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APOSTOL-EULER POLYNOMIALS OF HIGHER ORDER
AND GAUSSIAN HYPERGEOMETRIC FUNCTIONS

Qiu-Ming Luo

Abstract. The purpose of this paper is to give analogous definitions of Apostol
type (see T. M. Apostol [Pacific J. Math. 1 (1951), 161-167]) for the so-called
Apostol-Euler numbers and polynomials of higher order. We establish their
elementary properties, obtain several explicit formulas involving the Gaussian
hypergeometric function and the Stirling numbers of the second kind, and
deduce their special cases and applications that lead to the corresponding
formulas of the classical Euler numbers and polynomials of higher order.

1. INTRODUCTION

Analogous definitions of the classical Bernoulli numbers and polynomials were
given by Apostol (see [2, p. 165 (3.1)]). These analogues, called here the Apostol-
Bernoulli numbers and polynomials, were used recently by Srivastava (see [4, p. 83-
84]). Further, some generalizations of Apostol-Bernoulli polynomials were defined
by Luo and Srivastava (see [3, p. 290-302]). In this section, we similarly give
the analogous definitions for the classical Euler numbers and polynomials of higher
order by using Apostol’s idea as follows.

Definition 1. Apostol-Euler polynomials of higher order E(α)
n (x; λ) are defined

by means of the generating function:

(1)
( 2

λez + 1

)α
exz =

∞∑
n=0

E(α)
n (x; λ)

zn

n!
(|z + logλ| < π).
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Setting α = 1 in (1), En(x; λ) = E(1)
n (x; λ) are called the Apostol-Euler poly-

nomials; setting λ = 1 in (1), E
(α)
n (x) = E(α)

n (x; 1) are called the Euler poly-
nomials of higher order (see [5, p. 66 (64)]); setting α = 1 and λ = 1 in (1),
En(x) = E(1)

n (x; 1) are called the classical Euler polynomials (see [5, p. 63 (39)]).

Definition 2. Apostol-Euler numbers of higher order E (α)
n (λ) are defined by

means of the generating function:

(2)
( 2ez

λe2z + 1

)α
=

∞∑
n=0

E(α)
n (λ)

zn

n!
(|2z + logλ| < π).

Setting α = 1 in (2), En(λ) = E(1)
n (λ) are called the Apostol-Euler numbers; setting

λ = 1 in (2), E
(α)
n = E(α)

n (1) are called the Euler numbers of higher order (see [5,
p. 66 (65)]); setting α = 1 and λ = 1 in (2), En = E(1)

n (1) are called the classical
Euler numbers (see [5, p. 63 (40)]).

Here α, λ are arbitrary parameter (real or complex).

2. LEMENTARY PROPERTIES OF THE APOSTOL-EULER POLYNOMIALS OF HIGHER ORDER

In the present section we can readily prove each of the following results in a
straightforward way by using generating functions (1) and (2).

Proposition 1.

(3) E(α)
n (λ) = 2nE(α)

n

(α

2
; λ

)
and E(0)

n (x; λ) = xn.

Proposition 2.

(4) E(α)
n (x; λ) =

n∑
k=0

(
n

k

)E(α)
k (λ)
2k

(
x − α

2

)n−k
.

Proposition 3. Difference equation

(5) λE(α)
n (x + 1; λ) + E(α)

n (x; λ) = 2E(α−1)
n (x; λ)

Proposition 4. Differential relation

(6)
∂

∂x
E(α)

n (x; λ) = nE(α)
n−1(x; λ)
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(7)
∂p

∂xp
E(α)

n (x; λ) =
n!

(n − p)!
E(α)

n−p(x; λ)

Proposition 5.

(8)
∫ b

a
E(α)

n (x; λ)dx =
E(α)

n+1(b; λ)− E(α)
n+1(a; λ)

n + 1

Proposition 6. Addition formula

(9) E(α+β)
n (x + y; λ) =

n∑
k=0

(
n

k

)
E(α)

k (x; λ)E(β)
n−k(y; λ)

Proposition 7.

(10) E (α)
n (α − x; λ) =

(−1)n

λα
E(α)

n (x; λ−1)

(11) E (α)
n (α + x; λ) =

(−1)n

λα
E(α)

n (−x; λ−1)

Proposition 8. Two recursion formulas

(12) E (α)
n+1(x; λ) = xE(α)

n (x; λ)− αλ

2
E(α+1)

n (x + 1; λ)

(13) E (α+1)
n (x; λ) =

2
α
E(α)

n+1(x; λ) +
2(α − x)

α
E(α)

n (x; λ)

3. SEVERAL EXPLICIT FORMULAS FOR THE APOSTOL-EULER POLYNOMIALS AND

NUMBERS OF HIGHER ORDER

Recently, Srivastava and Todorov gave the following two explicit formulas for
the Bernoulli polynomials and numbers of higher order in terms of the Gaussian
hypergeometric function and the Stirling numbers of the second kind, respectively
(see [5, p. 62, Eq. (28) and p. 63, Eq. (37)], see also [6]).

(14)
B

(α)
n (x) =

n∑
k=0

(
n

k

)(
α + k − 1

k

)
k!

(2k)!

k∑
j=0

(−1)j

(
k

j

)
j2k(x + j)n−k

×F [k − n, k − α; 2k + 1; j/(x + j)]
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and

(15) B(α)
n =

n∑
k=0

(−1)k

(
α + n

n − k

)(
α + k − 1

k

)(
n + k

k

)−1

S(n + k, k).

In this section, we apply a similar technique in order to derive some analogous
representations for the Apostol-Euler polynomials and numbers of higher order.
Now we state and prove our main results given below.

Theorem 1. If n is positive integer and α and λ are arbitrary real or complex
parameters, then we have

(16)

E(α)
n (x; λ) = 2α

n∑
l=0

(
n

l

)(
α + l − 1

l

)
λl(λ + 1)−α−l

×
l∑

k=0

(−1)k

(
l

k

)
kl(x + k)n−lF [l − n, l; l + 1; k/(x + k)]

where F [a, b; c; z] denotes the Gaussian hypergeometric function [5, p. 44 (4)].

Proof. We differentiate both side of the generating relation (1) with respect to
the variable z. By using Leibniz’s rule, we thus get

(17)

E(α)
n (x; λ) = Dn

z

{(
2

λez + 1

)α

exz

}∣∣∣∣
z=0

, Dz =
d

dz
.

= 2α
n∑

s=0

(
n

s

)
xn−sDs

z

{[
(λ + 1) + λ(ez − 1)

]−α}∣∣∣
z=0

.

Applying the series expansion:

(18) (a + w)−α =
∞∑

k=0

(
α + k − 1

k

)
a−α−k(−w)k (|w| < |a|)

and the well-known formula (see [5, p. 58 (15)])

(19) (ez − 1)k = k!
∞∑

r=k

S(r, k)
zr

r!

we have

(20) E (α)
n (x; λ) = 2α

n∑
s=0

(
n

s

)
xn−s

s∑
l=0

(
α + l − 1

l

)
(λ + 1)−α−l(−λ)ll!S(s, l).
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We now change the order of summation in the above double series, and make use
of the following formula: (see [5, p. 58 (20)])

(21) S(n, k) =
1
k!

k∑
j=0

(−1)k−j

(
k

j

)
jn,

so that

(22)

E(α)
n (x; λ) = 2α

n∑
l=0

(
n

l

)(
α + l − 1

l

)
(λ + 1)−α−lλlxn−l

×
l∑

k=0

(−1)k

(
l

k

)
klF [l − n, 1; l + 1;−k/x]

in terms of the Gaussian hypergeometric function.
Finally, if we apply the known transformation [1, 15.3.4]:

F [a, b; c; z] = (1− z)−aF [a, c− b; c; z/(z − 1)]

in (22), we are led immediately to the explicit formula (16) asserted by Theorem
1.

Corollary 1. For α = 1 in Theorem 1, we obtain the following explicit formula
for the Apostol-Euler polynomials:

(23)

En(x; λ) = 2
n∑

l=0

(
n

l

)
λl(λ + 1)−l−1

×
l∑

k=0

(−1)k

(
l

k

)
kl(x + k)n−lF [l − n, l; l + 1; k/(x + k)]

Theorem 2. If n is positive integer, and if α and λ are arbitrary real or
complex parameters, then

(24)

E(α)
n (λ) = 2α

n∑
j=0

(−1)j

(
n + α

j + α

)(
α + j − 1

j

)
(λ + 1)−j−α

j∑
i=0

(
j

i

)
λj−i(j − 2i)n

Proof. From the generating relation (2), we apply a similar proof process of
Theorem 1, note the elementary combinatorial identities:

(25)
(

m

l

)(
l

n

)
=

(
m

n

)(
m − n

m − l

)
and

s∑
ν=0

(
η + ν

ν

)
=

(
η + s + 1

s

)
,
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and we obtain the formula (24) immediately.

Corollary 2. For α = 1 in Theorem 2, we obtain the following formula of the
Apostol-Euler numbers:

(26) En(λ) = 2
n∑

j=0

(−1)j

(
n + 1
j + 1

)
(λ + 1)−j−1

j∑
i=0

(
j

i

)
λj−i(j − 2i)n.

Lemma 1.

(27) E (α)
n

(x

2
; λ

)
=

n∑
k=0

(
n

k

)(−x

2

)n−kE(α)
k (x; λ).

Proof. The generating relation (1) yields

(28)

∞∑
n=0

E(α)
n

(x

2
; λ

) zn

n!
=

( 2
λez + 1

)α
e

xz
2 =

( 2
λez + 1

)α
exz · e−xz

2

=
∞∑

n=0

E(α)
n (x; λ)

zn

n!
·

∞∑
n=0

(−x

2

)n zn

n!

=
∞∑

n=0

[
n∑

k=0

(
n

k

)(−x

2

)n−kE(α)
k (x; λ)

]
zn

n!
.

We now compare the coefficients of zn

n! on both side of (28), and we obtain the
formula (27) immediately.

Theorem 3. If n is a positive integer, and if α and λ are arbitrary real or
complex parameters, then

(29)

E(α)
n (λ) = (−1)n

n∑
k=0

(
n

k

)
2k+ααn−k

k∑
l=0

(
α + l − 1

l

)
(−1)l(λ + 1)−α−ll!S(k, l)

Proof. By [1, 15.1.20]

F [a, b; c; 1] =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

(c �= 0,−1,−2, . . . ,�(c− a − b) > 0),

which (for a = l − n, b = l, and c = l + 1) readily yields
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(30) F [l − n, l; l + 1; 1] =
(

n

l

)−1

, (0 ≤ l ≤ n)

In view of (30), the special case of our formula (16) when x = 0 gives the repre-
sentation as follows:

(31) E (α)
n (0; λ) = 2α

n∑
l=0

(
α + l − 1

l

)
(λ + 1)−α−l(−λ)ll!S(n, l)

Finally, if we apply the formulas (31) (replace λ by λ−1), (10) (set x = 0), (27) (set
x = α), and (3), we are led immediately to the formula (29) asserted by Theorem
3.

Corollary 3. For α = 1 in Theorem 3, the following formula for the Apostol-
Euler numbers involving the Stirling numbers of the second kind holds true:

(32) En(λ) = (−1)n
n∑

k=0

(
n

k

)
2k+1

k∑
l=0

(−1)l(λ + 1)−l−1l!S(k, l)

4. NEW FORMULAS FOR EULER POLYNOMIALS AND NUMBERS OF HIGHER ORDER

In this section, we will give some special cases and applications of E (α)
n (x; λ)

and E (α)
n (λ), thereby obtaining the corresponding formulas for the Euler polynomials

and numbers of higher order, including the classical Euler polynomials and num-
bers. These results will further develop and supplement the contents of the recent
monograph by H.M. Srivastava and Junesang Choi (see [5, p. 59-66]), concerning
the Euler polynomials and numbers of higher order.

By setting λ = 1 in (16) and (29), we (respectively) obtain the following for-
mulas of the classical Euler polynomials and numbers of higher order:

(33)

E
(α)
n (x) =

n∑
l=0

(
n

l

)(
α + l − 1

l

)
2−l

×
l∑

k=0

(−1)k

(
l

k

)
kl(x + k)n−lF [l − n, l; l + 1; k/(x + k)]

and

(34) E(α)
n = (−1)n

n∑
k=0

(
n

k

)
αn−k

k∑
l=0

(
α + l − 1

l

)
(−1)l2k−ll!S(k, l)
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Further, by setting α = 1 in (33) and (34), we (respectively) obtain the following
formulas of the classical Euler polynomials and numbers:

(35) En(x) =
n∑

l=0

(
n

l

)
2−l

l∑
k=0

(−1)k

(
l

k

)
kl(x+k)n−lF [l−n, l; l+1; k/(x+k)]

and

(36) En = (−1)n
n∑

k=0

(
n

k

) k∑
l=0

(−1)l2k−ll!S(k, l)

In addition, by setting λ = 1 in (24), we obtain the following formula of the
Euler numbers of higher order:

(37) E(α)
n =

n∑
j=0

(−1)j

(
n + α

j + α

)(
α + j − 1

j

)
2−j

j∑
i=0

(
j

i

)
(j − 2i)n

Further, by setting α = 1 in (37), we obtain the following formula of the classical
Euler numbers:

(38) En =
n∑

j=0

(−1)j

(
n + 1
j + 1

)
2−j

j∑
i=0

(
j

i

)
(j − 2i)n
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