelotopes. Using projection along a zone of parallel edges, Delaunay [6] found

Received August 23, 2007, Accepted November 12, 2007.
Communicated by Gerard J. Chang.
2000 Mathematics Subject Classification: 52C22; 51M20.
Key words and phrases: Parallelotopes, Voronoi polytope, Minkowski sum, root systemDn, Unimod-
ular systems.

901



902 M. Deza and V. P. Grishukhin

51 types of four-dimensional parallelotopes. The missed 52th type was discovered
by Stogrin [13].

Engel verified by computer the result of Delaunay corrected by Stogrin. In Table
9.4 of [8] (see also Table 1 of [9]) he gives an informative and useful list of paral-
lelotopes of the 52 types. Besides, in Fig.9.7 of [8] he gives a partial order between
the 52 parallelotopes. This order consists of two disjoint components. Recall, that
a zonotope is the Minkowski sum of segments. Results of our paper imply, that
these two partial orders correspond to partial orders between zonotopes: the first one
between zonotopes which are themselves parallelotopes and the second one between
zonotopes the Minkowski sum of which with the 24-cell gives a parallelotope.

Conway in the chapter ”Afterthoughts: Feeling the form of a Four-dimensional
lattice” of [2] proposes conorms for to characterize shapes (i.e. types) of parallelo-
topes. (In fact, Conway enumerates shapes of four-dimensional Voronoi polytopes.)
The 17 types of parallelotopes which are zonotopes are parameterized by 16 sub-
graphs of the complete graph K5 and by the complete bipartite graph K3,3. The
remaining 35 types of parallelotopes are characterized by shapes of positions of
minimal conorms in 4×4 matrices of all conorms. Vallentin [14]repeated the above
Conway’s computations. He computes in details the 35 nonequivalent conorms.

In [12] Ryshkov asserts that a four-dimensionl parallelotope is either the
Minkowski sum of segments or the Minkowski sum of the 24-cell with a set of
segments. The segments of the set are parallel to the edges of the 24-cell. But no
proof of these assertions was published. Using Theorems 1 and 2 (see Section 2
below), we give here a detailed proof of these assertions.

Recall that a set of vectors U is a unimodular system if every vector u ∈ U
has an integer representation in any basic subset B ⊆ U (details see, for example,
[5]). McMullen [11] proved that an n-dimensional zonotope is a parallelotope if
and only if the directing vectors of its segments span an n-dimensional unimodular
system.

It is well known (see, for example, [5]) that there are two maximal four-
dimensional unimodular systems. These are the graphic system of 10 vectors repre-
senting the regular matroid of the complete graph K5 and the cographic system of
9 vectors representing the cographic matroid of the complete bipartite graph K3,3.
All matroid definitions given here and below can be found in any book on Matroid
Theory, for example in [1].

Each subsystem of the maximal cographic unimodular system K∗
3,3 is graphic

and represents a subgraph of K5. Hence each four-dimensional zonotopal parallelo-
tope is generated either by one of 16 graphic unimodular subsystems of K5 or by
the cographic system K∗

3,3. Note that the graph K4 in the table on page 87 of [2]
generates a three-dimensional unimodular system. But the rank 4 subgraph C221+1
of K5 is missed in the Conway’s table. (An explanation of the denotation C221 +1
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is given below in Section 3.) Note that in [14], zonotopes are described by their
facet vectors. The facet vectors of a zonotope Z(M) related to a matroidM form a
representation of the dual matroidM ∗. Hence, in contrast to us, Vallentin considers
cographic matroids of corresponding graphs.

We show that the remaining 35 parallelotopes are Minkowski sums of the regular
24-cell {3, 4, 3}with zonotopes related to unimodular systems and the 24-cell itself.

We use heavily two important theorems from [10] (Theorems 1 and 2 below).
These theorems allow us to describe in details all possibilities to add segments to
the 24-cell for to obtain a parallelotope. Note that the same unimodular system can
give distinct sums with the 24-cell. We explain how this happens. In fact, we show
that the 24-cell uniquely determines the 34 sums of it with zonotopal parallelotopes.

Until now, all enumerations asserted only that there exist 52 four-dimensional
parallelotopes. In our paper, we explain why there are only 52 four-dimensional
parallelotopes.

We proceed as follows. For the 24-cell, which is the Voronoi polytope PV (D4)
of the root latticeD4, we find the set of all, up to multipliers, vectors z such that the
sum of PV (D4) with a segment spanned by z is a parallelotope. This set is finite.
In this set we consider subsets which span unimodular systems. Amongst them we
separate subsets Q such that the sum of PV (D4) with the zonotope generated by Q
is a parallelotope. This algorithm gives all the 34 sums of the 24-cell with zonotopal
parallelotopes.

The case of four-dimensional parallelotopes is a very instructive example of
constructions of a large class of n-dimensional parallelotopes.

2. PARALLELOTOPES OF NON-ZERO WIDTH

Venkov introduced in [16] a notion of a polytope of non-zero width in direction
of a k-dimensional subspace Xk as a polytope whose intersection with any affine
k-space parallel to Xk is either k-dimensional or empty. He studied parallelotopes
of non-zero width. The most interesting are parallelotopes of non-zero width in
direction of a line (or in direction of a vector spanning this line).

It is not difficult to see that if a parallelotope P has a non-zero width in direction
of a line l, then the line l is parallel to some edges of P . A set of mutually parallel
edges of P is called an edge zone of P . Following Delaunay [6], Engel called an
edge zone closed if each two-dimensional face of P has either two or none of edges
of this zone. Otherwise, the zone is called open.

In [10], the following Proposition is proved.

Proposition 1. For a parallelotope P and a vector z, the following assertions
are equivalent:

(i) P has a closed edge zone parallel to z;
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(ii) P has a non-zero width in direction of z;

(iii) P is the Minkowski sum of a segment S(z) of the line spanned by z and a
parallelotope P ′ of zero width in direction z, i.e., P = P ′ + S(z).

We say that a parallelotope P is of (or has) zero width in direction z if P is not
of non-zero width in this direction. The length of the segment S(z) in item (iii) is
equal to the length of the shortest edge of the closed zone parallel to z. It implies
that this zone is open in the parallelotope P ′. Note that S(z) = λ(z − z) for some
real λ, where z− z = {x = αz : −1 ≤ α ≤ 1} is the Minkowski sum of z and −z.

If the parallelotope P ′ in the sum P = P ′ + S(z) is also of non-zero width
in another direction z1, then, by Proposition 1(iii), P ′ = P ′′ + S(z1). Of course,
the Minkowski sum is associative and distributive. Hence, if a parallelotope P

has a non-zero width in several directions z ∈ Q, then P = P0 +
∑

z∈Q S(z),
where P0 is a parallelotope, which has no direction of non-zero width. The sum
Z(Q) =

∑
z∈Q S(z) is a zonotope. If the original parallelotope P is a zonotope,

then P0 is a point and P = Z(Q).
We say that the set of vectors Q spans U if there are scalars βz , z ∈ Q, such

that U = {βzz : z ∈ Q}. It is proved in [10] the following theorem.

Theorem 1. Let Q(P ) be the set of vectors along all directions of non-zero
width of a parallelotope P . The set Q(P ) spans a unimodular system U(P ).

Since the zonotope Z(Q) has a non-zero width along each z ∈ Q, Theorem 1
implies the result of McMullen [11] that the zonotope Z(Q) is a parallelotope if
and only if Q spans a unimodular system.

The Proposition 1 shows that, sometimes, one can add a segment to a parallelo-
tope P0, in order to obtain another parallelotope. If the parallelotope P0 has zero
width in direction z, then the parallelotope P0 + S(z) has another L-type than the
original one. In [10] necessary and sufficient conditions are given, when the sum
of a parallelotope with a segment is a parallelotope. In order to formulate these
conditions, we introduce some new notions.

Venkov [15] proved that a polytope P is a parallelotope if and only if P itself
and all its facets are centrally symmetric and the projection of P along any (n−2)-
dimensional face is either a parallelogram, or a centrally symmetric hexagon. The
four or six facets, which are projected into edges of a parallelogram or of a hexagon
form a 2-belt or a 3-belt, respectively.

A facet F of a parallelotope P is defined by a facet vector p, such that the
facet F lies in the affine hyperplane {x ∈ Rn : pTx = 1

2pT t}. Here t is the lattice
vector connecting the center of P = P (0) with the center of the parallelotope P (t)
adjacent to P by the facet F . Let I be the set of indices of all pairs of opposite
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facets of P . Then we have:

(1) P (0) = {x ∈ Rn : −1
2
pT

i ti ≤ pT
i x ≤ 1

2
pT

i ti, i ∈ I}.

If P = P (0) is a Voronoi polytope, then the facet vectors pi are parallel to the
lattice vectors ti, and we can set pi = ti. We use the same names 2- and 3-belts for
the two and three facet vectors, defining facets of a 2- and a 3-belt, respectively.

It is proved in [10] the following important theorem.

Theorem 2. For a parallelotope P and a vector z, the following assertions
are equivalent:

(i) the Minkowski sum P + S(z) is a parallelotope;
(ii) vector z is orthogonal to at least one facet vector of each 3-belt of P .

3. THE VORONOI POLYTOPE OF THE LATTICE Dn

We apply Theorem 2 to the Voronoi polytope PV (Dn) of the root lattice Dn.
We find here all vectors z such that PV (Dn) + S(z) is a parallelotope.

The facet (and lattice) vectors of the Voronoi polytope PV (Dn) are n(n−1) roots
of the root system Dn. We take the roots in the usual form ei ± ej , 1 ≤ i < j ≤ n.
Here {ei : i ∈ N = {1, 2, ..., n}}, is an orthonormal basis of Rn. According to (1),
we have:

PV (Dn) = {x ∈ Rn : −1 ≤ xi ± xj ≤ 1, 1 ≤ i < j ≤ n}.

For n ≥ 3, the vertices of PV (Dn) are of the following two forms (cf. [3], p. 90):

±vi = ±ei, i ∈ N, and v(S) =
1
2
(e(S)− e(S)), S ⊆ N,

where S = N − S and e(T ) =
∑

i∈T ei for any T ⊆ N . The 2n vertices of the
set {v(S) : S ⊆ N} are vertices of a unit cube with its center in origin. The 2n

vertices ±vi, i ∈ N , form 2n pyramids having the 2n facets of the unit cube as
bases. Hence, the vertex vi is adjacent to a vertex v(S) only if S � i. Similarly,
the vertex −vi = −ei is adjacent to a vertex v(S) only if i �∈ S. The edge
v(S) − vi = 1

2 (e(T ) − e(T )), T = S − {i}, connects these vertices. The vertex
v(S) is adjacent to a vertex v(S′) only if n ≥ 4 and v(S)− v(S′) = ±ei for some
i ∈ N .

So, edges of PV (Dn) are parallel to vectors of the following form

(2) e(S)− e(S), S ⊆ N, and ei, i ∈ N.
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Up to sign, there are 2n−1 + n directions of edges, i.e., edge zones.
Each facet of PV (Dn) is an (n − 1)-dimensional bipyramid with an (n − 2)-

dimensional cube as its base. Hence, each 2-face of PV (Dn) is a triangle. This
implies that all edge zones of PV (Dn) are open.

Proposition 2. The following assertions are equivalent:

(i) PV (Dn) + S(z) is a parallelotope;
(ii) z is parallel to an edge of PV (Dn).

Proof. (i)⇔(ii). By Theorem 2, we have to show that a vector z is orthogonal
to at least one facet vector p of each 3-belt of PV (Dn) if and only if it is parallel
to an edge zone of PV (Dn).

The 3-belts of PV (Dn) are of the following two types:

(a) ei − ej , ej − ek, ei − ek; (b) ei + ej , ej + ek, ei − ek.

We find all vectors z =
∑n

i=1 ziei such that zTp = 0 for at least one facet vector p
of each belt. The vector z cannot have 3 mutually non-equal coordinates. In fact,
if there are three such coordinates zi, zj , zk , then z is not orthogonal to any facet
vector of the belt (ei − ej, ej − ek, ei − ek) of type (a). Therefore, the vector z

should be of the form z = z′(S) := z1e(S) + z2e(S), S ⊆ N . Since at least one
pair of each triplet of indices {i, j, k} lies either in S, or in S, the vector z ′(S) is
orthogonal to at least one vector of each belt of type (a).

For the vector z′(S) to be orthogonal to at least one vector of each belt of type
(b), it should be either z1 = z2, or z1 = 0 and |S| = 1, or z2 = 0 and |S| = 1, or
z1 + z2 = 0. The last condition is necessary for the vector z′(S) with z1 �= z2 to
be orthogonal to at least one vector of the belt of type (b), such that either i ∈ S,
k ∈ S, or k ∈ S, i ∈ S.

So, we obtain that, up to a multiplier, the vector z has one of the form

z = z(S) = e(S)− e(S), S ⊆ N, or z = ei, i ∈ N.

Comparing these vectors with vectors from (2) of edges of PV (Dn), we obtain that
all vectors z are directed along edges of PV (Dn).

4. FOUR-DIMENSIONAL UNIMODULAR SYSTEMS AND ZONOTOPAL PARALLELOTOPES

Let Σn be an n-dimensional simplex. It has 1
2n(n + 1) edges. The 1

2n(n + 1)
vectors which are parallel to edges of Σn and have the same length as corresponding
edges, form a maximal unimodular system An. It represents the graphic matroid
of the complete graph Kn+1 which is the one-dimensional skeleton of the simplex
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Σn. Recall that a set of vectors corresponding to edges of a graph G represents
a graphic (cyclic) matroid of the graph G if the sum of vectors (taken in suitable
direction) along any cycle of G is zero vector. Changing in this definition cycle by
cocycle (cut), we obtain a representation of the cographic matroid of G. (See any
book on Matroid Theory, for example, [1].)

We identify the vectors of An with the corresponding edges of Σn and Kn+1.
Take the n vectors incident to a vertex v ∈ Σn as a basis of An and denote them
ei, 1 ≤ i ≤ n. Suppose that these vectors are directed from the vertex v. Then the
other 1

2n(n − 1) vectors of An are ei − ej , 1 ≤ i < j ≤ n.
The Minkowski sum of all vectors of An is an n-dimensional zonotope which

is called permutohedron. It is the Voronoi polytope of the dual root lattice A∗
n (see

[3], p. 88). Besides, it is a primitive parallelotope. Voronoi called its L-type as the
principal type.

Unimodular n-dimensional subsystems of An are related to subgraphs of rank
n of Kn+1. Recall that rank of a graph is the number of its vertices minus the
number of its components.

If a graph G is planar, then there exists its dual planar graph G+ edges of which
are in one-to-one correspondence with edges of G. The graphic matroid of G is
isomorphic to the cographic matroid of G+. Both these matroids are represented by
a common unimodular system.

A deletion of an element from the cographic matroid of a graph G provides
the contraction of the corresponding edge of G. It means that the end vertices of
the contracted edge are identified and the obtained loop is deleted. For the graph
K3,3, the contraction of an edge gives a planar graph on 5 vertices. This graph is
the subgraph of K5 obtained by deletion from K5 of two non-adjacent edges. It is
denoted by K5 − 2 × 1. The dual (K5 − 2× 1)+ is isomorphic to K5 − 2 × 1.

Here and below instead of the sum 1 + 1 + ... + 1 of k ones of [2] (denoting
k non-adjacent edges), we write k × 1. We use here and below the following
Conway’s denotations: Cijk... denotes the graph consisting of more than two chains
each containing i, j, k, ... edges and all chains connect the same two vertices. But
note that Ck is a cycle with k edges, i.e. Ck = Cij with i + j = k. G + k × 1
denotes a graph G with k pendant edges. For the matroid of the graph G + k × 1,
it is not important, whether the k edges are connected to G or not, or the k edges
form a tree or they are disconnected. It is important, that the subgraph induced by
these k edges contains no cycle.

In dimension 4, there are two maximal unimodular systems:
(1) A4, representing the graphic matroid of the complete graph K5, and
(2) the unimodular system, representing the cographic matroid K∗

3,3 of the com-
plete bipartite graph K3,3.

There are 16 subgraphs of rank 4 in K5. They are drawn on p.87 of [2]. But
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the graph K4 on this picture has rank 3. It should be changed by the subgraph
C221 + 1 missed in [2]. A corect picture of these graphs is given on p.55 of [14].

Since proper cographic submatroids of K∗
3,3 are isomorphic to graphic ones, in

dimension 4, there is only one cographic unimodular system K∗
3,3, which is not

isomorphic to graphic one. Hence, besides the mentioned above 16 graphic four-
dimensional unimodular systems, there is the 17th cographic four-dimensional uni-
modular systemK∗

3,3. This implies, there are exactly 17 four-dimensional zonotopal
parallelotopes. Amongst them only permutohedron is primitive.

Note that all edge zones of a zonotope are closed. All edges of an edge zone
of a zonotope have the same length. A deletion of a vector from the unimodular
system of a zonotope relates to contraction of the corresponding edge zone.

The correspondence of zonotopal paralelotopes from [6] with subgraphs of K5 is
given in Table 1. In this table,ND denotes the number given to a parallelotope in [6]
(we call it Delaunay number), and m is the number of segments in the Minkowski
sum of the corresponding zonotope. According to [2], 2 and 3 denote the subgraphs
of K5, which are connected chains of two and three edges, respectively.

Table 1. Four-dimensional zonotopal parallelotopes Z(G)
ND 1 4 19 5 6 7 8 9 10
m 10 9 9 8 8 7 7 7 7
G K5 K5−1 K∗

3,3 K5−2×1 K5−2 K5−1−2 K4+1 C2221 K5−3

ND 11 12 13 16 14 15 17 18
m 6 6 6 6 5 5 5 4
G C222 C321 C221 + 1 C3 + C3 C4 + 1 C5 C3 + 2 × 1 4 × 1

5. UNIMODULAR SUBSYSTEMS OF D4

The four-dimensional Voronoi polytope PV (D4) is the self-dual regular four-
dimensional polytope called the 24-cell. Coxeter [4] denotes it as {3, 4, 3}. Ac-
cording to (2), in the coordinates of Section 3, the edges of PV (D4) are parallel
either to the 4 vectors ei, 1 ≤ i ≤ 4, or to the 8 vectors 1

2 (e1 ± e2 ± e3 ± e4) for all
8 possibilities of signs. These 12 vectors up to the multiplier

√
2 are the 12 roots

of a root system isomorphic to D4. For convenience, we use below the usual form
of the root system D4 = {ei ± ej : 1 ≤ i < j ≤ 4}. Besides, we denote the vector
ei ± ej by the symbol ij±, where the signs agree.

Note that D4 consists of the following three 4-sets of mutually orthogonal vec-
tors: {ij±, kl±}, where {i, j, k, l} = {1, 2, 3, 4}. Call such a 4-set of mutually
orthogonal roots by a quadruple. Each quadruple relates to one of the three parti-
tions of the 4-set {1, 2, 3, 4} into pairs. Call a three mutually orthogonal roots of
D4 by a triplet. Each triplet t is contained in a quadruple q t ⊃ t which is uniquely
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determined by t. In other words, the triplet t can be completed by a unique root
rt ∈ D4 up to the quadruple qt.

Consider the following two maximal unimodular systems contained in the root
system D4: the graphic system A4 − e, where e is any vector of A4, and the
cographic system K∗

3,3. The system A4 − e represents the graphic matroid of the
graph K5−1, and the systemK∗

3,3 represents the cographic matroid of the complete
bipartite graph K3,3.

It is not difficult to verify that each of these two unimodular subsystem of D4

is a set U = t1 ∪ t2 ∪ t3 of three mutually disjoint triplets. Label this set U by
the triad (r1, r2, r3) of the roots completing triples ti to the quadruples qti . For
example, the following set U = {ij−, ij+, kl− : ij = 12, 13, 14} is labeled by the
triad (34+, 24+, 23+).

The automorphism group of the root system D4 consists of the following opera-
tions: permutations of indices, changing a pair of indices (ij) by the complementing
pair (kl), reversing the sign of a unit vector ei → −ei. The collection of all triads is
partitioned into two orbits of the automorphism group. One orbit consists of triads
with even number of minus signs. Another orbit contains triads with odd number
of minus signs. The sets U labeled by triads of these two orbits are isomorphic to
unimodular systems A4 − e and K∗

3,3, respectively.
There are many ways to choose in D4 vectors forming the unimodular systems

A4 − e and K∗
3,3. We choose these vectors as follows. The 6 vectors ij−, 1 ≤

i < j ≤ 4, form the graphic system A3 representing the graphic matroid of the
complete graph K4. If the vertices of K4 are denoted by the numbers 1,2,3,4,
then the vector ij− = ei − ej represents the edge (ij) connecting the vertices
i and j. Now suppose that the vertex 5 of K5 − 1 is not connected with the
vertex 1 of its subgraph K4. Then we can relate the vectors 12+, 13+, 14+ to
the edges (25), (35), (45), respectively. It is easy to verify that the 9 vectors ij−,
1 ≤ i < j ≤ 4, 1i+, 2 ≤ i ≤ 4, form the unimodular system A4 − e. This
unimodular system consists of the following three triplets of mutually orthogonal
vectors: (ij−, ij+, kl−), ij = 12, 13, 14.

The graph K5 − 1 is planar. It has three vertices of degree 4 and two vertices
of degree 3. The 9 edges of this graph are partitioned into the following two orbits
(a) and (b) of the automorphism group of K5 − 1:
(a) 3 edges with both end vertices of degree 4; they are represented by the roots

23−, 24−, 34−;
(b) 6 edges with end vertices of degree 3 and 4; they are represented by the roots

12±, 13±, 14±.

If we delete in the graph K5 − 1 the edge (24), we obtain the planar graph
G5 := K5 − 2 × 1. The vertices 1, 2, 4, 5 of the graph G5 have degree 3 and
form a 4-cycle with edges (12), (25), (45), (14). The vertex 3 has degree 4 and



910 M. Deza and V. P. Grishukhin

it is adjacent to the four vertices of the 4-cycle by edges (13), (23), (35), (34).
Now, we consider the dual graph G+

5 which is isomorphic to original one. Let the
vertices of the 4-cycle of the G+

5 be a, b, c, d in this order along the 4-cycle. Then
edges of this 4-cycle, corresponding to the edges (13), (23), (35), (34) of G5, have
the following pairs of end vertices, respectively: (ab), (bc), (cd), (ad). The fifth
vertex v of degree 4 of the graph G+ is adjacent to the vertices a, b, c, d by edges,
corresponding to the edges (14), (12), (25), (45) of G5, respectively. The four last
edges form a 4-cocycle of G+

5 . The 8 vectors 12−, 13−, 14−, 23−, 34−, 12+, 13+,
14+ related to the edges of G5 and G+

5 represent the graphic matroid of G5 and the
cographic matroid of G+

5 . The cographic matroid of G+
5 is a submatroid of K∗

3,3.
The graph G+

5 is obtained from K3,3 by the contraction of one of its edges. The
operation opposite to the contraction of an edge of the graph K3,3 is the splitting of
the vertex v of degree 4 in G+

5 into two adjacent vertices v′ and v′′. This splitting
is such that the vertex v ′ is adjacent to the vertices a and c, and the vertex v′′ is
adjacent to the vertices b and d. We obtain the complete bipartite graph K3,3 with
mutually non-adjacent vertices b, d, v′ of one part and mutually non-adjacent vertices
a, c, v′′ of other part. The vectors related to edges (av′), (cv′) and (bv′′), (dv′′) are
14−, 12+ and 12−, 14+, respectively. Since 12+ − 14− = 14+ − 12− = 24+, we
should relate the vector 24+ to the edge (v′v′′).

We see that this representation of the cographic matroid K∗
3,3 is obtained from

the representation of the graphic matroid of the graph K5−1 by changing the vector
24− into the vector 24+.

According to Theorem 1, the sum PV (D4)+Z(Q) is a parallelotope only if the
set Q spans a unimodular system. According to Proposition 2, Q ⊆ D4, since edges
of PV (D4) are parallel to roots. Hence, we have to find sbsets Q ⊆ D4 spanning
unimodular systems. It is sufficient to find maximal such sets.

Call a subset Q ⊆ D4 spanning a unimodular system unextendable if the set
Q ∪ {r} does not span a unimodular system for all r ∈ D4 − Q.

Proposition 3. Each unextendable subset of the root system D 4 is isomorphic
to one of the following 3 subsets: A 4−e, K∗

3,3 and q∪{r}, where q is a quadruple
and r ∈ D4 − q.

Proof. Let q = {ij−, ij+, kl−, kl+} ⊂ D4 be a quadruple. Obviously it is a
unimodular system. It is a basis of the space R4. For any root r ∈ D4 − q, the
vector 2r has ±1 coordinates in this basis. So, the system q ∪ {2r} is unimodular
for all r ∈ D4 − q. But it easy to verify that the set q ∪ {2r, 2r′} does not spans a
unimodular system for any r′ ∈ D4 − (q ∪ {r}). Hence, each subset of D4 of the
form q ∪ {r}, r �∈ q, is an unextendable subset of D4.

This implies that any other unextendable subset ofD4 does not contain a quadru-
ple as a proper subset. Consider a set U = t1 ∪ t2 ∪ t3 of three mutually disjoint
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triplets. Obviously, U is a maximal subset of D4 not containing a quadruple. (Note,
there are 43 = 64 such sets.) We saw that U itself is a unimodular system isomorphic
either to A4 − e, or to K∗

3,3. Obviously, these systems are unextendable.

Denote the zonotope related to a unimodular system U by Z(U). Since the
deletion of the vector 24− from A4 − e and the vector 24+ from K∗

3,3 provides
the same unimodular system U(K5 − 2 × 1), the contraction of the edge zones
of Z(A4 − e) and Z(K∗

3,3) corresponding to 24− and 24+, respectively, provides
zonotopes, which are both isomorphic to Z(U(K5 − 2 × 1)).

6. SUMS OF PV (D4) WITH ZONOTOPES

The sums PV (D4)+Z(A4 −e) and PV (D4)+Z(K∗
3,3) are primitive parallelo-

topes. Their projections along a closed edge zone into three-dimensional space are
drawn in Figs. II and III of [6]; see also [7]. Their Delaunay numbers are ND = 2
and ND = 3. In Figs. II and III, the closed edge zones of these parallelotopes are
denoted by numbers 1,2,...,9. The number 9 corresponds to the edge zone, along
which the parallelotope is projected. Any non-primitive parallelotope is obtained
from these two ones by contracting some closed edge zones. Some edges are de-
noted by 0i, 1 ≤ i ≤ 8. This means that after the contraction of the edge zone with
number i the edge with number 0i is contracted to an edge of PV (D4) which is
denoted by 0.

Figs. II and III show that the contraction of the edge zone 4 in PV (D4) +
Z(A4 − e) and the edge zone 6 in PV (D4)+Z(K∗

3,3) gives the same parallelotope.
Comparing the numbers of edge zones of this parallelotope in Figs.II and III, we
obtain their correspondence, shown in table below. Besides, this table gives the
roots of the unimodular systems representing A4 − e and K∗

3,3.

Fig. I 1 2 3 4 5 6 7 8 9 −
Fig. II 2 1 5 − 7 8 3 4 9 6
roots 23− 14− 12− 24− 34− 13− 12+ 13+ 14+ 24+

We see that the edge zones 1, 4 and 5 of Fig.I contains edges of the same orbit (a)
of the automorphism group of K5−1. Hence the contraction in PV (D4)+Z(A4−e)
of any edge zone of this orbit gives isomorphic parallelotopes. The parallelotope
with contracted edge zone 1 is the parallelotope of [6] with the Delaunay number
ND = 21. This parallelotope is PV (D4) + Z(U(K5 − 2 × 1)).

Note that for the zonotope Z(U), which is a parallelotope, it is not important
whether the summing vectors are orthogonal or not. A parallelepiped and a cube
have the same L-type. But the orthogonality of summing vectors in Z(U) affects
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heavily onto the L-type of the sum PV (D4) + Z(U). This implied by the fact
that any two orthogonal roots do not belong to a 2-face of PV (D4). Hence the
sum PV (D4) + S(r) + S(r′), where r and r′ are orthogonal, obtains a new 2-face
spanned by r and r′ contrary to the case, when r and r′ are not orthogonal. (Here
and below S(r) is a segment of the line parallel to the root r.)

Facets of PV (D4) are octahedra whose edges are parallel to roots of D4. From
now on, we sometimes identify edges and roots. Each octahedron has four pairs of
opposite parallel triangle faces and six pairs of parallel edges, which represent six
distinct roots. These six roots are partitioned into three pairs of orthogonal roots.
Each triangle contains one representative root from these three pairs. Each of the
six roots belongs to four triangles.

For a facet F of PV (D4), let R(F ) be the set of the six roots, which are edges
of F . In this case, when edges are roots ei ± ej , the facet vectors are parallel to the
roots

√
2ek , 1 ≤ k ≤ 4, and 1√

2
(e1±e2±e3 ±e4). The facet vector ek , 1 ≤ k ≤ 4,

defines a facet F , such that R(F ) = {ij± : i, j �= k}. This is the root system D3,
which is isomorphic to A3. The facet vector of another type 1

2

∑4
i=1 εiei, where

εi ∈ {±1}, defines a facet F , such that R(F ) = {ij−εiεj : 1 ≤ i < j ≤ 4}.
Note that, for each pair (r, r′) of orthogonal roots, there is a facet F of PV (D4),

such that r, r ′ ∈ R(F ). Recall that PV (D4) has 24 facets (it is a 24-cell) and all
its 16 belts are 3-belts.

Recall that Z(U) =
∑

r∈U S(r) for any set of roots U .

Proposition 4. The following assertions hold.
(i) PV (D4) + S(r) has no additional facets and belts for any root r ∈ D 4.
(ii) Let P (r, r′) = PV (D4) + S(r)+ S(r′). If the roots r, r ′ are not orthogonal,

then P (r, r′) has no additional facets and belts.
If r and r′ are orthogonal, then P (r, r ′) has no additional facets, but it has
one additional 2-belt.

(iii) For a triplet t (of mutually ortogonal roots), two opposite shifts of the zono-
tope Z(t) give two parallel facets of PV (D4)+Z(t), whose facet vectors are
the roots±rt. These facets belong to 3 additional 3-belts of P V (D4)+Z(t).

(iv) For any quadruple q, the polytope PV (D4) + Z(q) is not a parallelotope.

Proof.
(i) Let F be a facet of PV (D4) and r �∈ R(F ). Then r does not lie in the

hyperplane spanned by F . Hence, the facet F remains a facet of PV (D4) +
S(r). If r ∈ R(F ), then the facet F is transformed to the facet F + S(r) in
the sum PV (D4)+S(r). The facet F +S(r) has also 4 pairs of parallel faces.
But the four triangles of F containing an edge parallel to r are transformed
into trapezoids with two edges parallel to r.
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(ii) Recall that there is a facet F such that r, r ′ ∈ R(F ). It is sufficient to consider
such a facet.
If r and r′ are not orthogonal, then the facet F + S(r) + S(r′) has also 4
pairs of parallel faces. The two parallel faces which contain edges parallel
to both the roots r and r′ are transformed into pentagons. The two pairs of
faces having edges parallel only one of these two roots are transformed into
two pairs of trapezoids. One pair of parallel faces is not changed.
If r and r′ are orthogonal, then each face of F has only one edge parallel to
one of these roots. Hence, each face is transformed into a trapezoid. There
are two opposite vertices of F which are not incident to the edges parallel
to these roots. These vertices are transformed into new square faces Q of
F + S(r) + S(r′). So, this facet has now 10 faces. There are two pairs of
opposite facets which are transformed into polyhedra with 10 faces. These
four facets form a new 2-belt. So, each pair of orthogonal roots in U generates
a 2-belt.

(iii) Let t = (r, r ′, r′′). Consider the sum Pt := P (r, r′) + S(r′′). Let F be a
facet such that r, r′ ∈ R(F ). Then r′′ �∈ R(F ). Let Q be the quadrangle face
of F + S(r) + S(r′). Then Q + S(r′′) is a cube. It is a new facet of Pt.
This facet, its opposite and the facets of the 2-belt of P (r, r ′) form a new
3-belt B. But the cube Q + S(r ′′) has 3 pairs of opposite faces, and each
pair of its faces generates a 3-belt. Hence, for each t, the parallelotope Pt

has additionally three 3-belts.
The root rt is orthogonal to the new cubic facet Q + S(r′′). So, rt is the
facet vector of this facet.

(iv) Obviously, rt is not orthogonal to any facet vector of the new 3-belt B of Pt.
By Theorem 2, Pt + S(rt) is not a parallelotope.

Let U = U(G) be a unimodular system of roots representing a subgraph G ⊆
K5 − 1 or U = K∗

3,3. Let π(U) be the set of maximal pairs of orthogonal roots
in U . A pair (r, r′) ⊆ U of orthogonal roots in U is called maximal if there is
no root in U − {r, r′} which is orthogonal to both the roots r, r′. Let τ(U) be the
set of triplets of mutually orthogonal roots in U . Recall that each triplet t ∈ τ(U)
uniquely determines the fourth root rt ∈ D4, such that rt is orthogonal to all roots
of t.

Proposition 5. Let Z(U) =
∑

r∈U S(r). Then it holds:
(i) the sum PV (D4) + Z(U) has |π(U)| 2-belts and 16 + 3|τ(U)| 3-belts;
(ii) the sum PV (D4) + Z(U) has 24 + 2|τ(U)| facets;
(iii) the sum PV (D4) + Z(U) + S(r) is a parallelotope for all r ∈ D 4 such that

r �= rt, t ∈ τ(U).
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Table 2. Zonotopes Z(U) for U ⊆ D4 such that PV (D4) + Z(U) is a parallelotope
ND m roots of the unimodular system U graph dimU N0

D

− 10 A4 �⊆ D4 cannot be added to PV (D4) K5 4 1
2 9 (12−,12+, 34−),(13−, 13+, 24−),(14−, 14+, 23−) K5−1 4 4
3 9 (12−,12+, 34−),(13−, 13+, 24+),(14−, 14+, 23−) K∗

3,3 4 19
20 8 (12−,12+, 34−), (13−, 13+, 24−), (14+, 23−) K5−2 4 6
21 8 (12−, 12+, 34−), (13−, 13+, 24−), (14−, 14+) K5−2×1 4 5
22 7 (12+, 34−), (13−, 13+, 24−), (14−, 14+) K5−3 4 10
23 7 34−, (13−, 13+, 24−), (14−, 14+, 23−) C2221 4 9
24 7 (12−, 12+, 34−), (13−, 13+, 24−), 14+ K5−1−2 4 7
25 7 (12+, 34−), (13−, 13+, 24−), (14+, 23−) K4 + 1 4 8
26 7 (12−, 12+, 34−), (13−, 13+), (14−, 14+) K5−1−2 4 7
27 6 (12−, 12+, 34−), (13−, 13+), 14+ C321 4 12
28 6 (12+, 34−), (13−, 13+, 24−), 14+ C221 + 1 4 13
29 6 (13−, 13+, 24−), (14−, 14+, 23−) C222 4 11
30 6 (12+, 34−), (13+, 24−), (14−, 14+) C221 + 1 4 13
31 6 (12−, 12+), (13−, 13+), (14−, 14+) C222 4 11
32 6 (12+, 34−), (13−, 24−), (14−, 14+) C3 + C3 4 16
33 6 (12+, 34−), (13+, 24−), (14+, 23−) K4 3 a1

34 5 12+, (13−, 13+, 24−), 14+ C3+2×1 4 17
35 5 (12−, 12+, 34−), 13−, 14+ C5 4 15
36 5 (13−, 13+, 24−), (14−, 14+) C4 + 1 4 14
37 5 (12−, 12+), (13−, 13+), 14+ C4 + 1 4 14
38 5 (12+, 34−), (13−, 13+), 14+ C3+2×1 4 17
39 5 (12+, 34−), (13+, 24−), 14+ C221 3 a2

40 4 (13−, 13+, 24−), 14+ 4×1=H4 4 18
41 4 12+, (13−, 13+), 14+ 4×1=H4 4 18
42 4 (12+, 34−), 13+, 14+ C3 + 1 3 a3

43 4 (13+, 24−), (14−, 14+) 4×1=H4 4 18
44 4 (13−, 13+), (14−, 14+) C4 3 a4

45 3 (14−, 14+, 23−) 3×1=H3 3 a5

46 3 (13−, 13+), 14− 3×1=H3 3 a′
5

47 3 12+, 13+, 14+ 3×1=H3 3 a′′
5

St 3 34−, 13+, 14+ C3 2 α

48 2 (14−, 14+) 2×1=H2 2 β1

49 2 13+, 14+ 2×1=H2 2 β2

50 1 14+ 1 = H1 1
51 0 24− cell

Table 2 illustrates Propositions 4 and 5. It shows the 35 unimodular systemsU of
roots sums of which with PV (D4) are parallelotopes. For the sake of completeness,
in the first row of Table 2, we give the maximal unimodular systemA4 �⊆ D4, which
cannot be added to PV (D4). Maximal pairs and triplets of mutually orthogonal
roots are, distinguished by parentheses. Hk denotes the skeleton of a k-dimensional
parallelepiped. As in Table 1, ND denotes the Delaunay number of the parallelotope
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PV (D4) + Z(U) and m is the number of roots in U . The parallelotope, missed by
Delaunay and found by Stogrin, is denoted by St. The fifth column gives dimension
of the added zonotope Z(U). Note that dimZ(U) is equal to the rank of the graph
G, which is represented by the unimodular system U .

In order to compare Tables 2 and 1, we add the last column. In this column
N 0

D denotes the Delaunay number ND of the corresponding zonotopal parallelo-
tope Z(U) if dimU=4; N 0

D = ai, 1 ≤ i ≤ 5, denotes a 3-dimensional zonotopal
parallelotope if dimU=3; and N 0

D = α, β1, β2 denotes a 2-dimensional zonotopal
parallelotope if dimU=2. Note that

a1 denotes a permutohedron = a truncated octahedron;
a2 denotes an elongated dodecahedron;
a3 denotes a prism with a hexagonal base;
a4 denotes a rhombic dodecahedron;
a5 denotes a parallelopiped with mutually orthogonal edges;
a′5 denotes a parallelopiped with a pair of parallel rectangle facets;
a′′5 denotes a parallelopiped without rectangle facets;
α denotes a centrally simmetric hexagon;
β1 denotes a rectangle;
β2 denotes a parallelogram without orthogonal edges.
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