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AN ATOMIC DECOMPOSITION FOR THE HARDY-SOBOLEV SPACE

Zengjian Lou and Shouzhi Yang

Abstract. We define a Hardy-Sobolev space and give its atomic decomposi-
tion. As an application of the decomposition we prove a div-curl lemma.

1. INTRODUCTION AND PRELIMINARIES

The Hardy space H'(R™) is the space of locally integrable functions f for

which

M(f)(z) = sup [t = f(z)]

>0

belongs to L' (R™), where 1) € D(R™) (the space of infinitely differentiable func-
tions with compact supports), ¢ (z) = t%w(%), t>0, [pot(z)dz=1,suppe) C
B(0, 1), a ball centered at the origin with radius 1. The norm of H!(R") is defined
by

Il er ey = M ()l 1en)-

Among many characterizations of Hardy spaces, the atomic decomposition is an
important one. An L2(R") function a is an H'(R")-atom if there exists a ball
B = B, in R" satisfying:

(1) supp a C B;
2) llall2sy < B2
(3) Jza(x) dz=0.

Accepted August 22, 2006.

Communicated by Der-Chen Chang.

2000 Mathematics Subject Classification: 42B30, 46E35.

Key words and phrases: Hardy-Sobolev space, Hardy space, Atomic decomposition, Div-curl.

This work was supported by Natural Science Foundations of Guangdong Province (Grant No. 032038
and Grant No. 05008289), National Natural Science Foundation of China (Grant No. 10371069) and
SRF for ROCS, State Education Ministry.

1167



1168 Zengjian Lou and Shouzhi Yang

The basic result about atoms is the following atomic decomposition theorem (see
[3] and [9]): A function f on R™ belongs to H'(R™) if and only if f has a

decomposition
= Meax,
k=0
where the a;’s are H'(R")-atoms and
>~ Al < Cllf .
k=0

The tent space Np(Rchl) (1 < p < o0) is the space of all measurable functions
F on Rt for which S(F) € LP(R™), where S(F) is the square function defined

” dydt V2
S(F)(x) = ( / ( )\F(y,t>\2t3+1> ,

['(z) = {(y,t) € RT™ : |y — x| < t} is the cone whose vertex at = € R™. The
norm of F' € N?(R") is defined by

1E | pro ety = 1S CE) | o ey -

An NP(R)-atom is a function « supported in a tent 7(B) = {(z,t) € R} :
|x — xo| < r—t} of aball B= B(xg,r) in R", for which
dxdt
| eGP SE <qppe
T(B) t

In [5], Coifman, Meyer and Stein proved the following atomic decomposition the-
orem: any F' € N?(R’™) can be written as

o0
F = Z ALk,
k=0

where the ay, are V’?(R’:™)-atoms and

S el < Ol Fll oy
k=0

Let D'(R™) denote the dual of D(R™), often called the space of distributions.
For f € D'(R™), its gradient is defined, in the sense of distributions, by

<Vf,<p>:—/ fdiv o dx
Rn
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forall p € D(R™,R™). For f = (f1,--+, fn) € D/(R™,R™), we say thatcurl f =0
on R™ if

dp . Oy B e
/Rn<fj—_fza—xj>dx_07 QOGID(R )7 17]_17 , 1.

8xz~
Let H'(R™, R™) denote the Hardy space of functions f = (f1,-- -, f,,) each of
whose components f; is in H'(R") (I =1,---,n) with norm

11l er e ey = D I il ey
=1

In this paper, we investigate the space of f in D’(R™) whose gradient V f is in
H(R™,R™). We call it Hardy-Sobolev space and thus set

H''(R") = {f € D'(R") : Vf € H'(R",R")}
with the semi-norm of f € HY1(R™)

[l @y = IVl en )

(see [2] for more information on a slight different Hardy-Sobolev space). We call a
function a € L?(R™) an HY1(R")-atom if there exists a ball B in R™ such that
(1) supp a C B;
@) llallz2s) < r(B)|B|~/2, where r(B) denotes the radius of B;
(3) Va is an H!(R" R")-atom.

It is easy to see that if a is an H:}(R™)-atom, then a € H(R™). Since f is
in HLL(R™) if and only if f +C is in HY1(R™) (C is a constant), we consider all
functions f + C are same as f. As a main theorem of the paper we show that any f
in HY1(R™) can be decomposed into a sum of H'!(R")-atoms. As an application
of the decomposition we prove a div-curl lemma.

Throughout the paper, unless otherwise specified, C' denotes a constant inde-
pendent of functions and domains related to the inequalities. Such C may differ at
different occurrences.

2. Atomic DECOMPOSITION
The main result of the paper is the following atomic decomposition theorem.

Theorem 1. A distribution f on R™ is in H'1(R") if and only if it has a

decomposition
o
= eax,
k=0
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where the a;’s are H1(R™)-atoms and Y72, [Ax| < co. Furthermore,

£l 1.1 gy ~ inf (ZW\) :
k=0

where the infimum is taken over all such decompositions. The constants of the
proportionality are absolute constants.

For the proof of Theorem 1, we need two lemmas.

Lemma 1. If g € HY(R™,R") and curl g = 0, then g has a decomposition

9=">_ b,
k=0

where the b’s are H!(R", R")-atoms satisfying curl b, = 0 and

e}

Z Akl < C”gHHl(Rn,Rn)
k=0

Proof. From Lemma 1.1 in [6], there exists a function ¢ : R™ — R such that
(1) supp ¢ C B(0,1);
(2) ¢ € Co(RM);
3) [y tlElPo(te)? dt =1, £ e R\ {0}
For g € H'(R",R"), define
F(z,t)=t div<g * apt(x)>, ze€R" t>0.

Then
F(z,t) =t div(gr* oe(x), -, gn * pe()) = Y g% (910)e(w),
=1

where g;,l =1,---,n, is the component of g.
From the proof of Theorem 6 (3) in [5] (see also Theorems 3 and 4 in Chapter
111 of [12]), the operator defined by

u = Sy(u)
is bounded from H'(R") to L!(R") and

1Sy ()| 1@y < Cyllull g @m),
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1/2
where Sy, (u)(z) = ( Jray lux $e(y)? f,?f’{) .1 € D(R™) and [pn ¥(x) dz = 0,
Cy denotes a constant depending on 1. Thus g; € H'(R") implies Sy,,(g1) €
LY(R™) and

1Saie (9l L1 (rny < Collgill mr reny-

That is g; * (O1p); € N1 (R'F), further we have F € N (R7!) and
I pr @ity < Collgll i @n -

Using the atomic decomposition theorem for tent spaces, F' has a decomposition

o0
F = Z AL Qg
k=0

with

S el < ClFl o ans,
k=0

where the ay’s are N'H(R7)-atoms i.e. there exist balls By such that supp o
C T(By) and

dxdt 1
ag(x,t 2 < —

/T(Bk) (. )" = | B |

Define
> dt 1 n
bk:_ tV(Oék(,t)*QOt) 7 = (bkv 7bk)7

0

where b} = — [ ag(-,t) * (Qip)e &, 1=1,--- ,n. It is obvious that curl by = 0

and easy to check that by, satisfies the moment condition. Since supp ay C T'(By)
and ¢ is supported in the unit ball, a simple computation shows that supp b, C By.
We next prove that b has also the size condition. Applying Theorem 6 in [5] again,
the operator

moa)= [ at0su T

is bounded from A2(R"*1) to L2(R™) for ¢ € D(R™) With [y, v(x) da: = 0 and
I (@)l 2@y < Collall e grny-

Since ay are N(R?™!)-atoms, so o € N2(R7?T!). The boundedness of =
+ + ¥
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implies that b}, € L2(R™) and
163172y = o) |72
2
< CsOHO‘kHNQ(RiH)

y—x, drdt
= [ [l o)
+

2 dzxdt
t

< CSO ‘Oék(fl', t)
T(Bg)

< CSO ‘Bk‘_lv
where x denotes the characteristic function in the unit ball. Therefore
16kl| 25, ) < Cop [ Bl V2.

Finally we prove g = 72 Axbi. Since g € H(R™ R™) and curl g = 0, there
exists a distribution f such that ¢ = Vf. We have

i)\kbk = —/Ooi)\ktV(ak(-jt) *ipt) %
k=0 0 k=0
:_/ V(F( 1) * ) dt
= _ /;OOV{<75 diV((Vf) * @t)) * 4,0,5} dt.

So it is sufficient to show that
— /OOO (t diV((Vf) * @t)> x @p dt = f,
which follows from the condition (3) of ¢ satisfying, in fact
[T e o) <o} )
Ooo n A
—— [T {ra(@ne)) @t
1=1
—=i [eYa(@n o) ©ot09) de= [ 1Yot ie) ar
20 = 0 =
= [ ePetorfe a= o),

where i is the image unit with i = —1. Lemma 1 is proved. ]
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Let © be a smooth domain. For f € L?(Q, R™), we say that curl f = 0 on  if

/Q <fjg—; - fzaa—;p) dz =0

forall o € D(Q), 4, j =1,---,n. For f € L*(Q,R") with curl f = 0 on Q,
define v x f|aq by

/ (l/xf)-apdx:/f-curl@dx
o0 Q

for all @ € C1(Q,R") and ¢ = ®|s0, Where v denotes the outward unit normal
vector. Note that the definition of v x f|sq is independent of the choice of the
extensions @ ([8, page 208]). Let W12(Q2) denote the Sobolev space and W01’2(Q)
be the space of functions in W12(Q) with zero boundary values (see [1]). The
following lemma can be obtained from Theorem 3.3.3 in Chapter 3 of [11].

Lemma 2. Let Q be a bounded smooth contractible domain. If u € L2(Q, R")
with curl u = 0 and v x u| g = 0, then there exists v € W,"*(2) such that u = Vv
and

[vllwi2) < Cllullp2rny,
where the constant C' depends on the domain 2. When Q is a ball B, we have
HUHLQ(B) < CT(B)HUHLQ(B,R")v

where C' is independent of u, v and B.
Now we turn to the proof of Theorem 1.

Proof. Necessity. For f € HY1(R"), let g = Vf. Then g € H*(R",R") and
curl g = 0. Applying Lemma 1, g can be written as

9= b
k=0

where by, are H'(R", R™)-atoms with curl b = 0, and

Y Ml < Ngllaren ey = 1 s ey
k=0

Since by, are H'(R™, R™)-atoms, there exist balls By, such that supp bz C By, and

1K)l 2B, ey < |BiI 2.
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Combining this with curl b, = 0, Lemma 2 implies that there exist a € WOI’Q(Bk)
such that b, = Vay and

lakll 25, < Cr(Bi) bkl L2,y < Cr(Bi)| Bl =2

Hence a, are H!'(R")-atoms and
o
=" Max
k=0

in the sense of distributions, where we considered f + C as f.
Sufficiency. Suppose f can be written as a sum of H!(R™, R")-atoms a. To

prove f € D'(R™), it is sufficient to show that the sum " .° ; Aras is convergent
in the sense of distributions. From % 7° ; |\x| < oo, we have

m
Al — 0 as m m'—>oo.
k )

Combining this with the size condition of aj, for any ¢ € D(R™) with compact
support K, we get

‘/ <k§;)\kak><ﬁdx‘ gé\m‘/ axp da

< llepll zoe i) Z Ielllarll 2, | Br 0 K |12

k=m
/

< el oo () Z IAklr(Bi) | Be| =2 By 0 K|/

=m

m/

< Jl@ll ooy max{ 1, | K|V2} Y A

k=m
— 0 as m, m' — oo.

The convergence of ) .° ; Arasx is proved, so f € T'(R™). Applying the atomic
decomposition theorem for H'(R"), we have Vf € H'(R",R") and

1 N qny = IV Flla@n mry < C D 1Al
k=0

That is f € HY'(R™). The proof of Theorem 1 is finished. [

Remark 1. In [10], Peng defined Hardy-Sobolev spaces H} as spaces of f in
Hardy spaces H? with D®f € H? (Ja| < k) and obtained some analogous results
to those for Sobolev spaces.
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3. AN AprpLICATION: Div-cuRL LEMMA

In [4, Theorem 2], Coifman, Lions, Meyer and Semmes proved the following
well-known Div-curl Lemma: Let 1 < p, ¢ < oo and %—f—% =1. If f e L»(R",R")
with curl f = 0and e € L9(R™, R") with dive =0 on R™. Thene- f € H'(R").
We now consider the case of p = 1, as an application of Theorem 1 we give the
endpoint version of the div-curl lemma.

Theorem 2. Let f € HMY(R™) and e € L>(R™, R") with div e = 0 on R™.
Thene-Vf e HY(R").

Proof. If f € HYY(R™), Theorem 1 yields that f has the decomposition

o
=" Max,
k=0
where the ay’s are H'(R™)-atoms and > 72 |A\k| < oco. Therefore, for e €
L>®(R", R

e-Vf:Z)\ke-Vak.
k=0

To prove e-V f € HY(R™), we need only to show that e- Vay, are H'(R™)-atoms by
the atomic decomposition theorem for ' (R"™). Since ay, is an H ' (R™)-atom, there
exists a ball By, in R™ such that supp Va C By, and ||Vag|z2(, ey < |Br|7'/%
Combining this with e € L>°(R™, R™) implies that

lle - Vagl| r2gny < C|Bx| "2,
where C' = ||e|| (g rn). By a simple calculation and div e = 0, we get
e-Va, = div (age),

which yields the moment condition

/ e-Vag dr = 0.

We proved Theorem 2. ]

Remark 2. If the condition: f ¢ H'(R") is replaced by f ¢ L'(R") and
Vf € H'(R" R"), Theorem 2 was proved in [2, Theorem 21] by a different
method.

Corollary. Let f € H'(R™ R") with curl f =0 on R™ and e € L>®(R", R"?)
with dive = 0 on R". Thene- f € H(R").
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