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WEAK CONVERGENCE THEOREM FOR NEW NONEXPANSIVE
MAPPINGS IN BANACH SPACES AND ITS APPLICATIONS

Takanori Ibaraki and Wataru Takahashi

Abstract. A new nonexpansive mapping in a Banach space which is called
generalized nonexpansive was introduced by the authors [4]. In this paper, we
prove a weak convergence theorem for finding a fixed point of a generalized
nonexpansive mapping in a Banach space. Moreover, using this result, we
consider a proximal-type algorithm and the feasibility problem.

1. INTRODUCTION

Let C be a closed convex subset of a Banach space E and let T be a nonex-
pansive mapping of C into itself. We denoted by F (T ) the set of fixed points of
T . In 1953, Mann [8] introduced an iteration method for finding a fixed point of a
mapping T in a Banach space as follows: x0 ∈ C and

(1.1) xn+1 = αnTxn + (1 − αn)xn, n = 0, 1, 2, . . . ,

where {αn} is a sequence in [0, 1]. Later, Reich [11] discussed this iteration se-
quence in a uniformly convex Banach space with a Fréchet differentiable norm and
obtained that the sequence {xn} converges weakly to a fixed point of T under∑∞

n=1 αn(1 − αn) = ∞. Motivated by Kohsaka and Takahashi [7], Matsushita
and Takahashi [9] also studied an iteration sequence for relatively nonexpansive
mappings T in a uniformly smooth and uniformly convex Banach space as follows:
x0 ∈ C and

(1.2) xn+1 = ΠCJ−1 (αnJxn + (1 − αn)JTxn) , n = 1, 2, . . . ,
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where {αn} is a sequence in [0, 1], ΠC is a generalized projection of E onto C

and J is the duality mapping on E; see [1] for generalized projections. They
obtained that the sequence {xn} converges weakly to a fixed point of T under
lim infn→∞ αn(1 − αn) > 0.

Recently, Ibaraki and Takahashi [4] introduced a new nonexpansive mapping in
a smooth Banach space: Let D be a nonempty closed convex subset of a smooth
Banach space E . A mapping R : D → D is called generalized nonexpansive if
F (R) �= ∅ and

(1.3) V (Rx, y) ≤ V (x, y)

for each x ∈ D and y ∈ F (R), where V (u, v) = ‖u‖2 − 2〈u, Jv〉 + ‖v‖2 for all
u, v ∈ E .

Our purpose in this paper is to prove a weak convergence theorem for finding
a fixed point of a generalized nonexpansive mapping in a Banach space. Using
this result, we first consider a proximal-type algorithm for finding a zero point of
a maximal monotone operator in a Banach space. Next, we consider the feasibility
problem of finding a common element of finite sets in a Banach space.

2. PRELIMINARIES

Let E be a real Banach space with its dual E ∗. We write xn ⇀ x0 to indicate
that the sequence {xn} converges weakly to x0. Similarly, xn → x0 will symbolize
the strong convergence. A Banach space E is said to be strictly convex if

‖x‖ = ‖y‖ = 1, x �= y ⇒
∥∥∥∥x + y

2

∥∥∥∥ < 1.

Also, E is said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0
such that

‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε ⇒
∥∥∥∥x + y

2

∥∥∥∥ ≤ 1 − δ.

The following result was proved by Xu [22].

Lemma 2.1. ([22]) Let r > 0 and let E be a uniformly convex Banach
space. Then, there exists a continuous, strictly increasing, and convex function
g : [0,∞) → [0,∞) with g(0) = 0 such that

(2.1) ‖λx + (1 − λ)y‖2 ≤ λ‖x‖2 + (1 − λ)‖y‖2 − λ(1− λ)g(‖x− y‖)

for all x, y ∈ Br := {z ∈ E : ‖z‖ ≤ r} and λ with 0 ≤ λ ≤ 1.
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A Banach space E is said to be smooth if

(2.2) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ {z ∈ E : ‖z‖ = 1}(=: S(E)). In this case, the norm of E is
said to be Gâteaux differentiable. The space E is said to have a uniformly Gâteaux
differentiable norm if for each y ∈ S(E), the limit (2.2) is attained uniformly for
x ∈ S(E). The norm of E is said to be Fréchet differentiable if for each x ∈ S(E),
the limit (2.2) is attained uniformly for y ∈ S(E). The norm of E is said to be
uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the limit
(2.2) is attained uniformly for x, y ∈ S(E).

An operator T ⊂ E × E∗ with domain D(T ) = {x ∈ E : Tx �= ∅} and range
R(T ) = ∪{Tx : x ∈ D(T )} is said to be monotone if 〈x − y, x∗ − y∗〉 ≥ 0
for any (x, x∗), (y, y∗) ∈ T . An operator T is said to be strictly monotone if
〈x − y, x∗ − y∗〉 > 0 for any (x, x∗), (y, y∗) ∈ T (x �= y). A monotone operator
T is said to be maximal if its graph G(T ) = {(x, x∗) : x∗ ∈ Tx} is not properly
contained in the graph of any other monotone operator. If T is maximal monotone,
then the set T −10 = {u ∈ E : 0 ∈ Tu} is closed and convex. If E is reflexive and
strictly convex, then a monotone operator T is maximal if and only if R(J +λT ) =
E∗ for each λ > 0. A monotone operator T is maximal if and only if there exists a
(p, p∗) ∈ E such that 〈p − u, p∗ − u∗〉 ≥ 0 for each (u, u∗) ∈ T , then (p, p∗) ∈ T
(see [16, 19] for more details).

The normalized duality mapping J from E into E∗ is defined by

J(x) :=
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E.

We also know the following properties (see [18] for details):
(1) Jx �= ∅ for each x ∈ E .
(2) J is a monotone operator.
(3) If E is strictly convex, then J is one to one, that is,

x �= y ⇒ Jx ∩ Jy = ∅.
(4) If E is reflexive, then J is a mapping of E onto E∗.
(5) If E is smooth, then the duality mapping J is single valued.
(6) If E has a Fréchet differentiable norm, then J is norm to norm continuous.
(7) E is strictly convex if and only if J is a strictly monotone operator.
(8) E is uniformly convex if and only if E∗ is uniformly smooth.

Let E be a smooth Banach space and consider the following function studied
in Alber [1] and Kamimura and Takahashi [6]:

V (x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2
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for each x, y ∈ E . It is obvious from the definition of V that

(2.3) (‖x‖ − ‖y‖)2 ≤ V (x, y) ≤ (‖x‖ + ‖y‖)2

for each x, y ∈ E . We also know that

(2.4) V (x, y) = V (x, z) + V (z, y) + 2〈x− z, Jz − Jy〉
for each x, y, z ∈ E(see [6]). The following lemma is well-known.

Lemma 2.2. ([6]) Let E be a smooth and uniformly convex Banach space and
let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded.
If limn→∞ V (xn, yn) = 0, then limn→∞ ‖xn − yn‖ = 0.

Let C be a nonempty subset of a Banach space E and let T be a mapping from
C into itself. A point p in C is said to be an asymptotic fixed point of a mapping
T [13] if C contains a sequence {xn} which converges weakly to p such that the
strong limn→∞(xn −Txn) = 0. The set of asymptotic fixed points of T is denoted
by F̂ (T ).

Let D be a nonempty subset of E . A mapping R : E → D is said to be sunny
if

R(Rx + t(x − Rx)) = Rx, ∀x ∈ E, ∀t ≥ 0.

A mapping R : E → D is said to be a retraction if Rx = x, ∀x ∈ D. If E is
smooth and strictly convex, then a sunny generalized nonexpansive retraction of E

onto D is uniquely decided (see [3,4]). Then, if E be a smooth and strictly convex,
a sunny generalized nonexpansive retraction of E onto D is denoted by RD. Let
D be a nonempty closed subset of a Banach space E . Then D is said to be a
sunny generalized nonexpansive retract (resp. a generalized nonexpansive retract)
of E if there exists a sunny generalized nonexpansive retraction (resp. a generalized
nonexpansive retraction) of E onto D (see [3,4] for more details). The set of fixed
points of such a generalized nonexpansive retraction is D.

The following result was obtained in [3,4].

Lemma 2.3. ([3,4]) Let D be a nonempty closed subset of a smooth and strictly
convex Banach space E . Let RD be a retraction of E onto D. Then RD is sunny
and generalized nonexpansive if and only if

〈x − RDx, JRDx − Jy〉 ≥ 0

for each x ∈ E and y ∈ D, where J is the duality mapping of E .

Let E be a reflexive, strictly convex, and smooth Banach space with its dual
E∗. If a monotone operator B ⊂ E∗×E is maximal, then E = R(I +rBJ) for all
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r > 0 (see Proposition 4.1 in [4]). So, for each r > 0 and x ∈ E , we can consider
the set Jrx = {z ∈ E : x ∈ z + rBJz}. From [4], Jrx consists of one point. We
denote such a Jr by (I + rBJ)−1. Jr is called a generalized resolvent of B (see
[4] for more details).

The following two results were obtained in [4].

Lemma 2.4. ([4]) Let E be a reflexive, strictly convex, and smooth Banach
space and let B ⊂ E ∗×E be a maximal monotone operator with B−10 �= ∅. Then
the following hold:

(1) D(Jr) = E for each r > 0.

(2) (BJ)−10 = F (Jr) for each r > 0.

(3) If E has a Fréchet differentiable norm, then (BJ)−10 is closed.

(4) Jr is generalized nonexpansive for each r > 0.

(5) For r > 0 and x ∈ E , 1
r (x− Jrx) ∈ BJJrx.

Theorem 2.5. ([4]). Let E be a uniformly convex Banach space with a Fr échet
differentiable norm and let B ⊂ E ∗ × E be a maximal monotone operator with
B−10 �= ∅. Then the following hold:

(1) For each x ∈ E , limr→∞ Jrx exists and belongs to (BJ)−10.

(2) If Rx := limr→∞ Jrx for each x ∈ E , then R is a sunny generalized
nonexpansive retraction of E onto (BJ)−10.

3. WEAK CONVERGENCE THEOREM

In this section, we consider the weak convergence of (1.1). We can prove the
following theorem for generalized nonexpansive mappings in Banach spaces.

Theorem 3.1. Let E be a smooth and uniformly convex Banach space, let
C be a nonempty closed convex subset of E , let T be a generalized nonexpansive
mapping from C into itself with F (T ) �= ∅, and let {α n} be a sequence of real
numbers such that 0 ≤ αn ≤ 1 and lim infn→∞ αn(1−αn) > 0. Suppose {xn} is
the sequence generated by x0 = x ∈ C and

xn+1 = αnxn + (1− αn)Txn, n = 1, 2, . . . .

If F (T ) = F̂ (T ), then the sequence {xn} converges weakly to an element of F (T ).
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Proof. Let z ∈ F (T ). From convexity of ‖ · ‖2, we have

V (xn+1, z) = V (αnxn + (1− αn)Txn, z)

≤ αnV (xn, z) + (1− αn)V (Txn, z)

≤ αnV (xn, z) + (1− αn)V (xn, z)

= V (xn, z)

for all n ∈ N. Hence, limn→∞ V (xn, z) exists. So, we have from (2.3) that
the sequence {xn} is bounded. This implies that {Txn} is also bounded. Put
r := supn∈N∪{0}{‖xn‖, ‖Txn‖}. By Lemma 2.1, there exists a continuous, strictly
increasing, and convex function g : [0,∞) → [0,∞) with g(0) = 0 satisfying (2.1),
where Br = {x ∈ E : ‖x‖ ≤ r}. Therefore we have

V (xn+1, z) = V (αnxn + (1− αn)Txn, z)

= ‖αnxn + (1 − αn)Txn‖2 − 2〈αnxn + (1− αn)Txn, Jz〉 + ‖z‖2

≤ αn‖xn‖2 + (1− αn)‖Txn‖2 − αn(1− αn)g(‖xn − Txn‖)
−2αn〈xn, Jz〉 − 2(1− αn)〈Txn, Jz〉 + ‖z‖2

= αn

(
‖xn‖2 − 2〈xn, Jz〉 + ‖z‖2

)

+(1−αn)
(
‖Txn‖2−2〈Txn, Jz〉+‖z‖2

)
−αn(1−αn)g(‖xn−Txn‖)

= αnV (xn, z) + (1− αn)V (Txn, z)− αn(1− αn)g(‖xn − Txn‖)
≤ αnV (xn, z) + (1− αn)V (xn, z)− αn(1 − αn)g(‖xn − Txn‖)
= V (xn, z)− αn(1− αn)g(‖xn − Txn‖)

and hence

αn(1− αn)g(‖xn − Txn‖) ≤ V (xn, z)− V (xn+1, z).

Since {V (xn, z)} converges and lim infn→∞ αn(1− αn) > 0, it follows that

lim
n→∞ g(‖xn − Txn‖) = 0.

Then the properties of g yield that

lim
n→∞ ‖xn − Txn‖ = 0.
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For a subsequence {xni} of {xn} such that xni ⇀ v for some v ∈ E , by F (T ) =
F̂ (T ) we have that v is a fixed point of T .

Let {xni} and {xnj} be two subsequences of {xn} such that xni ⇀ v1 and
xnj ⇀ v2. As above, we have v1, v2 ∈ F (T ). Put

a = lim
n→∞

(
V (xn, v1)− V (xn, v2)

)
.

Note that

V (xn, v1)− V (xn, v2) = 2〈xn, Jv2 − Jv1〉 + ‖v1‖2 − ‖v2‖2, n = 1, 2, . . . .

From xni ⇀ v1 and xnj ⇀ v2, we have

(3.1) a = 2〈v1, Jv2 − Jv1〉 + ‖v1‖2 − ‖v2‖2

and

(3.2) a = 2〈v2, Jv2 − Jv1〉 + ‖v1‖2 − ‖v2‖2.

Combining (3.1) and (3.2), we obtain

〈v1 − v2, Jv1 − Jv2〉 = 0.

Since J is strictly monotone, it follows that v1 = v2; see the property (7) of J .
Therefore, {xn} converges weakly to an element of F (T ).

4. PROXIMAL-TYPE ALGORITHM

In this section, we first study a proximal-type algorithm for maximal monotone
operators. We start with the following lemma.

Lemma 4.1. Let E be a reflexive, strictly convex, and smooth Banach space,
let B ⊂ E∗ × E be a maximal monotone operator and let J r be a generalized
resolvent of B for all r > 0. Then, the following hold:

(1) If E has a Fréchet differentiable norm, then Jr is demiclosed;
(2) if the duality mapping J is weakly sequentially continuous, then F̂ (Jr) =

F (Jr).

Proof. (1) Let {xn} be a sequence of E such that xn ⇀ x0 and Jrxn → y0.
Let (u∗, u) ∈ B. Then, from monotonicity of B and Lemma 2.4 we have that

〈
xn − Jrxn

r
− u, JJrxn − u∗

〉
≥ 0
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for all n ∈ N. Letting n → ∞, we get
〈

x0 − y0

r
− u, Jy0 − u∗

〉
≥ 0.

Since B is maximal monotone, we have (x0 − y0)/r ∈ BJy0 and hence x0 ∈
y0 + rBJy0. From definition of Jr, we get y0 = Jrx0.

(2) It is obvious that F (Jr) ⊂ F̂ (Jr). Conversely, let z ∈ F̂ (Jr). There exists
a sequence {xn} ⊂ E such that xn ⇀ z and xn − Jrxn → 0. Hence, we have
Jrxn ⇀ z. Let (u∗, u) ∈ B. From the monotonicity of B and Lemma 2.4 that

〈
u − xn − Jrxn

r
, u∗ − JJrxn

〉
≥ 0

for all n ∈ N. Since J is weakly sequentially continuous, we get

〈u, u∗ − Jz〉 ≥ 0.

So, we have 0 ∈ BJz. Therefore, we get z ∈ (BJ)−10 = F (Jr). This implies
that F̂ (Jr) ⊂ F (Jr). So, we have F̂ (Jr) = F (Jr).

Using Theorem 3.1, Lemmas 2.4 and 4.1, we obtain the following result.

Theorem 4.2. Let E be a smooth and uniformly convex Banach space, let
B ⊂ E∗ × E be a maximal monotone operator with B−10 �= ∅, let Jr be a
generalized resolvent of B for all r > 0, and let {α n} be a sequence of real
numbers such that 0 ≤ αn ≤ 1 and lim infn→∞ αn(1− αn) > 0. Suppose {xn} is
the sequence generated by x0 = x ∈ E , and

xn+1 = αnxn + (1− αn)Jrxn, n = 1, 2, . . . .

If the duality mapping J is weakly sequentially continuous, then the sequence {x n}
converges weakly to an element of (BJ)−10.

Proof. Since B−10 is nonempty, (BJ)−10 is nonempty(see [5]). From Lemma
2.4 and Lemma 4.1, the generalized resolvent Jr is generalized nonexpansive and
F̂ (Jr) = F (Jr) = (BJ)−10. By Theorem 3.1, {xn} converges weakly to an
element of (BJ)−10.

Next, we apply Theorem 4.2 to solve the the convex minimization problem. As
in [5], we can prove the following result.

Theorem 4.3. Let E be a smooth and uniformly convex Banach space, let
f∗ : E∗ → (−∞,∞] be a proper lower semicontinuous convex function with
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(∂f∗)−1(0) �= ∅, let r > 0 and let {αn} be a sequence of real numbers such that
0 ≤ αn ≤ 1 and lim infn→∞ αn(1 − αn) > 0. Suppose {xn} is the sequence
generated by x0 = x ∈ E and

y∗n = argmin
y∗∈E∗

{
f∗(y∗) +

1
2r

‖y∗‖2 − 1
r
〈xn, y∗〉

}
,

xn+1 = αnxn + (1− αn)J−1y∗n, n = 1, 2, . . . .

(4.1)

If the duality mapping J is weakly sequentially continuous, then the sequence {x n}
converges weakly to an element of (∂f ∗J)−1(0).

Proof. By Rockafellar’s theorem [14, 15], the subdifferential mapping ∂f ∗ ⊂
E∗ × E is maximal monotone. Fix r > 0 and z ∈ E . Let Jr be the generalized
resolvent of ∂f∗. Then we have

z ∈ Jrz + r∂f∗JJrz

and hence,

0 ∈ ∂f∗JJrz +
1
r
J−1JJrz − 1

r
z = ∂

(
f∗ +

1
2r

‖ · ‖2 − 1
r
〈z, ·〉

)
JJrz.

Thus, we have

JJrz = argmin
y∗∈E∗

{
f∗(y∗) +

1
2r

‖y∗‖2 − 1
r
〈z, y∗〉

}
.

Therefore, from (4.1) we have that J−1y∗n = J−1JJrxn = Jrxn for all n ∈ N. By
Theorem 4.2, {xn} converges weakly to an element of (∂f∗J)−10.

5. FEASIBILITY PROBLEM

In this section, we consider the feasibility problem. We know the W -mapping
which was introduced by Takahashi and Shimoji [20]: Let C be a convex subset
of a Banach space E . Let T1, T2, . . . , Tr be finite mappings of C into itself and
let α1, α2, . . . , αr be real numbers such that 0 ≤ αi ≤ 1 for each i = 1, 2, . . . , r.
Then, we define a mapping W of C into itself as follows:

(5.1)

U1 = α1T1 + (1 − α1)I,

U2 = α2T2U1 + (1− α2)I,

...

Ur−1 = αr−1Tr−1Ur−2 + (1− αr−1)I,

W = Ur = αrTrUr−1 + (1− αr)I.



938 Takanori Ibaraki and Wataru Takahashi

Such a mapping W is called the W -mapping generated by T1, T2, . . . , Tr and α1, α2,

. . . , αr.
To prove our result, we need the following lemmas.

Lemma 5.1. Let E be a smooth and uniformly convex Banach space and let
C be a nonempty closed convex subset of E . Let T1, T2, . . . , Tr be generalized
nonexpansive mappings of C into itself such that ∩ r

i=1F (Ti) is nonempty, and let
α1, α2, . . . , αr be real numbers such that 0 < α i < 1 for each i = 1, 2, . . . , r−1 and
0 < αr ≤ 1. Let W be a W -mapping of C into itself generated by T 1, T2, . . . , Tr

and α1, α2, . . . , αr. Then, F (W ) = ∩r
i=1F (Ti).

Proof. It is obvious that ∩r
i=1F (Ti) ⊂ F (W ). Conversely, let z ∈ F (W ) and

u ∈ ∩r
i=1F (Ti). Then, we have z = Wz = αrTrUr−1z + (1 − αr)z and hence

TrUr−1z = z. Further, we have

V (z, u) = V (TrUr−1z, u)

≤ V (Ur−1z, u)

≤ αr−1V (Tr−1Ur−2z, u) + (1 − αr−1)V (z, u)

≤ αr−1V (Ur−2z, u) + (1− αr−1)V (z, u)

≤ αr−1αr−2V (Tr−2Ur−3z, u)

+αr−1(1 − αr−2)V (z, u) + (1− αr−1)V (z, u)

≤ αr−1αr−2V (Ur−3z, u) + (1− αr−1αr−2)V (z, u)

≤ αr−1αr−2αr−3V (Tr−3Ur−4z, u)

+αr−1αr−2(1 − αr−3)V (z, u) + (1− αr−1αr−2)V (z, u)

≤ αr−1αr−2αr−3V (Ur−4z, u) + (1 − αr−1αr−2αr−3)V (z, u)

...

≤ αr−1αr−2 · · ·α2V (U1z, u) + (1− αr−1αr−2 · · ·α2)V (z, u)

≤ αr−1αr−2 · · ·α2α1V (T1z, u)

+αr−1αr−2 · · ·α2(1 − α1)V (z, u) + (1− αr−1αr−2 · · ·α2)V (z, u)

= αr−1αr−2 · · ·α2α1V (T1z, u) + (1− αr−1αr−2 · · ·α2α1)V (z, u)

≤ αr−1αr−2 · · ·α2α1V (z, u) + (1− αr−1αr−2 · · ·α2α1)V (z, u)

= V (z, u)
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So, we have V (z, u) = V (U1z, u). Put r := max{‖z‖, ‖T1z‖}. By Lemma 2.1,
there exists a continuous, strictly increasing, and convex function g : [0,∞) →
[0,∞) with g(0) = 0 satisfying (2.1), where Br = {x ∈ E : ‖x‖ ≤ r}. We have

V (U1z, u) = ‖α1T1z + (1 − α1)z‖2 − 2〈α1T1z + (1− α1)z, Ju〉+ ‖u‖2

≤ α1‖T1z‖2 + (1− α1)‖z‖2 − α1(1− α1)g(‖z − T1z‖)
−2α1〈T1z, Ju〉 − 2(1− α1)〈z, Ju〉+ ‖u‖2

= α1

(
‖T1z‖2−2〈T1z, Ju〉+‖u‖2

)
+(1−α1)

(
‖z‖2−2〈z, Ju〉+‖u‖2

)

−α1(1− α1)g(‖z − T1z‖)
= α1V (T1z, u) + (1− α1)V (z, u)− α1(1− α1)g(‖z − T1z‖)
≤ α1V (z, u) + (1 − α1)V (z, u)− α1(1 − α1)g(‖z − T1z‖)
= V (z, u)− α1(1 − α1)g(‖z − T1z‖)

Hence we have

g(‖z − T1z‖) ≤ 1
α1(1− α1)

{
V (z, u)− V (U1z, u)

}
= 0.

We get z = T1z, and hence z = U1z. Next, we also have that V (z, u) = V (U2z, u).
From U1z = z, we get

V (U2z, u) = ‖α2T2U1z + (1 − α2)z‖2 − 2〈α2T2U1z + (1− α2)z, Ju〉 + ‖u‖2

≤ α2‖T2z‖2 + (1− α2)‖z‖2 − α2(1− α2)g(‖z − T2z‖)
−2α2〈T2z, Ju〉 − 2(1− α2)〈z, Ju〉+ ‖u‖2

≤ V (z, u)− α2(1− α2)g(‖z − T2z‖).
So, we get T2z = z and hence U2z = z. By such a method, we have z = Tkz and
z = Ukz for each k = 3, 4, . . . , r − 1. Since z = Ur−1z and z = Wz, we get z =
TrUr−1z = Trz. This implies z ∈ ∩r

i=1F (Ti). So, we have F (W ) ⊂ ∩r
i=1F (Ti).

Therefore, we have F (W ) = ∩r
i=1F (Ti).

Lemma 5.2. Let E be a smooth and uniformly convex Banach space and let
C be a nonempty closed convex subset of E . Let T1, T2, . . . , Tr be generalized
nonexpansive mappings of C into itself such that ∩ r

i=1F (Ti) is nonempty, F (Ti) =
F̂ (Ti), and

(5.2) V (x, Tix) + V (Tix, u) ≤ V (x, u), ∀x ∈ C, ∀u ∈ F (Ti)
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for each i = 1, 2, . . . , r. Let α1, α2, . . . , αr be real numbers such that 0 < α i < 1
for each i = 1, 2, . . . , r− 1 and 0 < αr ≤ 1 and let W be a W -mapping of C into
itself generated by T1, T2, . . . , Tr and α1, α2, . . . , αr. Then, F (W ) = F̂ (W )

Proof. It is obvious that F (W ) ⊂ F̂ (W ). Conversely, let z ∈ F̂ (W ). Then
there exists a sequence {xn} such that xn ⇀ z and ‖xn − Wxn‖ → 0. From the
definition of W , we have

‖TrUr−1xn − xn‖ =
1
αr

‖Wxn − xn‖

and hence ‖TrUr−1xn − xn‖ → 0. From the definition of W , it is obvious that

(5.3) V (Ujx, u) ≤ V (x, u), ∀x ∈ C, ∀u ∈
r⋂

i=1

F (Ti)

for each j = 1, 2, . . . , r. Put yn = Ur−1xn and let u ∈ ∩r
i=1F (Ti). Then, it follows

from (5.2) and (5.3) that

V (yn, Tryn) ≤ V (yn, u)− V (Tryn, u)

≤ V (xn, u)− V (TrUr−1xn, u)

= ‖xn‖2 − ‖TrUr−1xn‖2 − 2〈xn − TrUr−1xn, Ju〉

≤
(
‖xn‖+‖TrUr−1xn‖

)(
‖xn‖−‖TrUr−1xn‖

)
+2‖xn−TrUr−1xn‖‖u‖

≤
(
‖xn‖+‖TrUr−1xn‖

)
‖xn−TrUr−1xn‖+2‖xn−TrUr−1xn‖‖u‖

and hence V (yn, Tryn) → 0. From Lemma 2.2, we get ‖yn−Tryn‖ → 0 and hence
‖yn − xn‖ → 0. So, we have that yn ⇀ z. This implies that z ∈ F̂ (Tr) = F (Tr).
Moreover, we have

‖xn − Ur−1xn‖ = ‖xn − TrUr−1xn + TrUr−1xn − Ur−1xn‖
≤ ‖xn − TrUr−1xn‖ + ‖TrUr−1xn − Ur−1xn‖
= ‖xn − TrUr−1xn‖ + ‖Tryn − yn‖.

This implies that ‖xn − Ur−1xn‖ → 0.
Similarly, from ‖Tr−1Ur−2xn − xn‖ = 1

αr−1
‖Ur−1xn − xn‖, we have ‖xn −

Tr−1Ur−2xn‖ → 0. As above, we get z ∈ F̂ (Tr−1) and ‖xn − Ur−2xn‖ → 0. By
such the method, we have z ∈ F̂ (Ti) and ‖xn −Uixn‖ → 0 for each i = r−3, r−
4, . . . , 2. From the definition of T1, we have ‖T1xn−xn‖ = 1

α1
‖U1xn−xn‖. Since
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‖T1xn −xn‖ → 0 and xn ⇀ z, we get z ∈ F̂ (T1). Hence we have z ∈ ∩r
i=1F̂ (Ti).

From Lemma 5.1 and the assumption of Ti, then F (W ) = ∩r
i=1F (Ti) = ∩r

i=1F̂ (Ti).
This implies that z ∈ F (W ). So, we have that F̂ (W ) = F (W ).

Using Theorem 3.1, Lemmas 5.1 and 5.2, we can prove the following result.

Theorem 5.3. Let E be a smooth and uniformly convex Banach space and
let C be a nonempty closed convex subset of E . Let T1, T2, . . . , Tr be generalized
nonexpansive mappings of C into itself such that ∩ r

i=1F (Ti) is nonempty, F (Ti) =
F̂ (Ti), and

(5.4) V (x, Tix) + V (Tix, u) ≤ V (x, u), ∀x ∈ C, ∀u ∈ F (Ti)

for each i = 1, 2, . . . , r. Let α1, α2, . . . , αr be real numbers such that 0 < α i < 1
for each i = 1, 2, . . . , r− 1 and 0 < αr ≤ 1 and let W be a W -mapping of C into
itself generated by T1, T2, . . . , Tr and α1, α2, . . . , αr. Let {βn} be a sequence of
real numbers such that 0 ≤ βn ≤ 1 for each n = 1, 2, . . ., and lim infn→∞ βn(1−
βn) > 0. Suppose {xn} is the sequence generated by x0 = x ∈ C and

xn+1 = βnxn + (1− βn)Wxn, n = 1, 2, . . . .

Then the sequence {xn} converges weakly to an element of ∩r
i=1F (Ti).

Proof. From Lemma 5.2, we have F̂ (W ) = F (W ) = ∩r
i=1F (Ti) and hence,

by the definition of W , it is obvious that V (Wx, u) ≤ V (x, u) for each x ∈ C and
u ∈ F (W ). Therefore, by Theorem 3.1, {xn} converges weakly to an element of
∩r

i=1F (Ti).

Next, we apply Theorem 5.3 to solve the feasibility problem. Before solving it,
we prove the following lemmas.

Lemma 5.4. Let D be a nonempty subset of a reflexive, strictly convex, and
smooth Banach space E . If R is the sunny generalized nonexpansive retraction of
E onto D, then

(5.5) V (x, Rx) + V (Rx, u) ≤ V (x, u)

for each x ∈ E and u ∈ D.

Proof. Let x ∈ E and u ∈ D. From (2.4) and Lemma 2.3, we have

V (x, u) = V (x, Rx) + V (Rx, u) + 2〈x − Rx, JRx − Ju〉
≥ V (x, Rx) + V (Rx, u)
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for each x ∈ E and u ∈ D.

Lemma 5.5. Let E be a reflexive, strictly convex, and smooth Banach space
and let D be a nonempty weakly closed subset of E . If R is the sunny generalized
nonexpansive retraction of E onto D, then F̂ (R) = F (R).

Proof. It is obvious that F (R) ⊂ F̂ (R). Conversely, let z ∈ F̂ (R). There
exists a sequence {xn} ⊂ E such that xn ⇀ z and xn − Rxn → 0. Hence, we
have Rxn ⇀ z. From {Rxn} ⊂ D and Rxn ⇀ z, we get z ∈ D. This implies that
F̂ (R) ⊂ D = F (R). So, we have that F̂ (R) = F (R).

Finally, we prove the following result.

Theorem 5.6. Let E be a smooth and uniformly convex Banach space, let
D1, D2, . . . , Dr be nonempty weakly closed sunny generalized nonexpansive re-
tracts of E such that ∩r

i=1Di is nonempty, and let α1, α2, . . . , αr be real numbers
such that 0 < αi < 1 for each i = 1, 2, . . . , r − 1 and 0 < αr ≤ 1. Let W
be a W -mapping of E into itself generated by R 1, R2, . . . , Rr and α1, α2, . . . , αr,
where each Ri is the sunny generalized nonexpansive retraction of E onto D i. Let
{βn} be a sequence of real numbers such that 0 ≤ βn ≤ 1 for each n = 1, 2, . . .,
and lim infn→∞ βn(1 − βn) > 0. Suppose {xn} is the sequence generated by
x0 = x ∈ E and

xn+1 = βnxn + (1 − βn)Wxn, n = 1, 2, . . . .

Then the sequence {xn} converges weakly to an element of ∩r
i=1Di.

Proof. From Lemmas 5.4 and 5.5, we have F̂ (Ri) = F (Ri) and

(5.6) V (x, Rix) + V (Rix, u) ≤ V (x, u) ∀x ∈ E, ∀u ∈ Di

for each i = 1, 2, . . . , r. We recall that F (Ri) = Di for each i = 1, 2, . . . , r. Using
Theorem 5.3, {xn} converges weakly to an element of ∩r

i=1Di.
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