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ON GOLLNITZ-GORDON TYPE IDENTITIES AND DURFEE
DISSECTION

Wei-Yueh Chen and Sen-Shan Huang

Abstract. By using the Durfee rectangle and Durfee dissection we give com-
binatorial interpretations for Gollnitz-Gordon type identities. Also, we give a
generalization of an identity due to G. E. Andrews.

1. INTRODUCTION

The Durfee square has been utilized not only to give new proofs for some famous
identities but also to extract nontrivial combinational results from known identities.
We give some examples here. The identity of Euler [8]
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owns an elegant combinatorial proof through the use of the Durfee square (see
[11, pp. 280-281] or [6, p. 27]). Here, we have adopted the notation (a; q), =
(1—a)(1—aq)---(1—aq” ') and (a;q)ee = lim, oo (a; q), for |g| < 1. Also,
by convention, we define (a;q)o = 1. Sylvester [13] also applied the concept of
the Durfee square to prove that
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from which Euler’s pentagonal number theorem [1, Theorem 14-4] may be deduced
by setting x = —1.
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The utilization of Durfee squares has been studied extensively by G. E. Andrews
[2-4], in which he established generalizations of (1) and (2). In particular, in [4],
Andrews introduced the concept of successive Durfee squares and rectangles and
defined the “(k, a)-Durfee dissection” of a partition in order to give a combinatorial
interpretation for the identity
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where k > 2 and N; = n; +---+ng_q fori = 1,2,..., k — 1. Note that the
identity (3) reduces to the famous Rogers-Ramanujan identities when £ = a = 2
and k =a+1=2.

Motivated by the work of Andrews in [4], we naturally try to derive some com-
binatorial results from Gollnitz-Gordon type identities which are perfect analogue of
Rogers-Ramanujan type identities. We will do this in the next section by extending
Andrews’s “(k, a)-Durfee dissection”. At the end, we give a generalization of an
identity due to Andrews [4, 3].

2. DURFEE DISSECTION AND THE MAIN RESULTS

The Gollnitz-Gordon identities may be stated analytically as
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The identities (4) and (5) were discovered independently by H. Gollnitz [9] and
B. Gordon [10]. D. Bressoud [7] and P. Paule [12] generalized (4) and (5) to
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(see Bressoud [7, (3.6) with » = [ = 1] or Paule [12, (54)]) and
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(see Bressoud [7, (3.7) with » = 1] or Paule [12, (53)]).
Also, Bressoud proved the identity
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(see Bressoud [7, (3.9)]). Here we have k > 2 and N; = n; + -+ + ng_1 for
i=1,2,...,k—1.

According to the similarity between the identities (6)-(8) and (3), we are mo-
tivated to find combinatorial meanings for these Gollnitz-Gordon type identities.
To do so, we will extend Andrews’s “(k, a)-Durfee dissection” of a partition by
introducing an additional parameter » and defining the “(k, a, r)-Durfee dissection”
of a partition. First, we determine the first ¢ — 1 successive maximal rectangles
of the partition such that, for each such rectangle, the number of dots on the hori-
zontal side 1s » times the number of dots on the vertical side. Next, we determine
k — a maximal rectangles such that the number of dots on the horizontal side is
one less than r times the number of dots on the vertical side. We will demonstrate
the concept of the “(k, a, r)-Durfee dissection” in details in the proofs of Theorems
1-3.

As for “(k, a)-admissible” defined in [4], we shall say that a partitionis “(k, a, r)-
admissible™ if it has no parts below the last rectangle in its (k, a, r)-Durfee dissec-
tion and furthermore the lower edge of each of the final £ — a rectangles of the
(k, a, r)-Durfee dissection is actually a part of the partition.

For simplicity, we adopt the standard notation []\]\/ﬂ . for the Gaussian polynomial

which is defined by
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It is known that [ ] is the generating function for the number of partitions of n
into at most M — N parts, all parts not exceeding N [6, p. 33, Theorem 3.1].
Hence, for any positive integer k, [M] go SCTVES as the generating function for the
number of partitions of n into at most M — N parts, all parts = 0 (mod k) and not
exceeding k£/V. This fact will be used in the proofs of the theorems below.

In the following, for any partition A, we introduce the partitions A, and A, such
that A, is the subpartition collecting all the even parts of A and ), is the subpartition
collecting all the odd parts of \. For example, if A\ = (7,7,5,4,4,2, 1), a partition
of 20, then A\, = (4,4,2) and A\, = (7,7,5,1).

Theorem 1. The number of partitions of n into parts # 0, +(2k —1) (mod 4k)
and # 2 (mod 4) equals the number of partitions X\ of n satisfying that \. is
(k, k, 2)-admissible and all parts of \, are distinct and greater than the horizontal
size of the smallest Durfee rectangle in the (k, k, 2)-dissection of Ae.

Proof. The left side of (6) is clearly the generating function for the number of
partitions of 7 into parts # 0, £(2k —1) (mod4k) and # 2 (mod 4). To prove this
theorem, we will show that the right side of (6) is actually the generating function
for the number of partitions of n of the second type in the theorem.

The right side of (6) may be rewritten as
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Nttht(qqq)N the g ting function for the Durf tangle of h tal
) 1
side 2Ny and vertical side Ny, with an attached partition which has at most V;
p
parts, each even. In the following graph, the largest rectangle and triangle are,
respectively, the Durfee rectangle and the attached partition mentioned above.
For2<j<k—1, []7\[7*11] , generates the partition which has at most (Nj,l —
i-14q
nj_1) = N; parts, each even and < 2n;_; = 2(N;_1 — N;). So, g2 NixN; [Nj*l] ,
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generates those parts of the partition with a j-th Durfee rectangle of horizontal side
2N; and vertical side N; and the partition attached to the j-th Durfee rectangle
which has at most N; parts, each even and < 2(N;_; — N;). Thus

2N x N
q ! ! . 2Na X Ng |:N1:| .. ,q2Nk71><Nk71 |:Nk2:|
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generates the partition A\, with all parts even and (k, k, 2)-admissible. On the other
hand, (—¢?Ms—111; ¢?) clearly generates distinct odd parts, each > 2N . the
horizontal size of the smallest Durfee rectangle in the (k, k, 2)-dissection of ..
Hence the right side of (6) is the generating function for the number of partitions
of n of the second type in the theorem. We complete the proof of the theorem. m

In Theorem 1, let k = 2, n = 10, then the partitions of 10 into parts = 1,4,7
(mod 8)are 9+1,7+1+1+1,4+4+1+1,44+14+14+14+1+1+1,and
I+1+1+1+14+1+14+1+1+1; and the partitions A = A, + X, of 5 satisfying
that A, is (2, 2,2)-admissible and all parts of )\, are distinct and greater than the
horizontal size of the smallest Durfee rectangle in the (2, 2, 2)-dissection of . are
9+1,7+3.5+3+2,6+4, and 10.

Theorem 2. The number of partitions of n into parts % 0, £1 (mod 4k) and
# 2 (mod 4) equals the number of partitions X = A\, + A\, of n satisfying that \.
is (k, 1,2)-admissible and all parts of A\, are distinct and greater than 2 plus the
smallest even part of .

Proof. The left side of (7) is clearly the generating function for the number
of partitions of 7 into parts #Z 0, £1 (mod4k) and # 2 (mod 4). To prove this
theorem, we will show that the right side of (7) is the generating function for the
number of partitions of n of the second type in the theorem.

The right side of (7) may be rewritten as
Z q2N1><(N1+1) ‘ q2N2><(N2+1)
(4% ¢*) N,

Nl .. q2Nk71><(Nk71+1)
T ] 42

Nkﬂ
qQ

nNEg—2
n1,.,m,—1 20

(=g )

For 2 < j <k — 1, ¢2Vix(N;+1) [Nj*ﬂ , generates those parts of the partition

nj7
with the j-th Durfee rectangle of horizontal side 2/V; and vertical side N;+1 whose
lower edge is actually a part since the partition attached to the j-th Durfee rectangle
has at most NN; parts, each even and < 2(NN;_; — N;) (see the graph below).
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generates the partition A\, with all parts even and (k, 1, 2)-admissible. On the other
hand, (—¢?Mx—113: ¢2) clearly generates those parts of the partition with distinct
odd parts, each > 2N, +2. Moreover, 2NV is the horizontal size of the smallest
Durfee rectangle in the (k, 1, 2)-dissection of A, and is indeed the smallest part of
Ae. and so (—¢?Ne-173. ¢2)  generates those parts of the partition with distinct
odd parts, each greater than 2 plus the smallest even part of A.. This completes the
proof of the theorem. ]

In Theorem 2, let k = 2,n = 10, then the partitions of 10 into parts = 3,4, 5
(mod &) are 5+ 5 and 4 + 3 + 3, and the partitions A = A\, + A, of 10 satisfying
that A, is (2, 1,2)-admissible and all parts of ), are distinct and greater than the
smallest even part of A, plus 2 are 7 + 3 and 8 + 2.

Theorem 3. The number of partitions of n into parts % 0, +(2a — 1) (mod
4k) and # 2 (mod 4) equals the number of representations of n into ey + eg +
<ot e;—0p —o0g—---—o0j where ey = ey = -+ > ¢; are all even and (k, a,2)-
admissible, 01 > o2 > --- > o0; are all odd and smaller than the number of dots
in the horizontal side of the first Durfee rectangle of the dissection of the partition
e tey+---+e

Proof. The left side of (8) is clearly the generating function for the number of
partitions of n into parts n # 0, =(2a — 1)(mod 4k) and # 2 (mod 4). To prove
this theorem, we will show that the right side of (8) is the generating function for
the number of representations of n into e; +ex +---+ ¢ —01 —02 — -+ — 0;
satisfying all the conditions described in the theorem.

The right side of (8) may be rewritten as
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By similar arguments used in the proofs of theorem (1) and (2), we know that
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is the generating function of (k, a, 2)-admissible partitions. And, (—q¢'~2V1; ¢%) N,
is the generating function for the number of representations of a negative integer
into distinct parts taken from —1, —3,..., —(2N7 — 1). Note that the odd numbers
1,3, ...,(2Ny — 1) are all smaller than 2/N; which turns out to be the horizontal

side of the first Durfee rectangle appearing in (9). Therefore, the right side of (8)
is the generating function for the number of representations of n of the second type
described in the theorem. This completes the proof of the theorem. ]

Remark In the statement of Theorem 3, let o1 = 2m — 1 for some positive
integer m, then we have e; +ex+---+¢; =n+o1+o3+---+0; < n+m? and
(2m)-m < e;tex+---+e;. Thus 2m? < n+m? and so m < /n. which means
01 < 2y/n—1. Inthe case a = 1, we can do slightly better, that is m < v/n + 1—1,
since e; + ey +---+e; = (2m)(m+ 1) in this case.

In Theorem 3, let » = 10,0 = 1, k = 2, then the partitions of 10 into parts=
3,4,5 (mod 8) are 5 + 5 and 4 + 3 + 3, and the representations of 10 into e; +
eg+---+e —01 —o2 —---—o0j inwhich ey > ey > --- > e; are all even and
(k, a,2)-admissible, 0; > 09 > -+ > o;j are all odd and smaller than the number
of dots in the horizontal side of the first Durfee rectangle of the dissection of the
partitione; + ey +---+e; are 8+2and 6 +4 +4 —3 — 1.

3. A GENERALIZATION OF ANDREWS’S IDENTITY

Andrews [5] derives the identity
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where [ > 2 and N; =n; +---+mny_q foréi =1,2,...,1—1. Letting l = 2 in (10),
we have

1 N q* z
(an (24; 9) o ggg(q;q)n(zq;q)n’

which is originally due to Cauchy and can be found in [6, p. 20, Corollary 2.6].
Andrews [2] also obtained a generalization for (11) by establishing the identity
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where h, k are positive integers, d(a, b) is defined to be zero if @ # b and 1 if a = b,
and the sum }_, .y is restricted to those pairs (¢, j) such that

(R) eitheri = 5 =0, or 1 <i < h,1<j<kwith (¢, k) # (h, k).

Now, by observing the way that (12) generalizes (11), one might naturally con-
jecture an extension for (10), namely,
1
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2

where [ > 2, h, k are positive integers, N; =n; +---+n 1 fori =1,2,...,1—1,
and (41,71), ..., (411, j;—1) are ordered pairs satisfying the restriction (R).

Although it implies both (10) (with h = k£ = 1) and (12) (with [ = 2), the
conjecture (13) turns out to be incorrect. To see this, one only needs to equate the
coefficients of zg on both sides of (13) with h = 1,k = 2, and [ = 3. The valid
generalization we are looking for is indeed akin to (13) but a bit more complicated
and will be derived in the following.

From Andrews’s result [2, (2.13)]

Z Z hN+z)(kN+j)ZhN+i M + kN +i6(j, k) — kN — j
(Zq, N>O QRN -+j—1+8(5,0)+6(i,h) hN +1id(3, k) q

where the ordered pair (4, 7) satisfies the restriction (R) and the inner sum satisfies
that kV + 5 < M, we can rewrite (12) as
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where (i1, 71) and (42, j2) satisty (R) and the restriction N7 > N3 > 0 follows from
the inequality

kNo + 5o < ENy +j1—1 +(5<21,0) +(5<21,h)

or equivalently,

Nl_N2> <j2_j1+1_6<i170>_6<i17h>>20'
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Repeating the process above for [ — 2 times, we arrive at
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To simplify the notation, we let ag = kng + js — 1 + 9(és,0) + 6(is, h), Ts =
hNs +i56(Js, k), and 5 = hng +i56(js, k) for s = 1,--- 1 — 1. Note thatT;_;
=;_1. With the help of simplified notation, we can rewrite the last equality as
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Observe the difference between (14) and our previously false conjecture (13).
On the other hand, note that (14) reduces to (12) with [ = 2 and reduces to (10)
with h = k = 1 since, in the latter case, we have i1 = j1 =--- =141 = j;_1 = 0.
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