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AN IMPROVED STABILITY CRITERION WITH APPLICATION
TO THE ARNEODO-COULLET-TRESSER MAP

B.-S. Du, S.-R. Hsiau, M.-C. Li and M. Malkin

Abstract. We give a criterion of discrete stability for polynomials of degree
n ≤ 4 in terms of polynomial inequalities which contain linear inequalities
and only one inequality of degree n − 1. The result then applies to study
stability regions for fixed points of the Arneodo-Coullet-Tresser maps.

1. INTRODUCTION

Let F be a differentiable map on a manifold with a fixed point q and let DF (q)
denote the Jacobian matrix of F at q. It is well known that the local stability of F
near q is determined by the spectral radius of DF (q); more precisely, the following
result is contained in many textbooks on dynamical system (see [9] for instance).

1. If the spectral radius of DF (q) is less than one, then q is asymptotically
stable, i.e., there is a neighborhood U of q such that if y ∈ U then Fn(y),
the nth iterate of y, tends to q as n → +∞; and

2. If the spectral radius of DF (q) is bigger than one then q is unstable, i.e.,
there is a neighborhood U of q such that for any neighborhood V of q, there
exists y ∈ V such that F n(y) /∈ U for some n ≥ 0.

So the problem on local stability can be formulated in terms of characteristic
polynomial of the Jacobian matrix as the following question: how can one easily
determine whether a polynomial has all roots with moduli less than one?

Definition 1. A polynomial P (x) ∈ C[x] (or R[x]) is said to be stable if all
of its roots lie in {x ∈ C : |x| < 1}.
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Note that polynomials of this type of stability are called sometimes discrete
stable or Shur stable to distinguish from the situation when all roots of polynomial
have negative real parts (the latter applies usually to characteristic polynomials of
linearization of vector fields at stable fixed points, in which case the term Hurwitz
stability is sometimes used).

There are several criteria to determine stability of a polynomial in terms of rela-
tions on its coefficients (e.g., the Shur-Cohn criterion, see [7] and [8]). Though such
criteria are equivalent to each other, their practical use depends on their complexity,
i.e., on the number and degree of polynomial inequalities involved. For example, the
usual Shur-Cohn criterion for a polynomial Pn(z) = anzn + · · ·+ a1z + a0 ∈ C[z]
contain polynomial inequalities in 2(n + 1) variables [a0, . . . , an, ā0, . . . , . . . , ān]
of maximal degree 2n. For real polynomials Pn(x) there are some methods using
the so called inner determinants of square matrices (see [5] and [6]) which allow
to reduce the maximal degree of inequalities to n − 1. More precisely, the resulted
system of inequalities obtained by those methods contain inequalities of maximal
degree n − 1 in n + 1 variables [a0, . . . , an] (or in n variables [a0, . . . , an−1] for
monic polynomials) with exactly two inequalities of maximal degree n−1. For ex-
ample, for real polynomial P (x) = x3 +a2x

2 +a1x+a0, the system of inequalities
in the stability criterion from [6] is the following

(1) |a0 + a2| < 1 + a1 and |a1 − a0a2| < 1 − a2
0.

(To get a system of polynomial inequalities, one should replace any inequality of
the form |f | < g by two polynomial inequalities f − g < 0 and f + g > 0). So the
above system contains two inequalities of degree 2 and two linear inequalities. Let
us notice that the mentioned methods for producing stability criteria were algebraic
ones. In this paper, in Section 2 we propose another method using dynamical
(bifurcation) ideas which allow us to obtain for polynomial of degree n ≤ 4, a
stability criterion containing only one inequality of degree n − 1 except for linear
inequalities. For example, for n = 3 our criterion can be written as (see Corollary
2 below)

(2) |a0| < 1, |a0 + a2| < 1 + a1 and a1 − a0a2 < 1− a2
0.

So by comparing (1) and (2), one can see that the inequality a1 − a0a2 > a2
0 − 1

involved in (1), is redundant provided that one takes into account the condition
−1 < a0 < 1 instead, which has simple “dissipative” meaning. This comparison
can be regarded from the dynamical point of view by saying that this extra inequality
in (1) has no dynamical meaning, while in (2) all the inequalities, being replaced by
corresponding equalities, are responsible for important bifurcations (e.g., transcritical
bifurcation, pitchfork bifurcation, period doubling bifurcation and Hopf bifurcation,
as shown for characteristic polynomials of Arneodo-Coulle-Tresser maps in [4], see
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also Figure 2 below). To compare our criterion with stability criterion in [6] for
polynomials of degree 4, see Remark 1 below.

As a consequence, we obtain explicit formulas for stability regions of some one-
parameter families of polynomials (see Corollaries 2 and 4). In Section 3 we apply
results from Section 2 to study stability regions of fixed points for one-parameter
and two-parameter families of Arneode-Coullet-Tresser maps.

2. STABILITY CRITERION

First we explain how to produce stability criteria by induction. Then we will
give our bifurcation method for polynomials of degree not bigger than four and
compare some results. The idea of the induction way for stability criterion can be
found in [2].

Let
Pn(z) = anzn + · · ·+ a1z + a0 ∈ C[z].

Define
P ∗

n(z) = ā0z
n + ā1z

n−1 + · · ·+ ān.

Then on the unit circle |z| = 1, one has |Pn(z)| = |P ∗
n(z)|. Furthemore, if a0 �= 0

and zi is a zero of Pn then z̄i
−1 is a zero of P∗

n . Define a polynomial

Pn−1(z) = ā0Pn(z)− anP ∗
n (z).

Then Pn−1 has degree at most n−1, and the constant term of Pn−1 is |a0|2−|an|2.

Lemma 1. Let Pn have m zeros inside the unit circle and no zeros on the unit
circle. If |a0| < |an| then Pn−1 has (n − m) zeros inside the unit circle and no
zeros on the unit circle.

Proof. Let Γ denote the unit circle |z| = 1. Then for z ∈ Γ one has |Pn(z)| =
|P ∗

n(z)| > 0 and hence the hypotheses of the lemma imply |ā0Pn(z)| < |anP ∗
n(z)|.

It follows from this inequality that Pn−1 has no zeros on Γ. Also this inequality
along with the definition of Pn−1 imply by using Rouché’s theorem1, that Pn−1 has
the same number of zeros inside Γ as P ∗

n . Thus Pn−1 has (n − m) zeros inside Γ
and no zeros on Γ.

Theorem 1. Pn is stable if and only if |a0| < |an| and P ∗
n−1 is stable.

1Here we give a general form of Rouch́e’s theorem in [10]: Let Ω be the interior of a compact set K
in the complex plane. Suppose that f and g are continuous on K and holomorphic (or analytic) in
Ω, and |f(z)− g(z)| < |f(z)| for all z ∈ K\Ω. Then f and g have the same number of zeros in Ω.
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Proof. For “if” part: since all the zeros of P ∗
n−1 lie inside the unit circle

Γ, the polynomial Pn−1 = (P ∗
n−1)

∗ has all zeros outside Γ. Then the polynomial
Pn cannot have zeros on Γ (otherwise Pn−1 would have) and by using also the
assumption |a0| < |an|, we may apply Lemma 1. Thus, n−m = 0 and so, Pn has
all the n zeros inside Γ.

For “only if” part: assume Pn is stable. Since a0/an is the product of all zeros
of Pn, it follows that |a0| < |an| and hence we may apply Lemma 1. Then Pn−1

has no zeros inside Γ and no zeros on Γ. Thus, all zeros of P∗
n−1 lie inside Γ and

so, P∗
n−1 is stable.

So, starting from the trivial criterion for degree 1 polynomials, one could produce
by induction for polynomials P ∈ C[z] of degree n, the stability criterion as a system
of polynomial inequalities in terms of coefficients of P (e.g., by using special deter-
minants or Bézoutians, see [7] and [8]). However, the resulted system of inequali-
ties would contain polynomials in 2(n+1) variables [a0, . . . , an, ā0, . . . , . . . , ān] of
maximal degree 2n. As for real polynomials, there are methods to reduce degrees
of polynomial inequalities by using the so called innerwise determinants of square
matrices (see [5] and [6]). Such methods produce inequalities of maximal degree
n − 1 in n + 1 variables [a0, . . . , an] (or in n variables [a0, . . . , an−1] for monic
polynomials) with exactly two inequalities of the maximal degree n − 1.

By using bifurcation method we are able to give stability criteria for polynomials
of degree n ≤ 4 which result in a system having just one inequality of degree n−1
and linear inequalities besides.

Theorem 2. A polynomial P (x) = x4 + Ax3 + Bx2 + Cx + D ∈ R[x] is
stable if and only if

|D| < 1, |A − C| < 2(1− D), and min{P (1), P (−1), α̃} > 0,

where α̃ = (A − C)(C − AD) + (1 + D − B)(1 − D)2.

Proof. Note that if |D| ≥ 1 then (since the product of the four zeros of P is
D), P is not stable. So we need to consider only the case when |D| < 1.

Let us define Pα(x) = P (x) + αx2 as a one-parameter family of polynomials
with parameter α ∈ R. Then for any fixed x0 �= 0, Pα(x0) has the increasing
property in α, i.e., Pα(x0) increases as α increases. It is easily seen that there is
a unique α, namely α = −P (1), such that Pα(1) = 0. Similarly, Pα(−1) = 0 for
a unique α, namely for α = −P (−1). Next, we need to find the value of α, say
α̂, for which Pα has two complex conjugate zeros on the unit circle. Let zeros of
Pα̂ be x1, x2 = x̄1, and x3, x4 with |x1| = |x2| = 1, and denote u = x1 + x2,
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v = x3 + x4. Obviously, |u| ≤ 2. By Vìete’s theorem2, we have that u + v = −A,
1 + D + uv = B + α̂ and v + Du = −C. From these equalities we get a unique
solution u = C−A

1−D , v = AD−C
1−D and

(3) α̂ =
(A − C)(C − AD)

(1 − D)2
− B + D + 1.

Therefore,

(4) Pα̂(x) =
(

x2 +
A − C

1− D
x + 1

)(
x2 +

C − AD

1 − D
x + D

)
.

Conversely, for α = α̂ one has factorization (4) and if, in addition,
∣∣∣A−C
1−D

∣∣∣ ≤ 2 then

Pα̂ has two complex conjugate zeros on the unit circle. Note that if
∣∣∣A−C

1−D

∣∣∣ = 2
then both these zeros coincide with either 1 or −1.

So we have the following bifurcation values of the parameter: α1 := −P (1),
α−1 := −P (−1) associated to the zeros 1 and −1 respectively, and if |A − C| ≤
2(1 − D) then there is also the third bifurcation value α̂, which is associated to
two complex conjugate zeros on the unit circle. Note that these bifurcatinal values
partition the real α-axis into open intervals such that for any α, α′ from the same
interval of this partition, either both polynomials Pα and Pα′ are stable or both are
not stable.

Let αmax be the maximum of all bifurcation values, so αmax = max{α1, α−1, α̂}
provided that |A− C| ≤ 2(1− D); otherwise, αmax = max{α1, α−1}.

Claim (i). Pα is not stable for all α ≥ αmax. For α = αmax the claim is
trivial. Suppose it is not true for some α′ > αmax. Then for each α > αmax the
polynomial Pα is stable. Hence by Viète’s theorem one would have that |B+α| ≤ 6,
but this is impossible for α sufficiently large.

Claim (ii). Pα is not stable for all α ≤ max{α1, α−1}. Indeed, the mono-
tonicity property in α of Pα(1) implies that Pα(1) < Pα1(1) = 0 for all α < α1.
On the other hand, the positiveness of the leading coefficient of Pα implies that
Pα(x) > 0 for some x large. Thus for all α < α1 the polynomial Pα has a real root
bigger than 1 and so Pα is not stable. The proof of the fact that Pα is not stable
for all α < α−1 is similar by considering Pα(−1).
2Viète’s theorem states the relations between roots and coefficients of a polynomial as follows:
Suppose that a polynomial P (z) =

∑n
k=1 akzk over C has roots z1, . . . , zn. Then a0 =

(−1)nan

∏n
i=1 xi, a1 = (−1)n−1an

∑n
i=1(x1 · · ·xi−1xi+1 · · ·xn), . . . , an−2 = an

∑
i�=j xixj ,

and an−1 = −an

∑n
i=1 xi. In other words, ak is equal to (−1)n−kan times the sum of all products

of k elements of {x1, . . . , xn}.
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Now we prove the “only if” part of the theorem. So we assume that the poly-
nomial P = P0 is stable. Then it follows from claims (i) and (ii) that there are
precisely three bifurcation values {α1, α−1, α̂} and

(5) max{α1, α−1} < 0 < αmax = α̂.

Hence the desired inequalities of the theorem are fulfilled.

Next, we prove the “if” part of the theorem. By our assumptions we have
precisely three bifurcation values of the parameter: α1, α−1 and α̂, and for these
values, (5) holds. Also, it follows from our assumptions that Pα̂ has two complex
conjugate roots on the unit circle and (4) holds. Then by monotonicity property,
Pα̂(1) > 0 and Pα̂(−1) > 0. Hence, either Pα̂ has two real zeros in the interval
(−1, 1) (which are the zeros x3, x4 of the second quadratic polynomial in (4) or
the zeros x3, x4 are complex conjugate, in which case |x3| = |x4| < 1 because
x3x4 = d. So, in both cases the second quadratic polynomial in (4) is stable.

It is sufficient to show that Pα is stable for some α ∈ (max{α1, α−1}, α̂). We
will prove that such an α can be taken slightly less than α̂. Let β(ε), a(ε) and b(ε)
be real-valued functions on a small neighborhood of 0 such that

(6) Pβ(ε)(x) =
(
x2 + a(ε) · x + 1 + ε

) (
x2 + b(ε) · x +

D

1 + ε

)
.

By comparing the coefficients, one has that (6) is equivalent to the system

(7) a(ε) + b(ε) = A,

(8)
D

1 + ε
a(ε) + (1 + ε) · b(ε) = C,

(9) a(ε) · b(ε) + 1 + ε +
D

1 + ε
= B + β(ε).

By solving the linear system of equations (7) and (8) we have unique functions
a(ε) and b(ε) (for ε sufficiently small) because D �= 1. For ε = 0 their values
are a(0) = A−C

1−D and b(0) = C−AD
1−D . Then from (6) we get the function β(ε), and

β(0) = α̂.
Differentiating both sides of (7) and (8) with respect to ε and solving the system

of the obtained equations for a′(ε) and b′(ε), we get that for ε = 0,

(10) a′(0) =
b(0)− Da(0)

1 − D
and b′(0) = −a′(0).

Then from (9) we obtain that

(11) β′(0) = 1 − D + a′(0) · b(0) + a(0) · b′(0).
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Plugging (10) into (11), we have

β′(0) =
(1−D)2+

(
b(0)−Da(0)

)(
b(0)−a(0)

)
1−D

=

(
2b(0)−a(0)−Da(0)

)2

+(1−D)2
(

4−
(
a(0)

)2
)

4(1−D) .

Since |D| < 1 and |a(0)| = A−C
1−D < 2, we get β′(0) > 0. Therefore, β is increasing

in a small neighborhood of 0. By taking ε < 0 sufficiently close to 0, it follows
from (6) that Pβ(ε) is stable. The proof of the “if” part is completed and so is the
proof of the theorem.

Remark 1. Note that the usual stability criterion (see [6]) for polynomials of
degree 4 contains two degree 3 inequalities as follows:

|D|<1, |A+C| < 1+B+D, and

|B(1−D)+D(1−D2)+A(AD−C)| < BD(1−D)+(1−D2)+C(AD−C).

From the proof of Theorem 2 (or directly from its statement), the following
result easily follows.

Corollary 1. Let Pα(x) = x4 + Ax3 + (B + α)x2 + Cx + D ∈ R[x] be a
one-parameter family of polynomials with parameter α ∈ R. Then the set J = {α :
Pα is stable} is either empty or is equal to a single open interval. More precisely,
J �= ∅ if and only if

|D| < 1, |A − C| < 2(1 − D) and max{α1, α−1} < α̂,

where α1 = −P0(1), α−1 = −P0(−1) and α̂ is defined by (3); under these
conditions J = (max{α1, α−1}, α̂).

The interval J from the above statement will be called later the stability interval
of the family Pα.

The stability criterion for polynomials of degree three also can be derived from
Theorem 2 as follows.

Corollary 2. A polynomial Q(x) = x3 + Ax2 + Bx + C ∈ R[x] is stable if
and only if

|C| < 1 and min{Q(1),−Q(−1), α̂} > 0,

where α̂ = −C2 + AC − B + 1.

Proof. Let P (x) = xQ(x), then P (1) = Q(1) and P (−1) = −Q(−1).
Applying Theorem 2 to P (x) (with D = 0) we have that Q is stable if and only if

(12) |A − C| < 2 and min{Q(1),−Q(−1), α̂} > 0,
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where α̂ = α̂(P ) = α̃(P ) = −C2 + AC − B + 1. Since α̂ + Q(1) = (A − C +
2)(C + 1) and α̂ − Q(−1) = (A− C − 2)(C − 1), condition (10) is equivalent to

|C| < 1 and min{Q(1),−Q(−1), α̂} > 0.

This completes the proof of the corollary.

Now, for a family of polynomials of degree 3, a result similar to Corollary 1 is
as follows.

Corollary 3. Let Qα(x) = x3+Ax2+(B+α)x+C ∈ R[x] be a one-parameter
family of polynomials with parameter α ∈ R. Then the set J = {α : Q α is stable}
is either empty or is equal to a single open interval. More precisely, J �= ∅ if and
only if

|C| < 1 and |A− C| < 2,

under these conditions J = (max{α1, α−1}, α̂), where α1 = −Q0(1), α−1 =
Q0(−1) and α̂ = −C2 + AC − B + 1.

Proof. Let Pα(x) = xQα(x). Then the stability intervals for the families Qα

and Pα are the same. From Corollary 1 we have that the stability interval of Pα

exists if and only if

(13) |C| < 1, α̂ + P0(1) > 0 and α̂ + P0(−1) > 0,

where α̂ = α̂(P0) = −C2 + AC − B + 1. So we have inequalities

(14) |C| < 1, α̂ + Q0(1) > 0 and α̂ − Q0(−1) > 0.

By simple computations one gets

α̂ + Q0(1) = (C + 1)(2 + A − C) and
α̂ − Q0(−1) = (1− C)(2 − A + C).

Therefore, (14) is equivalent to

|C| < 1 and |A− C| < 2.

Similarly to Corollary 2, one can easily get the criterion of stability for degree
2 polynomials R(x) = x2 + Ax + B from that for degree 3. The conditions of
stability then are

min{R(1), R(−1), α̂} > 0,

where α̂ = α̂(R) := −B + 1.
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3. APPLICATION TO ACT MAPS

As an example, we apply Corollary 1 to obtain stability regions of fixed points
in the family of the Arneodo-Coullet-Tresser maps (ACT maps in abbreviation). We
consider discrete dynamical systems induced by maps F : R3 → R3 of the form

(15) F (x, y, z) = (ax − b(y − z), bx + a(y − z), cx− dxk + ez),

where a, b, c, d, e are real parameters with bd �= 0 and k > 1 is an integer. These
maps were introduced by Arneodo, Coullet and Tresser being motivated by the study
of strange attractors in a family of differential equations on R3 with homoclinic
points of Shilnikov type, refer to [3].

It is clear that the origin is a fixed point of F . By solving F (x, y, z) = (x, y, z),
we obtain that for even k, the map F has a unique nontrivial fixed point at

p1 = (x1,
a2 + b2 − a

b
x1,

(a − 1)2 + b2

b
x1)

where

(16) x1 = k−1

√
bc − (1 − e)[(a− 1)2 + b2]

bd

and that for the case when k is odd and bc−(1−e)[(a−1)2+b2]
bd > 0, the map F has

exactly two nontrivial fixed points at ±p1.
In this section, we will be concerned with stability region for the trivial fixed

point i.e., regions in the parameter space for which these points are stable. As for
stability regions for nontrivial fixed points and some periodic points, it can be done
in similar way, see [4]. More precisely, we use the following definition.

Definition 2. Let x �→ Gv(x), x ∈ X ⊂ R
m, v ∈ V ⊂ R

l be a family of C1

maps with parameter v, and let x∗
v be a fixed point of Gv for each v ∈ V . A subset

J ⊂ V is called the stability region for the family of fixed points x∗
v if J consists

exactly of those parameters v ∈ V for which all eigenvalues of the Jacobian matrix
∂
∂xGv(x∗

v) lie inside the unit circle.
For the ACT family F , the Jacobian matrix of F at a point (x, y, z) is

∂F (x, y, z)
∂(x, y, z)

=


 a −b b

b a −a
c − kdxk−1 0 e




and its characteristic polynomial is

P (λ) = λ3 − (2a + e)λ2 + [a2 + b2 + 2ae − bc + kbdxk−1)]λ − (a2 + b2)e.
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Note that the determinant of the Jacobian matrix of F is constant, that is,
|∂F (x,y,z)

∂(x,y,z) | = (a2+b2)e, and if e �= 0 then the map F : R
3 → R

3 is a diffeomorphism
with the inverse

F−1(x, y, z) = (x̂,
−bx + ay

a2 + b2
+ ẑ, ẑ),

where x̂ =
ax + by

a2 + b2
and ẑ =

z − cx̂ + dx̂k

e
. So, F is a polynomial automorphism

of R
3 and thus, in the case of ACT maps, the Jacobian conjecture holds true

(about the history and results concerning the Jacobian conjecture, see [1] and [11]).
So to determine the local stability of fixed points, we need to know whether the
characteristic polynomial of the Jacobian matrix of ACT map is stable, and for this
we apply the results from Section 2.

In the following theorem, we deal with stability regions Jtr(Fc) and Jtr(Fc,e)
(recall that the subscripts here indicate the only parameters that vary). Note that if
we find some functions f1(e), f2(e) of variables e, such that Jtr(Fc,e) = {(e, c) ∈
R

2 : f1(e) < c < f2(e)} then we will have for any c with Jtr(Fc) �= ∅, that
Jtr(Fc) = {c ∈ R : f1(e) < c < f2(e)}, i.e., Jtr(Fc) is described by the same
inequalities. So in this case it is enough to give the corresponding formulas for
Jtr(Fc,e) only.

Theorem 3. [stability regions for the trivial fixed point]. Let F be the ACT
family with b �= 0. Let Jtr(Fc) (resp. Jtr(Fc,e)) denote the stability region of the
origin for Fc (resp. for Fc,e). Then

1. Jtr(Fc) �= ∅ if and only if

(17) −1 < (a2 + b2)e < 1 and 2a − 2 < (a2 + b2 − 1)e < 2a + 2.

2. For Fc,e, the following two statements hold:

(a) Suppose a2 + b2 − 1 ≤ 0, then Jtr(Fc,e) �= ∅.

(b) Suppose a2 + b2 − 1 > 0, then Jtr(Fc,e) �= ∅ if and only if

(18) max
{

2a − 2
a2 + b2 − 1

,
−2a − 2

a2 + b2 − 1

}
<

1
a2 + b2

.

3. If Jtr(Fc,e) �= ∅, then

Jtr(Fc,e) = {(e, c) ∈ R
2 : max{−c1(e), c−1(e)} < −bc < ĉ(e)},

where

(19)
c1(e) = (1 − e)[(a− 1)2 + b2], c−1(e) = −(1 + e)[(a + 1)2 + b2]

and ĉ(e) = −(a2 + b2 − 1)[(ae− 1)2 + b2e2].
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(See Figures 1 and 2).

Proof. Since b �= 0, we may use α = −bc as parameter. Then the characteristic
polynomial of the Jacobian matrix of F at the origin is

Qα(λ) = λ3 − (2a + e)λ2 + (a2 + b2 + 2ae + α)λ − (a2 + b2)e.

By applying Corollary 3 to the above family Qα with parameter α, we obtain that
equation (17) is equivalent to the fact that the stability interval of Qα is not empty,
i.e., the stability region for Fc is not empty. Item 1 is completed.

The inequalities a2 + b2 − 1 ≤ 0 and b �= 0 imply |a| < 1, so the numbers
2a−2 and 2a+2 are of opposite signs, and therefore one gets item 2(a) from item
1 by taking e = 0.

For item 2(b), let us denote e± =
±1

a2 + b2
, el =

2a − 2
a2 + b2 − 1

and er =
2a + 2

a2 + b2 − 1
. The existence of e satisfying condition (18) is equivalent to the fact

that the two intervals (e−, e+) and (el, er) overlap, i.e., el < e+ and e− < er . It is
easy to see that the last two inequalities are the same as (18).

The stability interval of Qα is given by max{−Q0(1), Q0(−1)} < α < α̂ (for
the definition of α̂ see item 2 of Corollary 3). By evaluating the values Q0(1),
Q0(−1) and α̂ and using the fact that α = −bc, item 3 is proved.

Let us give some remarks on Figure 1. The dashed lines there are e = ± 1
a2+b2

,
which corresponds to the cases when C = ±1 in Corollaries 2 and 3. So the stability
region Jtr(Fc,e) must belong to the strip between the dashed lines. It is easy to see
that the intersection of the bifurcation curves c = ĉ(e)

−b and c = c1(e)
b consists of either

one or two points depending on whether a2 + b2 − 1 is zero or not. In the former
case, the point of intersection has coordinates (e, c) = ( 1

a2+b2
, 0), which corresponds

to the eigenvalues λ1 = 1 and λ2,3 = a ± i
√

1 − a2. In the latter case, the two

intersection points are M ′(e′, c′) and M ′′(e′′, c′′), where c′ =
(1− 1

a2+b2
)[(a−1)2+b2]

b ,

e′ = 1
a2+b2

, c′′ =
(1− 2a−2

a2+b2−1
)[(a−1)2+b2]

b , and e′′ = 2a−2
a2+b2−1

, which corresponds to
the eigenvalues λ′

1 = 1, |λ′
2| = |λ′

3| = 1 and λ′′
1 = λ′′

2 = 1, λ′′
3 ∈ R. Note that the

coordinates of M ′ and M ′′ satisfy the equalities C = 1 and C = A+2 respectively
in Corollary 3. Furthermore, the condition (17) on existence of stability region
Jtr(Fc,e) implies that e′′ < e′ if a2 +b2 −1 > 0. Similar geometric interpretation of
the conditions of Corollary 3 and Theorem 3 can be done in terms of intersections,
say N ′ and N ′′, of the lines c = ĉ and c = c−1. Note that Jtr(Fc,e) has either two
“sides” or three “sides” depending on whether both points M ′′ and N ′′ lie outside
the strip |e| < 1

a2+b2
or one of M′′ and N ′′ lies inside (one can easily see that the

points M ′′ and N ′′ cannot lie simultaneously inside the strip).
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Remark 2. Note that formula (16) for appearance of nontrivial fixed points of
ACT map F coincides with the bifurcation equation c = c1(e)

b . So F has transcritical
or pitchfork) bifurcation at the bifurcation curve c1 in Figure 1 depending on whether
k is even or odd. Moreover, by solving the system of equations F (x, y, z) = (−x,

−y,−z) and F (−x,−y,−z) = (x, y, z), we get that F has periodic points of period
2 symmetric to the origin, say ±p2, if and only if k is odd and bc−(1+e)[(a+1)2+b2]

bd >

0; in this case, p2 = (x2,
−a2−b2−a

b x2,
−(a+1)2−b2

b x2), where

Fig. 1. The graphs of the bifurcation curves c = c1(e)
b , c = c−1(e)

−b and c = ĉ(e)
−b ,

indicated simply as c1, c−1 and ĉ, are shown in the (e, c)-plane. The dashed
lines in the figures are e = ±1

a2+b2 . In figures 1(i)-(iii), the stability regions
Jtr(Fc,e) (shaded in black) are shown for three cases: when a2 +b2−1 = 0, > 0
and < 0, all together with b < 0, namely (i) a = 0.6 and b = −0.8, (ii) a = 0.2
and b = −1.4, and (iii) a = 0.1 and b = −0.8. Figure 1(iv) corresponds to the
subcase of (ii) when the stability region has two sides (M ′′ lies inside the strip
between the dashed lines); here a = 0.85 and b = −1.
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(20) x2 = k−1

√
bc− (1 + e)[(a + 1)2 + b2]

bd
.

Formula (20) coincides with the bifurcation equation c = c−1(e)
−b . So when k is

odd, F has period-doubling bifurcation at the bifurcation curve c−1. Also it can be
shown that at the bifurcation curve ĉ the map F has Hopf bifurcation generically.

Fig. 2. Eigenvalues of ACT map at the bifurcation curves c1, c−1, and ĉ on the border
of stability region, which correspond to transcritical or pitchfork bifurcation
(depending on whether k is even or odd) at c1, to period-doubling biburcation
when k is odd at c−1, and to Hopf bifurcation at ĉ.
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