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REGULARIZED RESOLVENT FAMILIES

Miao Li, Quan Zheng and Jizhou Zhang

Abstract. In this paper we present the notion of regularized resolvent families,
which generalizes the classes of regularized semigroups, regularized cosine
families and resolvent families. We obtained some generation theorems and
analyticity criterions for regularized resolvent families.

1. INTRODUCTION

Let X be a complex Banach space, a ∈ L1
loc(R

+) (where R
+ = [0,∞)) be

a scalar kernel �≡ 0, and A be a closed linear operator on X with dense domain
D(A). We consider the Volterra equation

(1.1) u(t) = f(t) +
∫ t

0
a(t − s)Au(s) ds, t ≥ 0

where f : R+ → X is continuous.
The theory of the abstract Volterra equation has been developed rapidly due to

its applications to many problems in mathematical physics, such as viscoelasticity
and heat conduction in materials; see [14] and the references therein.

In 1980, Prato and Iannelli [4] first introduced the notion of resolvent families,
which now plays a central role in the theory of Volterra equations. A family of
strongly continuous bounded linear operators on X , {R(t)}t≥0, is called a resolvent
family for (1.1) if R(t) commutes with A and satisfies the resolvent equation

R(t)x = x +
∫ t

0
a(t − s)AR(s)x ds, t ≥ 0, x ∈ D(A).
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If the solution of (1.1) exists, it can be represented by the variation of parameters
formula

u(t) =
d

dt

∫ t

0
R(t − s)f(s) ds.

Recently there are some more general concepts such as integrated solution families
[13] and k(t)-regularized resolvents [11]. The Laplace transform technique is a
very useful tool for exponentially bounded resolvent families, integrated solution
families and k(t)-regularized resolvents. However, in such cases, the resolvent set
of the generator A is always nonempty.

In this paper we introduce the notion of C-regularized resolvent family, where
C is an injective bounded operator on X , which allows the resolvent set of A being
empty. The class of C-regularized resolvent families is a very natural extension
of resolvent families (with C = I), C-regularized semigroups (with a(t) ≡ 1)
and C-regularized cosine operators (with a(t) ≡ t) (see [4, 5, 15]). In section 2
we present some basic properties and generation theorems for regularized resolvent
families. Theorem 3.3 and 3.2 give the analyticity criterions for C-regularized
resolvent families, and Theorem 3.2 is even new for resolvent families. At last, we
give several examples.

2. C-REGULARIZED RESOLVENT FAMILIES AND THEIR BASIC PROPERTIES

Throughout this section, A is a densely defined closed operator on a complex Ba-
nach space X and a ∈ L1

loc(R
+) is a scalar kernel �≡ 0 satisfying

∫ ∞
0 e−ωt|a(t)|dt <

∞. In the sequel, we will denote the range of a linear operator A by R(A), and by
ρC(A) = {λ ∈ C : λ−A is injective and R(C) ⊂ R(λ−A)} the C-resolvent set
of A. If f is Laplace transformable, we denote by f̂(λ) the Laplace transform of f
at λ.

Definition 2.1. A family {R(t)}t≥0 ⊂ B(X) is called a C-regularized resol-
vent family for (1.1) if the following conditions are satisfied:

(a) R(·) is strongly continuous on R+ and R(0) = C;
(b) R(t)A ⊂ AR(t) for t ≥ 0;
(c) For x ∈ D(A), t ≥ 0, the C-resolvent equation

(2.1) R(t)x = Cx +
∫ t

0
a(t − s)R(s)Axds

holds. If in addition, there are some constants M, ω ≥ 0 such that ‖R(t)‖ ≤ Meωt

for t ≥ 0, then {R(t)}t≥0 is called exponentially bounded.

We start with the following simple but important proposition.
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Proposition 2.2. Suppose {R(t)}t≥0 ⊂ B(X) is a C-regularized resolvent
family for (1.1) satisfying ‖R(t)‖ ≤ Meωt. Then the following statements hold.

(a) For all x ∈ X , t ≥ 0,
∫ t
0 a(t − s)R(s)x ds ∈ D(A) with

(2.2) R(t)x = Cx + A

∫ t

0
a(t − s)R(s)x ds

(b) If Reλ > ω, then λ − λâ(λ)A is injective, R(λ− λâ(λ)A) ⊂ R(C), and

(2.3) (λ − λâ(λ)A)−1Cx =
∫ ∞

0
e−λtR(t)x dt for x ∈ X ;

furthermore, if â(λ) �= 0, then 1/â(λ) ∈ ρC(A). Moreover, {R(t)}t≥0 is uniquely
determined by A.

(c) R(t)R(s) = R(s)R(t) for t, s ≥ 0.

Proof. By Definition 2.1 (b), (c) and the closedness of A, (2.2) holds for all
x ∈ D(A), thus (a) follows from the denseness of D(A) and the closedness of A.

(b) By Fubini’s theorem and (2.2), we have
∫ ∞

0
e−λtR(t)x dt =

∫ ∞

0
e−λtCx dt + A

∫ ∞

0

(
e−λt

∫ t

0
a(t − s)R(s)x ds

)
dt

= λ−1Cx + A

∫ ∞

0
R(s)x

(∫ ∞

s
e−λta(t − s) dt

)
ds

= λ−1Cx + AR̂(λ)â(λ)x,

where x ∈ X and Reλ > ω. Hence,

(2.4) (λ − λâ(λ)A)R̂(λ)x = Cx for x ∈ X and Reλ > ω.

Since R(t) commutes with A, we get

R̂(λ)(λ− λâ(λ)A)x = Cx for x ∈ D(A) and Reλ > ω,

so that the injectivity of C implies that λ − λâ(λ)A is injective. Thus we see
that (2.3) holds for Reλ > ω and 1/â(λ) ∈ ρC(A) if â(λ) �= 0. Moreover,
by the uniqueness of the Laplace transform, we know that {R(t)}t≥0 is uniquely
determined by A.

(c) We first prove that R(t)C = CR(t) for all t ≥ 0. By Definition 2.1(b), we
have CA ⊂ AC. Thus, we get from (2.4) that

(λ − λâ(λ)A)R̂(λ)C = C2 = (λC − λâ(λ)CA)R̂(λ) = (λ − λâ(λ)A)CR̂(λ),
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where Reλ > ω. Thus R̂(λ)C = CR̂(λ), so, by the uniqueness of the Laplace
transform, we have R(t)C = CR(t). Using a similar procedure one can show that
(c) holds.

Necessary and sufficient conditions for the existence of a resolvent family have
been studied by Da Prato and Lannelli in [4]. In the following, we will give the
generation theorem for exponentially bounded C-regularized resolvent families by
using the Laplace transform.

Theorem 2.3. Suppose that {R(t)}t≥0 ⊂ B(X) is strongly continuous and
satisfies ‖R(t)‖ ≤ Meωt. Then {R(t)}t≥0 is a C-regularized resolvent family for
(1.1) if and only if the following conditions hold:

(a) CA ⊂ AC;
(b) 1/â(λ) ∈ ρ

C
(A) for λ > ω with â(λ) �= 0;

(c) (λ − λâ(λ)A)−1Cx =
∫ ∞
0 e−λtR(t)x dt for all x ∈ X and λ > ω.

Proof. The necessity follows immediately from Definition 2.1 and Proposition
2.2.

Conversely, suppose that (a)-(c) hold. Let x ∈ D(A) and ω < λ, then

(λ − λâ(λ)A)−1CAx =
∫ ∞

0
e−λtR(t)Ax dt,

which means

A(λ − λâ(λ)A)−1Cx = A
( ∫ ∞

0
e−λtR(t)x dt

)
=

∫ ∞

0
e−λtR(t)Ax dt,

it thus follows from the inversion formulas for Laplace transform and the closedness
of A (see cf. Theorem 1.10 in Ch 1. of [16]) that R(t)x ∈ D(A) with AR(t)x =
R(t)Ax.

To prove (2.1), let ρC(A) 
 λ > ω and x ∈ D(A). Then, by (a) and (c), we
obtain ∫ ∞

0
e−λt(R(t)x− Cx)dt

= R̂(λ)x− λ−1Cx

= (λ − λâ(λ)A)−1Cx − λ−1Cx

= (λ − λâ(λ)A)−1â(λ)ACx

= (λ − λâ(λ)A)−1Câ(λ)Ax = R̂(λ)â(λ)Ax

=
∫ ∞

0
e−λt

(∫ t

0
a(t − s)R(s)Ax ds

)
dt.
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The uniqueness theorem of the Laplace transform and the strongly continuity of
R(t) yield the C-regularized resolvent equation (2.1). Finally, by (2.1) we also get
R(0) = C and thus complete the proof.

Next, we will give a Hille-Yosida-type characterization of C-regularized resol-
vent family.

Theorem 2.4. (1.1) admits a C-regularized resolvent family {R(t)} t≥0 ⊂
B(X) satisfying ‖R(t)‖ ≤ Meωt if and only if the following conditions hold:

(a) CA ⊂ AC;

(b) 1/â(λ) ∈ ρC(A) for λ > ω with â(λ) �= 0;

(c) ‖((λ−λâ(λ)A)−1C)(n)‖ ≤ Mn!(λ−ω)−(n+1), λ > ω, n ∈ N0 = N∪{0}.

Proof. Suppose that (1.1) admits a C-regularized resolvent family R(t). Dif-
ferentiating n times with respect to λ on both sides of the identity (2.3) yields (c).
By the necessity part of Theorem 2.3 or by Definition 2.1 and Proposition 2.2(b),
we see that the necessity holds. It remains to prove the sufficiency. By (c) and
the Arendt-Widder Theorem given in [1], there is a family {F (t)}t≥0 ⊂ B(X)
satisfying F (0) = 0,

(2.5) ‖F (t + h) − F (t)‖ ≤ Mheω(t+h), ∀t, h ≥ 0

such that

(2.6) (λ − λâ(λ)A)−1Cx = λ

∫ ∞

0
e−λtF (t)x dt, ∀ x ∈ X and λ > ω.

On the other hand, for x ∈ D(A) and λ > ω, by ACx = CAx, Fubini’s theorem
and integration by parts, we obtain

λ

∫ ∞

0

e−λt
(
tCx +

∫ t

0

a(t − s)F (s)Ax ds
)
dt

= λ−1Cx + λ

∫ ∞

0

(∫ ∞

s

e−λta(t − s) dt
)
F (s)Ax ds

= λ−1Cx + λ
(∫ ∞

0
e−λta(t) dt

)(∫ ∞

0
e−λsF (s)Ax ds

)

= λ−1Cx + â(λ)(λ− λâ(λ)A)−1CAx

= (λ − λâ(λ)A)−1Cx.

Thus, by the uniqueness of the Laplace transform, we have

F (t)x = tCx +
∫ t

0
a(t − s)F (s)Ax ds, t ≥ 0.
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Since F (t)Ax is locally Lipschitz for each x ∈ D(A) and a(t) is locally inte-
grable, we have by Proposition 1.3.7 in [2] that F (t)x is continuously differentiable
on R+ for each x ∈ D(A). Define R(t)x = F ′(t)x, t ≥ 0, for x ∈ D(A);
since D(A) is dense, R(t) can be extended to a bounded operator by (2.5) and the
Banach-Steinhaus Theorem. Moreover it is clear that R(t)x is strongly continuous,
‖R(t)‖ ≤ Meωt and R̂(λ) = (λ− λâ(λ)A)−1C, from which and Theorem 2.3 we
obtain that R(t) is a C-regularized resolvent family for (1.1).

Remark 2.5. If a(t) ≡ 1 or a(t) ≡ t, then Theorem 2.3 is the generation
theorem for generators of C-regularized semigroup [5, 6] or C-regularized cosine
function [15], respectively. In the case where C = I , it is the generation theorem
due essentially to Da Prato and Iannelli [4].

At last, we have the following proposition which is a consequence of Proposition
2.2.

Proposition 2.6. Assume that {R(t)}t≥0 ⊂ B(X) is a C-regularized resolvent
family for (1.1) and satisfies ‖R(t)‖ ≤ Meωt, and assume that AC is unbounded.
Then â(λ) �= 0 and 1/â(λ) ∈ ρC(A) for all λ with Reλ > ω.

Proof. Suppose that â(λ0) = 0 for some λ0 with Reλ0 > ω. Let H(λ) =
(λ − λâ(λ)A)−1C, then H(λ0) = 1

λ0
C. Since â(λ) is analytic and a(t) �≡ 0, λ0

is an isolate zero of finite multiplicity. Therefore, if Γ is a small circle around λ0,
such that Γ ⊂ {λ ∈ C : Reλ > ω} and â(λ) �= 0 on Γ, then on Γ,

AH(λ) =
λH(λ)− C

λâ(λ)

is analytic, hence by Cauchy’s formula we have

AC = Aλ0H(λ0) = A
( 1

2πi

∫
Γ

λH(λ)
λ − λ0

)
dλ =

1
2πi

∫
Γ

λH(λ)− C

(λ − λ0)â(λ)
dλ,

and so AC is a bounded operator, a contradiction to our assumption that AC is
unbounded. Thus â(λ) �= 0 for all Reλ > ω and the conclusion follows from
Proposition 2.2(b).

3. ANALYTICITY CRITERION FOR C-REGULARIZED RESOLVENT FAMILIES

In the following we will denote by Σθ := {λ ∈ C\{0} : | argλ| < θ} and ω +
Σθ = {ω + λ : λ ∈ Σθ}. We suppose that

(H0) A is an unbounded densely defined closed operator on X , C is injective
and CA ⊆ AC. Let 0 �≡ a ∈ L1

loc(R
+) satisfying

∫ ∞
0 e−ω0t|a(t)| dt < ∞.
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Definition 3.1. The C-regularized resolvent family R(t) for (1.1) is analytic, if
the function R(·) : R

+ → B(X) admits analytic extension to a sector Σθ0 for some
0 < θ0 ≤ π/2. We say that R(z) ∈ H(ω0, θ0), if in addition, for each 0 < θ < θ0

and ω > ω0 there is M = M(ω, θ) such that

(3.1) ‖R(z)‖ ≤ MeωRez, z ∈ Σθ

The following two theorems are the main results of this section. Theorem 3.3
generalizes the result of Theorem 3.1 in Ch.1 of [14], Theorem 3.2 is even new for
resolvent family.

Theorem 3.2. Under the assumption (H0), (1.1) admits an analytic C-
regularized resolvent family R(z) ∈ H(ω0, θ0) if and only if the following con-
ditions hold:

(A1) a(t) admits analytic extension to Σ θ0 (still denoted by a(z)) and for
each θ ∈ (−θ0, θ0), a(teiθ) ∈ L1

loc(R
+) and there are ωθ, Mθ ∈ R

+ such that
‖a(z)‖ ≤ Mθe

ωθRez for z ∈ Σθ with Rez ≥ 1 and za(z) → 0 as z → 0 in Σθ;
(A2) For each θ ∈ (−θ0, θ0), let aθ(t) = a(teiθ), Aθ = eiθA. Then the

equation

(3.2) u(t) = f(t) +
∫ t

0
aθ(t − s)Aθu(s) ds, t ≥ 0,

admits a C-regularized resolvent family R θ(t);
(A3) For each θ ∈ (−θ0, θ0), ω > ω0, there exists constant M = M(ω, θ)

such that ‖Rθ(t)‖ ≤ Meωt cos θ.
In this case, Rθ(t) = R(teiθ).

Theorem 3.3. Let (H0) hold. Then (1.1) admits an analytic C-regularized
resolvent family R(z) ∈ H(ω0, θ0) if and only if the following conditions hold:

(H1) â(λ) admits meromorphic extension to ω 0 + Σθ0+π/2;
(H2) 1/â(λ) ∈ ρC(A) for all λ ∈ ω0 + Σθ0+π/2 with â(λ) �= 0;
(H3) (λ−λâ(λ)A)−1C has an analytic extension H(λ) to ω0 + Σθ0+π/2, and

for each ω > ω0 and 0 < θ < θ0 there is a constant c = c(ω, θ) such that

‖H(λ)‖ ≤ c/|λ− ω| for all λ ∈ ω + Σθ+π/2.

Before proving these two theorems, we need some preparations.

Lemma 3.4. Let ω ∈ R, α ∈ (0, π/2] and F : (ω,∞) → X . Then the
following statements are equivalent:

(a) F has an analytic extension (still denoted by F ) to ω + Σα+π/2 such that
‖(λ − ω)F (λ)‖ ≤ Mβ (λ ∈ ω + Σβ+π/2) for every β ∈ (0, α);
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(b) There exists an analytic function h : Σα → X with ‖h(z)‖ ≤ MβeωRez

(z ∈ Σβ) for every β ∈ (0, α) such that

F (λ) =
∫ ∞

0
e−λzh(z) dz for λ > ω.

As a direct consequence of Lemma 3.4, we have

Corollary 3.5. Suppose that (H0) holds and R(z) ∈ H(ω0, θ0) is an analytic
C-regularized resolvent family for (1.1). Then H(λ) := R̂(λ) admits analytic
extension to sector ω0 + Σθ0+π/2 and for each ω > ω0, 0 < θ < θ0 there is
M = M(ω, θ) such that

(3.3) ‖H(λ)‖ ≤ M(ω, θ)
|λ − ω| , λ ∈ ω + Σθ+π/2.

Although the proofs of the next two results are not new (see e.g. [14]), we write
them out for completeness and better understanding.

Lemma 3.6. Suppose that (H0) holds and (1.1) has an analytic C-regularized
resolvent family R(z) ∈ H(ω0, θ0). Then â(λ) admits meromorphic extension to
the sector ω0 + Σθ0+π/2.

Proof. Let H(λ) = R̂(λ). For ω > ω0, by Proposition 2.2(b),

(3.4) H(λ) = (I − â(λ)A)−1C/λ, Reλ > ω.

Choose x ∈ D(A), x∗ ∈ X∗ such that g(λ) := 〈λH(λ)Cx, x∗〉 �≡ 〈C2x, x∗〉.
Otherwise we have λH(λ) ≡ C, which leads to â(λ) ≡ 0 or A = 0, in contradiction
to the assumption (H0) that a �≡ 0 and A is unbounded. By Corollary 3.5, H(λ) is
analytic on the sector ω0 + Σθ0+π/2, and so are g(λ) and g′(λ). For Reλ > ω,

g′(λ) = â′(λ)〈(I − â(λ)A)−2C2Ax, x∗〉
= â′(λ)λ2〈H(λ)2Ax, x∗〉
= â′(λ)h(λ),

where h(λ) := λ2〈H(λ)2Ax, x∗〉 is analytic on ω0 + Σθ0+π/2. We claim that
h(λ) �≡ 0. Otherwise, g(λ) is a constant. This and the fact that g(λ) → 〈C 2x, x∗〉
as λ → ∞ (because R(t)x → Cx as t → 0+) imply that g(λ) ≡ 〈C2x, x∗〉, which
is a contradiction to our choice of x and x∗. So we know that â′(λ) = g(λ)/h(λ)
admits meromorphic extension to the same sector. Moreover,

g′(λ) = â′(λ)〈(I − â(λ)A)−2C2Ax, x∗〉
= [â′(λ)/â(λ)] · 〈(I − â(λ)A)−2C2x − (I − â(λ)A)−1C2x, x∗〉
= [â′(λ)/â(λ)] · 〈λ2H(λ)2x − λH(λ)Cx, x∗〉
= [â′(λ)/â(λ)] · k(λ),
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where k(λ) := 〈λ2H(λ)2x − λH(λ)Cx, x∗〉 is analytic on ω0 + Σθ0+π/2; this
implies that

â(λ) = â′(λ)/g′(λ) · k(λ) = k(λ)/h(λ), Reλ > ω.

From which we know that â(λ) can be extended meromorphically to ω0+ Σθ0+π/2.

Proposition 3.7. Suppose that (H0) holds and R(z) ∈ H(ω0, θ0) is an analytic
C-regularized resolvent family for (1.1). Then R(z)x → Cx for z ∈ Σ θ as z → 0,
for each x ∈ X and 0 < θ < θ0.

Proof. Choose x ∈ D(A) and x∗ ∈ X∗ such that 〈C2Ax, x∗〉 �= 0. Consider
f(z) = 〈R(z)x, x∗〉. From the facts that f(t) → f(0) = 〈Cx, x∗〉 as t → 0+, and
f is analytic and uniformly exponentially bounded on Σθ for every 0 < θ < θ0, one
knows that

λf̂(λ) = 〈λH(λ)x, x∗〉 → 〈Cx, x∗〉
as |λ| → ∞ when λ ∈ ω+Σθ+π/2 for any ω > ω0; similarly, considering (R∗R)(z),
we have

〈λ2H(λ)2x, x∗〉 → 〈C2x, x∗〉,
as |λ| → ∞ when λ ∈ ω + Σθ+π/2. Now from

k(λ) = 〈λH(λ)(λH(λ)x− Cx), x∗〉 → 0

and
h(λ) = λ2〈H(λ)2Ax, x∗〉 → 〈C2Ax, x∗〉,

we obtain that
â(λ) = k(λ)/h(λ) → 0,

as |λ| → ∞ uniformly in λ ∈ ω + Σθ+π/2. Since R̂(λ) = H(λ), by the inversion
formula for Laplace transform we have for x ∈ X , z ∈ Σθ , θ1 ∈ (θ, θ0), ω > ω0,
and R > 0 that

R(z)x = (2πi)−1

∫
Γ

eλzH(λ)x dλ,

where

Γ := {ω + re−i(π/2+θ1) : R ≤ r < ∞} ∪ {ω + Reiφ : |φ| ≤ π/2 + θ1}

∪ {ω + rei(π/2+θ1) : R ≤ r < ∞}
is oriented counterclockwise. Moreover, by (3.4) we have for x ∈ D(A) and
Reλ > ω,

λH(λ)(x− â(λ)Ax) = Cx;
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the above identity holds also for λ in ω0 + Σθ0+π/2 when â(λ) has an analytic
extension at λ. And since â(λ) → 0 as |λ| → ∞ uniformly in λ ∈ ω + Σθ+π/2, by
choosing z = teiϕ, R = 1/t, and δ = sin(θ1 − θ), we obtain when t small enough
that

R(z)x− Cx = (2πi)−1

∫
Γ

eλzH(λ)â(λ)Ax dλ,

which yields that

‖R(z)x− Cx‖
≤ M

2π

∫
Γ

eRe(λz)|λ − ω|−1|â(λ)|‖Ax‖ dλ

≤ M

π
eωt

[ ∫ ∞

R
r−1|â(λ)|e−δr dr +

∫ π

0
ecosϕ|â(λ)| dϕ

]
‖Ax‖

≤ Meωt‖Ax‖ · sup{|â(λ)| : |λ| ≥ t−1, λ ∈ ω + Σθ1+π/2} → 0

as |z| = t → 0. Thus R(z)x → Cx as z → 0, z ∈ Σθ for each x ∈ D(A), our
assertion follows from the Banach-Steinhauss theorem.

The proof of the following result is the same as Corollary 2.3 in Ch.1 of [14].

Corollary 3.8. Suppose that R(z) ∈ H(ω0, θ0) is an analytic C-regularized
resolvent family for (1.1). Then a(t) admits analytic extension to Σ θ0 . Furthermore,
on each sector Σθ, 0 < θ < θ0, there is a decomposition of the form

(3.5) a(z) =
∑

j

pj(z)eλjz + a1(z), z ∈ Σθ,

where the λj denote the finitely many poles of â(λ) contained in ω + Σ θ+π/2,
the pj(z) are polynomials, and a1(z) is analytic in Σθ and satisfies

(3.6) |a1(z)| ≤ CMeωRez/|z|, z ∈ Σθ,

(3.7) za1(z) → 0, as z → 0, z ∈ Σθ0 .

Lemma 3.9. Suppose that R(z) is an analytic C-regularized resolvent family
for (1.1) of type (ω0, θ0). For θ ∈ (−θ0, θ0) let aθ(t) := a(teiθ) be the holomorphic
extension of a(t) on Σθ0 given by Corollary 3.8, then aθ(t) is locally integrable on
R+ and the identity

R(teiθ)x = Cx +
∫ t

0
a((t − s)eiθ)R(seiθ)eiθAx ds

holds for x ∈ D(A). That is, Rθ(t) := R(teiθ) is the C-regularized resolvent
family for (3.2).
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Proof. First from (3.5), (3.7) and the integrability of a(t), we know that
aθ(t) is locally integrable; next from (3.5) and (3.6), we have that aθ(t) is Laplace
transformable for λ large enough and

(3.8) âθ(λ) =
∫ ∞

0
e−λtaθ(t) dt = e−iθ

∫ ∞

0
e−λe−iθta(t) dt = e−iθâ(λe−iθ).

For Reλ > ω, we have

(λ − λâ(λ)A)−1Cx =
∫ ∞

0
e−λtR(t)xdt

for all x ∈ X . So for λ large enough, we have

(λe−iθ − λe−iθâ(λe−iθ)A)−1Cx =
∫ ∞

0
e−λe−iθtR(t)x dt,

hence

(λ − λâθ(λ)Aθ)−1Cx =
∫ ∞

0
e−λe−iθtR(t)xe−iθ dt

=
∫

Γθ

e−λzR(eiθz)x dz

=
∫ ∞

0
e−λtRθ(t)x dt,

since R(z) is analytic on Σθ and (3.1) holds, where Γθ := {re−iθ : r ≥ 0}. Our
result is obtained by Theorem 2.3.

Now we are in the position to give the proofs of the two main results.

Proof of Theorem 3.2. Necessity follows from Corollary 3.8 and Lemma 3.9.
Sufficiency, Let R(z) = Rθ(t) for z = teiθ ∈ Σθ0 , where t ≥ 0, θ ∈ (−θ0, θ).

We only need to show that R(z) is analytic and satisfies (3.1). For each θ ∈
(−θ0, θ0), by (A3) we can define analytic family

Hθ(λ) =
∫ ∞

0

e−λtRθ(t)dt

for Reλ > ω cos θ. Moreover, by (A2) and Proposition 2.2, for Reλ > max{ω cos θ,
ωθ},

Hθ(λ) = (λ − λâθ(λ)Aθ)−1C = (λ − λâ(λe−iθ)A)−1C

= e−iθ(λe−iθ − λe−iθâ(λe−iθ)A)−1C,
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since (3.8) also holds under the assumption (A1). Note that Φ : λ → λeiθ maps
the region

{
λ ∈ C : −π

2 − θ < arg(λ − ω) < π
2 − θ

}
to {λ ∈ C : −π

2 < arg(λ −
ω cos θ) < π

2} (which equals to
{
λ ∈ C : −π

2 < arg(λ − ωeiθ) < π
2

}
), we have

when 0 < θ1 < θ < θ0 that

eiθHθ(λeiθ) = eiθ1Hθ1(λeiθ1) = (λ − λâ(λ)A)−1C

for λ ∈ {
λ ∈ C : −π

2 − θ1 < arg(λ − ω′) < π
2 − θ

}
where ω′ > max{ω, ωθ/ cos θ,

ωθ1/ cos θ1}. And similar identity holds for −θ0 < θ < θ1 < 0. Since each Hθ(λ)
is analytic, the function

H(λ) = eiθHθ(λeiθ),

when λ ∈
{
λ ∈ C : −π

2
− θ < arg(λ − ω) <

π

2
− θ

}
, θ ∈ (−θ0, θ0)

is well-defined on ω + Σθ0+π/2 and analytic. Moreover, for each 0 < θ < θ0, if
λ ∈ ω + Σθ+π/2 with arg(λ−ω) < 0, then λ = ω + rei(−θ+α) for some r > 0 and
−π/2 < α < θ, which falls into region

{
λ ∈ C : −π

2 − θ1 < arg(λ − ω) < π
2 − θ1

}
where θ1 = (θ + θ0)/2, so that

‖H(λ)‖ = ‖Hθ1(λeiθ1)‖ = ‖
∫ ∞

0
e−λeiθ1 tRθ1(t)dt‖

≤ M(θ1, ω)
|Re(λeiθ1) − ω cos θ1| =

M(θ1, ω)
r cos(θ1 − θ + α)

=
M(θ1, ω)

|λ − ω| cos(θ1 − θ + α)

≤ M(θ1, ω)
|λ − ω|min{sin(θ1 − θ), cos θ1} =:

Mθ,ω

|λ − ω| ,

and similar inequality holds for λ ∈ ω + Σθ+π/2 with arg(λ − ω) > 0, thus by
Lemma 3.4, there exists analytic function F (z) : Σθ0 → B(X) such that ‖F (z)‖ ≤
Mθe

ωRez(z ∈ Σθ) for 0 < θ < θ0 and

H(λ) =
∫ ∞

0
e−λzF (z)dz for λ > ω.

Since F (z) is analytic, we have

Hθ(λ) = e−iθH(λe−iθ) = e−iθ

∫ ∞

0
e−λte−iθ

F (t)dt

=
∫ ∞

0
e−λtF (eiθt)dt,

thus by the uniqueness of Laplace transform we have Rθ(t) = F (teiθ), which means
that R(z) = F (z) is analytic and satisfies (3.1).
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Proof of Theorem 3.3. Necessity. Lemma 3.6 gives (H1). For ω > ω0, let
H(λ) = R̂(λ) for Reλ > ω. Then by Proposition 2.2, λH(λ) = (I − â(λ)A)−1C;
and by Corollary 3.5, H(λ) admits analytic extension to ω0 +Σθ0+π/2 and satisfies
(3.3). This gives (H3).

Now let Ω = {λ ∈ ω0 + Σθ0+π/2 : λ �= 0, â(λ) �= 0,∞}. Then for x ∈ D(A),
we have

(3.9) λH(λ)(I − â(λ)A)x = Cx for all λ ∈ Ω

since this relation holds for Reλ > ω. On the other hand, since Rθ(t) = R(teiθ)
is the C-regularized resolvent family for (3.2) by Theorem 3.2, we have R(z)
commutes with A for every z ∈ Σθ0 . Moreover, from the proof of Theorem 3.2 we
know that, for λ ∈ {λ ∈ C : −π/2 − θ < arg(λ − ω) < π/2− θ}, θ ∈ (−θ0, θ0),
λeiθ ∈ ω cos θ + Σπ/2 = ωeiθ + Σπ/2 and

H(λ) = eiθHθ(λeiθ) = eiθ

∫ ∞

0

e−λeiθtRθ(t)dt,

thus H(λ) commutes with A for every λ ∈ ω0 + Σθ0+π/2 since R(z) commutes
with A and θ is arbitrary. Therefore, AH(λ)x = H(λ)Ax is analytic for x ∈ D(A),
λ ∈ Ω and

(3.10) λ(I − â(λ)A)H(λ)x = Cx for all λ ∈ Ω.

From (3.9) and (3.10) we know that H(λ) = (λ − λâ(λ)A)−1C for all λ ∈ Ω.
Next we consider the poles of â(λ). If λ0 ∈ ω0 + Σθ0+π/2 is a pole of â(λ) of

order n, then there is an analytic function b(λ) near λ0 and an �= 0 such that

â(λ) = an(λ − λ0)−n + (λ − λ0)−n+1b(λ),

then from (3.9) and (3.10) we know that λH(λ) has a zero of order n at λ0; letting
λ → λ0 in (3.9) and (3.10) we obtain

−anHnAx = −anAHnx = Cx for x ∈ D(A),

where Hn := lim
λ→λ0

λH(λ)(λ − λ0)−n, which implies that 0 ∈ ρC(A). And if

ω0 < 0 then it is easy to see that λ = 0 must be a pole of â(λ) from (3.9) and
(3.10). Thus (H2) is proved.

Sufficiency. It follows from (H3) and Lemma 3.4 that for every ω > ω0 and θ <
θ0 there exists an analytic family R(z) : Σθ → B(X) with ‖R(z)‖ ≤ c(ω, θ)eωRez

such that
H(λ) =

∫ ∞

0
e−λzR(z)dz

for λ > ω. Since H(λ)=(λ−λâ(λ)A)−1C for λ>ω, it follows from Theorem 2.3
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that R(t) is a C-regularized resolvent family for (1.1). And from Definition 3.1,
we know that R(z) ∈ H(ω0, θ0).

From the proof of Theorem 3.3, we have

Corollary 3.10. Suppose that R(z) ∈ H(ω0, θ0) is an analytic C-regularized
resolvent family for (1.1). Then (3.4) can be extended to ω0 + Σθ0+π/2.

4. EXAMPLES

In this section, we will give several examples.

Example 4.1. Suppose that R(C) is dense. For the kernel

a(t) = tβ−1/Γ(β), t > 0

where β ∈ (0, 2), the Volterra equation (1.1) has a bounded analytic C-regularized
resolvent family for (1.1) of angle θ0 if and only if ρC(A) ⊃ Σβ(θ0+π/2) and

(4.1) ‖µ(µ − A)−1C‖ ≤ M, µ ∈ Σβ(θ0+π/2).

In fact, since â(λ) = λ−β for Reλ > 0, â(λ) admits analytic extension to the
complex plane sliced along the negative real axis. Moreover, 1/â(λ) maps the
sector Σθ0+π/2 onto the sector Σβ(θ0+π/2). Thus by Theorem 3.3, there is a bounded
analytic C-regularized resolvent family for (4.1) if and only if Σβ(θ0+π/2) ⊂ ρC(A)
and

‖(λ − λâ(λ)A)−1C‖ ≤ M/|λ|, λ ∈ Σθ0+π/2,

which is exactly (4.1).
So the C-regularized resolvent family extends the conditions on resolvents of

A for a resolvent family to its C-resolvents. Also, since we only need a sector
(of angle probably less than π/2) contained in the C-resolvent set of A, the class
of C-regularized resolvent families is not a trivial generalization of C-regularized
semigroups.

Recall that a C∞-function f : (0,∞) → R is called completely monotonic if
(−1)nf (n)(λ) ≥ 0 for all λ > 0, n ∈ N0, and Bernstein function if f(λ) ≥ 0 and
f ′(λ) is completely monotonic. Suppose that â(λ) �= 0 for all λ > 0. Then a(t)
is called completely positive if 1/λâ(λ) is completely monotonic and 1/â(λ) is a
Bernstein function. Similarly as the proof of Theorem 3.7 in [7], we can show

Lemma 4.2 Let A be the generator of an exponentially bounded C-regularized
semigroup and a(t) be completely positive. Then (1.1) admits a C-regularized re-
solvent family.
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And the following improves slightly Example 3.10 in [7].

Example 4.3. Consider the equation

(4.2)
∂u

∂t
(t, x)=Au(t, x)−α

∫ t

0
e−α(t−s)Au(s, x) ds, α ≥ 0, 0≤t≤T, x∈R

u(0, x) = u0(x).

This equation equals to the Volterra equation

(4.3) u(t, x) = f(x) +
∫ t

0
a(t − s)Au(s, x)ds

with f(x) = u0(x), a(t) = e−αt. Thus a(t) is completely positive, since 1/â(λ) =
λ + α is a Bernstein function and 1/λâ(λ) = α

λ + 1 is completely monotonic. Now
choose A = a ∂3

∂x3 + b ∂
∂x(a, b ∈ R\{0}), then (4.2) is just the K-dV equation

∂u

∂t
(t, x) = α

∂3u

∂x3
(t, x) + b

∂u

∂x
(t, x).

From [8], we know that A generates a r-times integrated semigroup for r > |12 − 1
p |,

it thus follows from [9] that A generates a (ω − A)−r-regularized semigroup for
some ω > 0. Therefore, by Lemma 4.2, there is a C-regularized resolvent family
for (4.3). So, for u0(x) ∈ W r+3,p(R), the equation (4.2) has a solution.
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lag, 2001.

3. W. Arendt and H. Kellerman, Integrated solutions of Volterra integrodifferential equa-
tions and applications, In: G. Da Prato and M. Iannelli (ed.), Volterra Integrodiffer-
ential Equations in Banach Spaces and Applications, Longman Sci. Tech., 1989, pp.
21-51.



132 Miao Li, Quan Zheng and Jizhou Zhang

4. G. Da Prato and M. Iannelli, Linear integro-differential equation in Banach space,
Rend. Sem. Math. Padova, 62 (1980), 207-219.

5. E. B. Davies and M. M. H. Pang, The Cauchy problem and a generalization of the
Hille-Yosida theorem, Proc. London Math. Soc., 55 (1987), 181-208.

6. R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations,
Lect. Notes Math. 1570, Springer, Berlin, 1994.

7. R. deLaubenfels, Holomorphic C-Existence families, Tokyo J. Math., 15 (1992),
17-38.

8. M. Hieber, Integrated semigroups and differential operators on Lp spaces, Math.
Ann., 291 (1991), 1-16.

9. M. Li and Q. Zheng, α-times integrated semigroup: local and global, Studia Math.,
154 (2003), 243-252.

10. C. Lizama, On Volterra equations associated with a linear operator, Proc. Amer.
Math. Soc., 118 (1993), 1159-1166.

11. C. Lizama, Regularized solutions for Volterra equations, J. Math. Anal. Appl., 243
(2000), 278-292.

12. F. Neubrander, Abstract elliptic operators, analytic interpolation semigroups and
Laplace transforms of analytic functions, Semesterbericht Funktionalanelysis, Tübingen,
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