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LIMITING BEHAVIORS OF WEIGHTED SUMS FOR LINEARLY
NEGATIVE QUADRANT DEPENDENT RANDOM VARIABLES

Mi-Hwa Ko, Dae-Hee Ryu and Tae-Sung Kim

Abstract. In this paper the strong convergence for weighted sums of linearly
negative quadrant dependent(LNQD) arrays is discussed. The central limit
theorem for weighted sums of LNQD variables and linear process based on
LNQD variables is also considered. Finally the results on i.i.d. of Li et al.
([7]) in LNQD setting are obtained.

1. INTRODUCTION

Many useful linear statistics based on random samples are weighted sums of
i.i.d. random variables. Examples include least-square estimators, nonparametric
regression function estimators and jacknife estimates, among others.

In this respect, studies of strong convergence for these weighted sums have
demonstrated significant progress in probability theory with applications in math-
ematical statistics. Up to now, various limit properties for i.i.d. random variables
have been studied by many authors. The most commonly studied method is Cesàro
summation. Set, for α > −1,

Aα
n =

(α + 1)(α + 2) · · ·(α + n)
n!

, n = 1, 2, . . . and Aα
0 = 1

and note that Aα
n ∼ nα/[Γ(α + 1)] as n → ∞, where ∼ denotes that the limit as

n → ∞ of the ratio between the members on either side equals 1. Let {X, Xn, n ≥
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1} be a sequence of i.i.d. random variables. One says that X satisfies Cesàro law
of large numbers of order α, 0 < α < 1, if and only if

1
Aα

n

n∑
k=0

Aα−1
n−kXk converges a.s. as n → ∞.

It is well known that

lim
n→∞

1
Aα

n

n∑
k=0

Aα−1
n−kXk = µ a.s.

if and only if E | X |1/α< ∞ and EX = µ.

For α = 1 this result is, of course, the classical Kolmogorov strong law. For
1/2 < α < 1 the proof is due to Lorentz ([8]); for 0 < α < 1/2 it follows from
Chow and Lai ([2]). The case α = 1/2 was treated by Déniel and Derriennic([3]).
Li et al.([7]) proved the following result on Cesàro summation of i.i.d. random
variables.

Theorem A. Let {X, Xn, n ≥ 1} be a sequence of i.i.d. random variables.
(i) For 0 < α < 1/2, if Eet|X | < ∞ for all t > 0, then

1
Aα

n

n∑
k=0

Aα−1
n−k(Xk − EXk) = o(n−α logn), a.s.

(ii) For 1/2 < α < 1, if E(X − EX)2 = 1, then

α(2α − 1)1/2Γ2(α)n1/2(1/Aα
n)

n∑
k=0

Aα−1
n−k(Xk − EXk)

D−→ N (0, 1).

However, many variables are dependent in actual problems. We first recall
Lehmann’s definition([6]) of positive and negative quadrant dependent(PQD and
NQD) random variables. X1 and X2 are said to be PQD if P (X1 > x1, X2 >

x2) ≥ P (X1 > x1)P (X2 > x2) for all x1, x2 ∈ R and they are said to be NQD if
P (X1 > x1, X2 > x2) ≤ P (X1 > x1)P (X2 > x2).

The random variables X
′
js are said be linearly positive quadrant dependent(LPQD)

if for any disjoint sets A, B and positive r
′
js,

∑
k∈A rkXk and

∑
j∈B rjXj are PQD;

they are said to be linearly negative quadrant dependent(LNQD) if for any disjoint
subsets A, B and positive r

′
js,

∑
k∈A rkXk and

∑
j∈B rjXj are NQD. This defini-

tion was introduced by Newman([5], [11]).
In order to extend Theorem A to LNQD setting, in this paper, we will discuss the

strong convergence and central limit theorem for weighted sums of LNQD random
variables.
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2. STATEMENTS OF THE MAIN RESULTS

Theorem 2.1. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise LNQD
random variables with EXni = 0 and let there exist a positive constant C and a
random variable X such that P (|Xni| > x) = CP (|X | > x) for all x > 0 and for
all 1 ≤ i ≤ kn and Eet|X | < ∞ for all t > 0, where kn is a sequence of positive
integers. If {ani, 1 ≤ i ≤ kn, n ≥ 1} is an array of real numbers satisfying

(i) max
1≤i≤kn

|ani| = O((logn)−1) (ii)
kn∑

i=1

a2
ni = o((logn)−1),

then
∞∑

n=1

nr−2P (|
kn∑
i=1

aniXni |> ε) < ∞ for all ε > 0 and all r ≥ 2.

Corollary 2.1. Let {Xi, i ≥ 0} be a sequence of LNQD random variables.
If there exist a positive constant C and a random variable X such that P (|X i| >
x) = CP (|X | > x) for all i ≥ 0 and x > 0 and Eet|X | < ∞ for all t > 0, then,
for 0 < α < 1/2

1
Aα

n

n∑
k=0

Aα−1
n−k(Xk − EXk) = o(n−α log n) a.s .

Theorem 2.2. Let {Xi,−∞ < i < ∞} be a sequence of mean zero LNQD
random variables satisfying

(2.1)
∑

j:|k−j|≥u

|cov(Xk, Xj)| → 0 uniformly as u → ∞ for k ≥ 1.

Assume that {ani, 1 ≤ i ≤ n, n ≥ 1} is an array of positive numbers satisfying

(2.2) sup
n

n∑
i=1

a2
ni < ∞ and max

1≤i≤n
ani → 0 as n → ∞

and that V ar(
∑n

i=1 aniXi) → 1 as n → ∞.

(a) If X2
i is uniformly integrable, then

n∑
i=1

aniXi
D−→ N (0, 1),
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(b) Put ξt =
∑∞

j=0 cjXt−j. Here {cj} is a sequence of positive numbers with
C(1) =

∑∞
j=0 cj and

∑∞
j=1 jcj < ∞. If X2

i is uniformly integrable and
max1≤i≤n ani = O(n−1/2), then

n∑
i=1

aniξi
D−→ N (0, C2(1)),

(c) Put ηt =
∑∞

j=−∞ cjXt−j . Here {cj} is a sequence of positive numbers with
D(1) =

∑∞
j=−∞ cj and

∑∞
j=−∞ j2c2

j < ∞. If supi E|Xi|2+δ < ∞ for any
δ > 0 and max1≤i≤n ani = O(n−1/2), then

n∑
i=1

aniηi
D−→ N (0, D2(1)).

Corollary 2.2 Let {Xi, i ≥ 1} be a sequence of LNQD random variables. For
1/2 < α < 1, if X2

i is uniformly integrable, then

Rn = α(2α − 1)1/2Γ2(α)n1/2(1/Aα
n)

n∑
k=0

Aα−1
n−k(Xk − EXk)

D−→ N (o, σ2),

where σ2 = limn→∞ VarRn.

Remark 2.2. In Corollary 2.2, if {X, Xn, n ≥ 1} is a sequence of i.i.d.
random variables and E(X − EX)2 = 1, then σ2 = 1. Since independent random
variables are a special case of LNQD random variables, Corollarys 2.1 and 2.2
extend Theorem A to the LNQD case.

3. PROOFS OF THE MAIN RESULTS

In this section, a+ = max(0, a) and a− = max(0,−a). Let C and c denote
positive constants whose values are unimportant and may vary at different place.
We start with Newman’s inequality([11]).

Lemma 3.1. Suppose X1, · · · , Xn are LNQD. Then

|E exp(i
n∑

j=1

rjXj)−
n∏

j=1

E exp(irjXj)| ≤
∑

1≤i<j≤n

|rirjCov(Xi, Xj)|.

Lemma 3.2. Suppose X1, · · · , Xn are LNQD. Then

E(exp
n∑

i=1

Xi) ≤
n∏

i=1

E exp(Xi).
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Proof. Sine Xi and
∑n

j=i+1 Xj are NQD, exp(Xi) and exp(
∑n

j=i+1 Xj) are
also NQD for i = 1, 2, · · · , n−1 by Lemma A1 in the Appendix. Thus, by induction
we have

E(exp
n∑

i=1

Xi = E[exp(X1) · exp(
n∑

i=2

Xi)]

≤ E(expX1) ·E(exp
n∑

i=2

Xi) ≤
n∏

i=1

[E exp(Xi)].

Proof of Theorem 2.1. Since ani = a+
ni − a−ni, it suffices to show

(3.1)
∞∑

n=1

nr−2P (|
kn∑
i=1

a+
niXni| > ε) < ∞ for any ε > 0, r ≥ 2,

(3.2)
∞∑

n=1

nr−2P (|
kn∑
i=1

a−niXni| > ε) < ∞ for any ε > 0, r ≥ 2.

We prove only (3.1), since the proof of (3.2) is analogous. To prove (3.1), we need
to prove

(3.3)
∞∑

n=1

nr−2P (
kn∑
i=1

a+
niXni > ε) < ∞ for any ε > 0,

(3.4)
∞∑

n=1

nr−2P (
kn∑
i=1

a+
niXni < −ε) < ∞ for any ε > 0.

We first prove (3.3). From the definition of LNQD variables, we know that
{a+

niXni1 ≤ i ≤ kn, n ≥ 1} is still an array of rowwise LNQD random variables.
Since ex≤1+x+ 1

2x2e|x| for all x ∈ R, by Markov inequality and Lemma 3.2, we
get for t = M logn/ε, where M is a large constant and will be specified later on,

∞∑
n=1

nr−2P (
kn∑
i=1

a+
niXni > ε)

≤
∞∑

n=1

nr−2e−εtEet
∑kn

i=1 a+
niXni by Markov inequality

≤
∞∑

n=1

nr−2−M
kn∏
i=1

Eeta+
niXni by Lemma 3.2

≤
∞∑

n=1

nr−2−M
kn∏
i=1

[1 +
1
2
t2(a+

ni)
2EX2

nie
ta+

ni|Xni|]
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≤ C

∞∑
n=1

nr−2−M
kn∏
i=1

[1 + c(logn)2(a+
ni)

2Ee(1+c)|X |]

≤ C

∞∑
n=1

nr−2−M exp{c(logn)2
kn∑
i=1

(a+
ni)

2}

≤ C

∞∑
n=1

n(r+ε)−(2+M ) < ∞,

provided M > (r + ε) − 1. Thus, (3.3) is proved.
By replacing Xni by −Xni from the above statement and noticing

{a+
ni(−Xni) : 1 ≤ i ≤ kn, n ≥ 1} is still an array of rowwise LNQD random

variables, we know that (3.4) holds.

Proof of Theorem 2.2. (a) Without loss of generality, we assume that ani = 0
for all i > n. Note that, for 1 ≤ u ≤ n − 1

n∑
i,j=1;|i−j|≥u

|anianjCov(Xi, Xj)| ≤ sup
k

|
∑

j;|k−j|≥u

Cov(Xk, Xj)|(
n∑

i=1

a2
ni),

and hence, by (2.1) and (2.2), for a fixed small ε > 0, we can find a positive integer
u = uε such that, for every n ≥ u + 1

0 ≤
n∑

i,j=1;|i−j|≥u

|anianjCov(XiXj)| ≤ ε.

By Definition of LNQD, we also have, for every 1 ≤ a ≤ b ≤ n,

(3.5) V ar(
b∑

i=a

aniXi) ≤ sup EX2
i

b∑
i=a

a2
ni,

which is bounded by assumptions.
Denote by [x] the integer part of x and define

K = [
1
ε
],

Ynj =
u(j+1)∑
i=uj+1

aniXi, j = 0, 1, 2, . . . ,

Aj =
{

i : 2Kj ≤ i ≤ 2Kj + K, |Cov(Yni, Yn,i+1)| ≤ 2
K

2Kj+K∑
m=2Kj

Var(Ynm)
}

.

Since 2|Cov(Yni, Yn,i+1)| ≤ V ar(Yni) + V ar(Yn,i+1), we get that for every j the
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set Aj is not empty. Now we define the integers m1, m2, . . . , mn recurrently by
m0 = 0;

mj+1 = min{m : m > mj , m ∈ Aj}
and put

Znj =
mj+1∑

i=mj+1

Yni, j = 0, 1, 2, . . . ,

�j = {u(mj + 1) + 1, . . .u(mj+1 + 1)}.
We observe that

Znj =
∑

k∈�j

ankXk, j = 0, 1, . . . .

It is easy to see that every set �j contains no more than 3Ku elements. Thus,
by (2.2), we know that the uniform integration of {X2

i , i ≥ 1} implies the uniform
integration of {Zni, 1 ≤ i ≤ n, n ≥ 1}, and hence {Zni, 1 ≤ i ≤ n, n ≥ 1} satisfies
the Lindeberg’s condition. It remains to observe that by Lemma 3.1, for any real
number t

|E exp(it
n∑

j=1

Znj) −
n∏

j=1

E exp(itZnj)|

≤ t2
∑

1≤i<j≤n

|Cov(Zni, Znj)|

= t2[
∑

1≤i<j≤n;|i−j|=1

|Cov(Zni, Znj)|+
∑

1≤i<j≤n;|i−j|>1

|Cov(Zni, Znj)|]

≤ Ct2[
∑

1≤i<j≤n;|i−j|≥u

|anianj||Cov(Xi, Xj)|

+
n∑

j=1

|Cov(Ynmj , Yn,mj+1)|]

≤ Ct2[ε +
c

K

n∑
i=1

V ar(Yni)]

≤ Ct2[ε +
c

K

n∑
i=1

V ar(
u(i+1)∑
j=ui+1

anjXj)]

≤ Ct2[ε +
c

K
sup

j
EX2

j

n∑
i=1

(
u(i+1)∑
j=ui+1

a2
nj)] by (3.5)
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≤ Ct2ε[1 + sup
n

n∑
i=1

a2
ni]

≤ Ct2ε for every positive ε by (2.2).

Thus, the assertion (a) in Theorem 2.2 is valid in view of Lemma A2 in the Ap-
pendix.

(b) Note that
ξk = C(1)Xk + X̃k−1 − X̃k,

where X̃k =
∑∞

j=0 c̃jXk−j and c̃j =
∑∞

i=j+1 ci. Hence
n∑

i=1

aniξi = C(1)
n∑

k=1

ankXk +
n∑

k=1

ank(X̃k−1 − X̃k) := In + Jn.

By (a), we get In
D−→ N (0, C2(1)).

To prove Jn
P−→ 0, we here state the Abelian Inequality (see p.32, Theorem 1

of Mitrinovic ([10])):
Let A1, A2, . . . , An; B1, B2, . . . , Bn(B1 ≥ B2 ≥ · · · ≥ Bn ≥ 0) be two

sequences of real numbers, and let Sk =
∑k

i=1 Ai, M1 = min1≤k≤n Sk and M2 =
max1≤k≤n Sk. Then

B1M1 ≤
n∑

k=1

AkBk ≤ B1M2.

Without loss of generality, assume that an1 ≥ an2 ≥ · · · ≥ ann. Let Bs

= ans − ann, 1 ≤ s ≤ n − 1, Bn = 0. Applying (3.5) we have

(3.6)

|Jn| ≤ |
n∑

k=1

(ank − ann)(X̃k−1 − X̃k)|+ |
n∑

k=1

ann(X̃k−1 − X̃k)|

≤ 2 max
1≤k≤n

|ank − ann| max
1≤m≤n

|
m∑

k=1

(X̃k−1 − X̃k)|

+|ann||X̃0 − X̃n|

≤ C max
1≤k≤n

|ank(x)|(|X̃0| + max
1≤m≤n

|X̃m|)

= O(n−1/2)(|X̃0 | + max
1≤m≤n

|X̃m |).

Since
∑∞

j=1 j|cj| < ∞ ⇒ ∑∞
j=0 |c̃j| < ∞ by Lemma A3 in the Appendix,

(3.7) E|X̃0| ≤
∞∑

j=0

|c̃j|E|X̃−j| < ∞.
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On the other hand, observe that

(3.8)
|X̃m| ≤

m∑
i=0

|c̃i||Xm−i| +
∞∑
i=1

|c̃m+i||X−i|

≤ max
0≤i≤m

|Xi|(
m∑

i=0

|c̃i|) +
∞∑
i=1

| ĉi | |X−i|

with ĉi =
∑∞

j=i+1 |cj|. Note that

(3.9)
∞∑

j=1

|c̃j| ≤
∞∑

j=1

atcj =
∞∑

j=1

∞∑
i=j+1

|ci| ≤
∞∑

j=1

j|cj| < ∞,

and n−1/2 max0≤m≤n |Xm| P−→ 0 is equivalent to

n−1
n∑

m=0

X2
mI(Xm| > n1/2ε) P−→ 0, ∀ε > 0

by Lemma A4 in the Appendix, which, together with (3.6)-(3.9), follows Jn
P−→ 0.

(c) Note that

ηi = D(1)Xi + X̃i−1 − X̃i + ˜̃
Xi+1 − ˜̃

Xi,

where X̃i =
∑∞

j=0 c̃jXi−j,
˜̃
Xi =

∑0
j=−∞ ˜̃cjXi−j and c̃j =

∑∞
k=j+1 ck,˜̃cj =

∑j−1
i=−∞ ci. Similarly to the proof in (b), we need only prove that

n−1|X̃0|2 → 0 in probability, n−1 max
1≤m≤n

|X̃m|2 → 0 in probability,

n−1| ˜̃X1|2 → 0 in probability, n−1 max
1≤m≤n

| ˜̃Xm|2 → 0 in probability.

By
∑∞

j=−∞ j2c2
j < ∞, we can get E|X̃0|2 < ∞ and E| ˜̃X1|2 < ∞, which

follow n−1|X̃0|2 → 0 in probability and n−1| ˜̃X1|2 → 0 in probability, respectively.
On the other hand, note that n−1 max1≤m≤n |X̃m|2→0 in probability if and only if

(3.10)

1
n

n∑
i=1

X̃2
i I(X̃2

i > nc) → 0 in probability for any c > 0,

n−1 max
1≤m≤n

| ˜̃Xm|2 → 0 in probability if and only if
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(3.11)
1
n

n∑
i=1

˜̃
X

2

i I( ˜̃
X

2

i > nc) → 0 in probability for any c > 0

by Lemma A4 in the Appendix. Since {X̃2
i } and { ˜̃

X
2

i } are uniformly integr-
able by

∑∞
j=−∞ j2c2

j < ∞ and supi E|Xi|2+δ < ∞, from (3.10) and (3.11) we get

n−1 max
1≤m≤n

|X̃m|2 → 0 in probability, n−1 max
1≤m≤n

| ˜̃Xm|2 → 0 in probability.

APPENDIX

The following result is Lemma 2 of Matula ([9]):

Lemma A1. If {Xi, i ≥ 1} is a sequence of pairwise NQD random variables
and {fi, i ≥ 1} a sequence of nondecreasing functions f i : R → R, then {fi(Xi)}
are also pairwise NQD.

Lemma A2. Suppose that, for each u, Xun →D Xu as n → ∞ and Xu →D X
as u → ∞. Suppose further that

lim
u→∞ lim

n→∞ sup P{ρ(Xun, Yn) ≥ ε} = 0 for each ε > 0.

Then, Yn →D X as n → ∞, where D means convergence in distribution.

Proof. See the proof of Theorem 4.2 in Billingsley ([1]).

The following result is Lemma 2.1 of Phillips and Solo([12]):

Lemma A3. Let C(L) =
∑∞

j=0 cjL
j. Then, we have

C(L) = C(1) − (1 − L)C̃(L),

where C̃(L) =
∑∞

j=0 c̃jL
j, c̃j =

∑∞
j+1 ck. If p ≥ 1, then

∞∑
j=1

jp|cj|p < ∞ ⇒
∞∑

j=0

|c̃j|p < ∞ and |C(1)| < ∞.

From the fact P (maxi |Xni| > ε) = P (
∑

i X2
niI(|Xni| > ε) > ε2) we have the

following result ( See Hall and Heyde [4] p. 53):

Lemma A4. maxi |Xni| →p 0 is equivalent to the weak Lindeberg condition∑
i

X2
niI(|Xni|) > ε) →p 0 for all ε > 0.
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