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PERIODICITY IN MUTUALISM SYSTEMS WITH IMPULSE

Dan Ye and Meng Fan

Abstract. Easily verifiable sufficient criteria are established for the existence
of periodic solutions of two mutualism systems with impulse. The approach
is based on the coincidence degree and its related continuation theorem.

1. INTRODUCTION

The dynamic relationship between species has long been and will continue to
be one of the dominant themes in both ecology and mathematical ecology due to its
theoretical and practical significance. Many authors have devoted themselves to this
topic [2-5, 7-14, 16-21, 23-25]. But most of these work restricts to predator-prey
system[4, 5, 10, 13, 16, 17, 21]and competition systems[2, 3, 7, 12, 18-20], little
has been done for mutualism systems[8, 9, 24, 25].

Recently, some authors devote themselves to the study of impulsive differential
equation[1, 15, 22, 26]. However, in the study of the dynamic relationship between
species, the effect of some impulsive factors has been ignored, which exists widely
in the real world. For example, we notice that the births of many species are not
continuous but happen at some regular time(For instance, the births of some wildlife
are seasonal). It is reasonable to regard the births of species at these time as impulse
to the species. Moreover, the human beings have been harvesting or stocking species
at some time, then the species is affected by another type of impulse. One can
conceive that such factors have great impact on the growth of a population. If we
incorporate these impulsive factors into the models of population interactions, the
models must be governed by impulsive ordinary differential equations. However,
such systems, especially mutualism systems are rarely studied in the literature. So
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in this paper, we focus our attention on the existence of periodic solutions of two
mutualism systems with impulse, i.e.,

(1.1)

y′i(t) = yi(t)
[
−di(t)− yi(t)

ai(t) + bi(t)yj(t)
− ci(t)yi(t)

]
,

t �= tk, k = 1, 2 · · ·
�yi(t) = yi(t+)− yi(t−) = (bik + hik)yi(t), t = tk,

yi(0) = yi0, i, j = 1, 2, i �= j

and

(1.2)

y′i(t) = yi(t) [−di(t)−aii(t)yi(t)+aij(t)yj(t)] , t �=tk, k=1, 2 · · ·
�yi(t) = yi(t+) − yi(t−) = (bik + hik)yi(t), t = tk,

yi(0) = yi0, i, j = 1, 2, i �= j,

where

• bik: the birth rate of yi at time tk;
• hik: the harvesting (stocking) rate of yi at time tk . When hik < 0, it stands

for harvesting, while hik > 0 means stocking;
• di(t): the death rate of yi(t);
• ai(t): the carrying capacity of yi at time t when the other species is absent;
• ci(t) and aii(t): the intraspecies competition coefficient of yi at time t;
• bi(t) and aij(t) (i �= j): the mutualism coefficients;
• yi(t+k ) and yi(t−k ) represent the right and the left limit of yi at tk, respectively.

In this paper, it is assumed that yi is left-continuous at tk .

System (1.2) is the standard model for the mutualism of two species. System
(1.1) is a model for mutualism proposed by R. May, where it is assumed that the
carrying capacity of one species is a increasing function of the other species.

In (1.1) and (1.2), we assume that

(A1) bik ≥ 0, bik + hik ≥ 0, and ai(t), bi(t), ci(t), di(t), aij(t)(i, j = 1, 2) are
nonnegative continuous ω-periodic functions;

(A2) there exists a positive integer q, such that tk+q = tk+ω, bi(k+q) = bik, hi(k+q) =
hik. Without loss of generality, we also assume that if tk �= 0 and [0, ω]

⋂{tk} =
t1, t2 · · · tm, then it follows that q = m.

It is trivial to show that the solutions of (1.1) and (1.2) with positive initial
value remain positive too. Making the change of variables

yi(t) = exi(t), i = 1, 2.
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then systems (1.1) and (1.2) are reformulated as the following, respectively.

(1.3)
x′

1(t) = −di(t)− exi(t)

ai(t)+bi(t)exj(t)
−ci(t)exi(t), t �= tk, k=1, 2 · · ·

�xi(t) = xi(t+) − xi(t−) = ln(1 + bik + hik), t = tk,

xi(0) = ln{yi0} > 0, i = 1, 2, i �= j.

and

(1.4)

x′
1(t) = −di(t) − aii(t)exi(t) + aij(t)exj(t), t �= tk, k = 1, 2 · · ·

�xi(t) = xi(t+) − xi(t−) = ln(1 + bik + hik), t = tk,

xi(0) = ln{yi0} > 0, i = 1, 2, i �= j.

For (1.1) and (1.2), we have similar lemma and definitions. So we only relate
such results for (1.1).

Lemma 1.1. If y(t) = (y1(t), y2(t)) is a positive ω periodic solution of (1.1),
then xi(t) = ln{yi(t)} is an ω-periodic solutions of (1.3), and vice versa.

Definition 1.1. The mapping x : [0, ω] −→ R2 is called a solution of system
(1.3) in [0, ω], if

(i) x(t) is partly continuous, {tk}
⋂

[0, ω] are discontinuous points of the first
kind of x(t) and left continuous.

(ii) x(t) satisfies system (1.3) in [0, ω].

Definition 1.2. The mapping x : R −→ R2 is called an ω-periodic solution of
system (1.3), if

(i) x(t) is a solution of (1.3) in [0, ω].

(ii) x(t) satisfies x(t + ω − 0) = x(t − 0), t ∈ R.

Obviously, if x(t) is a solution of (1.3) or (1.4) satisfying x(0) = x(ω) in
[0, ω], then from the periodicity of the vector field of (1.3) or (1.4), we know that
the function

x∗(t) =

{
x(t − jω), t ∈ [jω, (j + 1)ω]

x∗(t) is left continuous at tk.

is an ω-periodic solution of (1.3) or (1.4). So, in order to achieve the existence
of periodic solution for (1.3) or (1.4), it is sufficient to find the solutions of (1.3)
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or (1.4) in [0, ω] satisfying x(0) = x(ω), that is, to find solutions of the following
equations in [0, ω]

(1.5)

x′
1(t) = −di(t)− exi(t)

ai(t) + bi(t)exj(t)
−ci(t)exi(t), t �=tk, k=1, 2 · · ·

�xi(t) = xi(t+) − xi(t−) = ln(1 + bik + hik), t = tk,

xi(0) = xi(ω) > 0, i = 1, 2, i �= j.

or

(1.6)

x′
1(t) = −di(t) − aii(t)exi(t) + aij(t)exj(t), t �= tk, k = 1, 2 · · ·

�xi(t) = xi(t+) − xi(t−) = ln(1 + bik + hik), t = tk,

xi(0) = xi(ω) > 0, i = 1, 2, i �= j.

For simplicity and convenience in the following discussion, we will use the
following notations throughout the paper

f̄ :=
1
ω

ω∫
0

f(t)dt, fu = sup
t∈[0,ω]

f(t), f l = inf
t∈[0,ω]

f(t),

where f is an ω-periodic function.

2. EXISTENCE OF PERIODIC SOLUTION

In order to obtain the existence of positive periodic solution of (1.1) or (1.2),
for the readers’ convenience, we shall present below a few of concepts and results
from [6], which will be basic for this section.

Let X, Z be normed vector spaces, L : DomL ⊂ X → Z be a linear mapping,
N : X → Z be a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dimKerL = codimImL < +∞ and ImL is closed in
Z. If L is a Fredholm mapping of index zero and there exist continuous projectors
P : X → X and Q : Z → Z such that ImP = KerL, ImL = KerQ =
Im(I − Q), it follows that L|DomL ∩ KerP : (I − P )X → ImL is invertible.
We denote the inverse of that map by KP . If Ω is an open bounded subset of
X , the mapping N will be called L-compact on Ω̄ if QN (Ω̄) is bounded and
KP (I − Q)N : Ω̄ → X is compact. Since ImQ is isomorphic to KerL, there
exists an isomorphism J : ImQ → KerL.

Lemma 2.1. (Continuation Theorem) Let L be a Fredholm mapping of index
zero and N be L-compact on Ω̄. Suppose
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(a) For each λ ∈ (0, 1), every solution x of Lx = λNx is such that x �∈ ∂Ω;

(b) QNx �= 0 for each x ∈ ∂Ω ∩ KerL and

deg{JQN, Ω ∩ KerL, 0} �= 0.

Then the operator equation Lx = Nx has at least one solution lying in DomL∩ Ω̄.

Let

C[0, ω; t1, t2, ...tm]

=


x : [0, ω] → R2

∣∣∣∣∣∣
x(t) is continuous with respect to t �= t1, ..., tm;
x(t + 0) and x(t − 0) exist at t1, ..., tm;
x(tk) = x(tk − 0), k = 1, 2, ...,m


 .

Define
1
ω

q∑
k=1

ln(1 + bik + hik)− d̄i := �i.

Now we are ready to attack the existence of positive periodic solution of (1.1).

Lemma 2.2. Assume that �1 > 0,�2 > 0, then the system of algebraic
equations

�1 − v1

ā1 + b̄1v2
− c̄1v1 = 0,

�2 − v2

ā2 + b̄2v1
− c̄2v2 = 0,

has a unique positive solution v = (v ∗
1, v

∗
2)

T .

Proof. Consider the function

f(v2) = �2 − v2

ā2 + b̄2
�1(ā1 + b̄1v2)

c̄1(ā1 + b̄1v2) + 1

− c̄2v2.

One can easily see that

f(0) = �2 > 0, f(
�2

c̄2
) = −

�2

c̄2

ā2 + b̄2

�1(ā1 + b̄1
�2

c̄2
)

c̄1(ā1 + b̄1
�2

c̄2
) + 1

< 0,
df

dv2

∣∣∣∣
v2≥0

< 0,
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then from the zero point theorem and the monotonicity of f(v2), it follows that there

exists a unique v∗
2 ∈ (0,

�2

c̄2
) such that f(v∗

2) = 0 and then v∗
1 =

�1(ā1 + b̄1v
∗
2)

c̄1(ā1 + b̄1v∗2) + 1
>

0. The proof is complete.

Theorem 2.1. Assume that (A1), (A2) hold. Moreover, if �1 > 0,�2 > 0 and
b̄1b̄2�1�2 �= 1, then system (1.1) has at least one positive ω periodic solution.

Proof. Let

X = {x = (x1, x2)T ∈ C[0, ω; t1, . . . tm] | x(ω) = x(0)}, Z = X × R2q .

Define
‖x‖C = sup

t∈[0,ω]

|x|, ‖z‖Z = ‖x‖C + ‖y‖, x ∈ X, y ∈ R2q,

where | · | is any norm of R2 and ‖ · ‖ is any norm of R2q. Then it is trivial to
check that X, Z are both Banach spaces when they are endowed with the above
norm ‖ · ‖C and ‖ · ‖Z , respectively.

Let

domL ⊂ X{x = (x1, x2)T ∈ C[0, ω; t1, · · · tm] | x(ω) = x(0)},
L : domL → Z, Lx = (x′,�x(t1) . . .�x(tq)),

N : X → Z,

Nx =
((

Wi(t)
)
2×1

,
(

ln(1 + +bik + hik)
)
2×q

)
where

Wi(t) = −di(t) − exi(t)

ai(t) + bi(t)exj (t)
− ci(t)exi(t), i, j = 1, 2, i �= j.

Then

KerL = {x : x = A ∈ R2, t ∈ [0, ω]},
ImL = {z = (f, C1 · · ·Cq) ∈ Z :

∫ ω
0 f(s)ds +

q∑
k=1

Ck = 0}

and
dimKerL = 2 = codimImL.

Since ImL is closed in Z, L is a Fredholm mapping of index zero. Let

Px =
1
ω

∫ ω

0
x(t)dt,

Qz = Q(f, C1 · · ·Cq) =

(
1
ω

[∫ ω

0
f(s)ds +

q∑
k=1

Ck

]
, 0 · · ·0

)
.
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It is easy to show that P, Q are continuous projectors such that

ImP = KerL, ImL = KerQ = Im(I − Q).

Furthermore, the generalized inverse (to L) KP : ImL → DomL
⋂

KerP exists.
Now, we derive the explicit expression for KP . Let z = (f, C1 . . .Cq) ∈ ImL,

then x ∈ X satisfies
x′(t) = f(t), t �= tk, k = 1, 2 . . .

�x(t)|t=tk = Ck.

Then

(2.1) x(t) =
∫ t

0
f(s)ds +

∑
t>tk

Ck + x(0).

Note that x(t) ∈ KerP, i.e.,
1
ω

∫ ω

0

x(s)ds = 0. From (2.1), we get

∫ ω

0

∫ t

0
f(s)dsdt +

∫ ω

0

∑
t>tk

Ckdt + ωx(0) = 0,

and hence

(2.2) x(t) =
∫ t

0
f(s)ds +

∑
t>tk

Ck − 1
ω

∫ ω

0

∫ t

0
f(s)dsdt−

q∑
t=1

Ck +
1
ω

q∑
t=1

Cktk,

that is,

(2.3) KPz =
∫ t

0
f(s)ds+

∑
t>tk

Ck − 1
ω

∫ ω

0

∫ t

0
f(s)dsdt−

q∑
t=1

Ck +
1
ω

q∑
t=1

Cktk.

Thus

QNx =



(

1
ω

∫ ω

0
Wi(s) +

q∑
k=1

ln(1 + bik + hik)

)
2×1

, (0, · · ·0)2×1


 ,

KP (I − Q)Nx

=

(∫ t

0
Wi(s)ds +

q∑
t>tk

ln(1 + bik + hik)

)
2×1

−
(

(
t

ω
− 1

2
)(
∫ ω

0
Wi(s)ds +

q∑
k=1

ln(1 + bik + hik))

)
2×1

−
(

1
ω

∫ ω

0

∫ t

0
Wi(s)dsdt+

q∑
k=1

ln(1+bik+hik)− 1
ω

q∑
k=1

ln(1+bik+hik)tk

)
2×1
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Obviously, QN and KP (I − Q)N are continuous. It is trivial to show that
that KP (I − Q)N (Ω̄) is compact for any open bounded set Ω ⊂ X . Moreover,
QN (Ω̄)is bounded. Thus, N is L-compact on Ω̄ with any open bounded set Ω ⊂ X .

Now we ready to search for an appropriate open, bounded subset Ω for the
application of the continuation theorem. Corresponding to the operator equation
Lx = λNx, λ ∈ (0, 1), we have

(2.4)

x′
i(t) =λ

[
−di(t)− exi(t)

ai(t)+bi(t)exj(t)
−ci(t)exi(t)

]
, t �=tk, k=1, 2 · · ·

�xi(t) = xi(t+)− xi(t−) = λ ln(1 + bik + hik), t = tk,

xi(0) = xi(ω), i = 1, 2, i �= j.

Suppose that x ∈ X is a solution of system (2.4) for a certain λ ∈ (0, 1). Integrating
on both sides of (2.4) from 0 to ω, we obtain

∫ ω

0

[
−di(t) − exi(t)

ai(t) + bi(t)exj(t)
− ci(t)exi(t)

]
dt +

q∑
k=1

ln(1 + bik + hik) = 0,

That is,

(2.5)
∫ ω

0

exi(t)

ai(t) + bi(t)exj(t)
dt +

∫ ω

0
ci(t)exi(t)dt = �iω,

It follows from (2.4) and (2.5) that

(2.6)

∫ ω

0
|x′

i(t)|dt ≤ d̄iω +
∫ ω

0

[
exi(t)

ai(t) + bi(t)exj(t)
+ ci(t)exi(t)

]
dt

+
q∑

k=1

ln(1 + bik + hik)

= 2
q∑

k=1

ln(1 + bik + hik).

Since x ∈ X , there exist ξi ∈ [0, ω], such that

(2.7) xi(ξi) = min
t∈[0,ω]

xi(t), i = 1, 2.

On the other hand, note that sup
t∈[0,ω]

xi(t) exists and there exist ηi ∈ [0, ω] such that

(2.8) xi(η+
i ) = sup

t∈[0,ω]
xi(t), i = 1, 2.
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If ηi �= tk, then xi(η+
i ) = xi(ηi) while if ηi = tk , we have xi(η+

i ) = xi(t+k ).
From (2.5) and (2.7), we obtain

�iω ≥
∫ ω

0
ci(t)exi(ξi)dt = c̄iωexi(ξi),

and hence,

(2.9) xi(ξi) ≤ ln
{�i

c̄i

}
.

From (2.6) and (2.9), we obtain

(2.10) xi(t) ≤ xi(ξi)+
∫ ω

0
|x′

i(t)|dt < ln
{�i

c̄i

}
+2

q∑
k=1

ln(1+bik+hik)) := Mi,

By (2.5) and (2.8), we also have
∫ ω

0
ci(t)exi(η

+
i )dt +

(
1
ai

)
exi(η

+
i )ω ≥ �iω

(
(

1
ai

)
+ c̄i)exi(η

+
i ) ≥ �i,

and hence,

(2.11) xi(η+
i ) ≥ ln




�i(
1
ai

)
+ c̄i




.

From (2.6) and (2.11), we have

(2.12)

xi(t) ≥ xi(η+
i ) −

∫ ω

0
|x′

i(t)|dt ≥ ln




�i(
1
ai

)
+ c̄i




−2
q∑

k=1

ln(1 + bik + hik)) = Mi,

which, together with (2.10), implies

sup
t∈[0,ω]

|xi(t)| < max{|Mi|, |Mi|} := Ni.
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Clearly, Ni(i = 1, 2) are independent of λ.
By Lemma 2.2, it is easy to show

(2.13)
�1 − ex1

ā1 + b̄1ex2
− c̄1e

x1 = 0

�2 − ex2

ā2 + b̄2ex1
− c̄2e

x2 = 0
.

has a unique solution x∗ = (x∗
1, x

∗
2)

T in IntR2. Set H = ‖(N1, N2)T‖ + A,
where A is taken sufficiently large such that the unique solution of (2.13) satisfies
‖x∗‖ = ‖(x∗

1, x
∗
2)

T‖ < A, and ‖x(tk + 0)‖ < H, k = 1, 2 · · ·q, then ‖x‖C < H.
Let Ω = {x = (x1, x2)T ∈ X | ‖(x1, x2)T‖C < H}, then it is clear that Ω

verifies the requirement (a) of Lemma 2.1. When x = (x1, x2)T ∈ ∂Ω
⋂

KerL =
∂Ω
⋂

R2, x = (x1, x2)T is a constant vector in R2 with ‖x‖C = ‖(x1, x2)T ‖C =
H . Then

QNx =




 �1 − ex1

ā1 + b̄1ex2
− c̄1e

x1

�2 − ex2

ā2 + b̄2ex1
− c̄2e

x2


 , (0 · · ·0)2×1


 �= 0.

In view of Theorem 2.1 and Lemma 2.2, from direct calculation, we get deg(JQN,
Ω
⋂

KerL, 0) �= 0, where the degree is Brouwer degree, and the isomorphism J of
ImQ onto KerL can be chosen to be the identity mapping, since ImQ = KerL.
By now we have proved that Ω verifies all requirements of Lemma 2.1, then Lx =
Nx has at least one solution in DomL

⋂
Ω̄, i.e., (1.5) has at least one ω periodic

solution in DomL
⋂

Ω̄, say x = (x∗1(t), x∗
2(t))

T . Set y∗ = (y∗1(t), y∗2(t))T =
(ex∗

1(t), ex∗
2(t))T , then y∗ = (y∗1(t), y∗2(t))

T is one positive ω periodic solution of
system (1.1). The proof is complete.

Remark 2.1. Theorem 2.1 tells us that, if the rate of the birth and the harvesting
(stocking) is greater than the death rate, then (1.1) admits a positive ω-periodic
solution. This easily verifiable conditions are very reasonable since, otherwise,
these species will extinct.

Next, we come to investigate the existence of positive periodic solution of (1.2).

Theorem 2.2. Assume (A1), (A2) hold. Moreover, if �1 > 0,�2 > 0 and
al

11a
l
22 > au

21a
u
12, then system (1.2) has at least one positive ω periodic solution.

Proof. We define the same spaces and mapping as Theorem 2.1, except the
mapping N. Here, the mapping N : X → Z reads

Nx =
(( −di(t) − aii(t)exi(t) + aij(t)exj(t)

)
2×1

,
(

ln(1 + bik + hik)
)
2×q

)
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Following similar arguments as in Theorem 2.1, one can easily prove that N is
L-compact on Ω̄ with any open bounded set Ω ⊂ X .

Consider the operator equation Lx = λNx, λ ∈ (0, 1), i.e.,

(2.14)

x′
i(t) = λ

[
−di(t)−aii(t)exi(t)+aij(t)exj(t)

]
, t �=tk, k = 1, 2 · · ·

�xi(t) = xi(t+) − xi(t−) = λ ln(1 + bik + hik), t = tk,

xi(0) = xi(ω), i = 1, 2, i �= j.

Suppose that x ∈ X is a solution of system (2.14) for a certain λ ∈ (0, 1). Inte-
grating on both sides of (2.14) from 0 to ω, we obtain

∫ ω

0

[
−di(t) − aii(t)exi(t) + aij(t)exj(t)

]
dt +

q∑
k=1

ln(1 + bik + hik) = 0,

That is,

(2.15) �iω +
∫ ω

0
aij(t)exj(t)dt =

∫ ω

0
aii(t)exi(t)dt.

It follows from (2.14) and (2.15) that

(2.16)

∫ ω

0
|x′

i(t)|dt ≤ d̄iω +
∫ ω

0
aij(t)exj(t)dt +

∫ ω

0
aii(t)exi(t)dt

+
q∑

k=1

ln(1 + bik + hik)

= 2
(∫ ω

0
aii(t)exi(t)dt + d̄iω

)
.

From (2.15)

(2.17) al
11

∫ ω

0
ex1(t)dt ≤ �1ω + au

12

∫ ω

0
ex2(t)dt.

On the other hand from (2.15) and (2.17)

(2.18)
al

22

∫ ω

0

ex2(t)dt ≤ �2ω + au
21

∫ ω

0

ex1(t)dt

≤ �2ω +
au

21

al
11

(
�1ω + au

12

∫ ω

0
ex2(t)dt

)
,

then
(al

11a
l
22 − au

21a
u
12)
∫ ω

0
ex2(t)dt ≤ (au

21�1 + al
11�2)ω,
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that is, ∫ ω

0

ex2(t)dt ≤ au
21�1 + al

11�2

al
11a

l
22 − au

21a
u
12

which, together with (2.15), implies

(2.19)
�2ω

au
22

≤
∫ ω

0
ex2(t)dt ≤ au

21�1 + al
11�2

al
11a

l
22 − au

21a
u
12

.

Similarly,

(2.20)
�1ω

au
11

≤
∫ ω

0

ex1(t)dt ≤ au
12�2 + al

22�1

al
11a

l
22 − au

21a
u
12

.

From (2.16), (2.19) and (2.20), we get

(2.21)

∫ ω

0
|x′

i(t)|dt ≤ 2
(∫ ω

0
aii(t)exi(t)dt + d̄iω

)

≤ 2

(
au

ii

au
ij�j + al

jj�i

al
11a

l
22 − au

21a
u
12

+ d̄iω

)

:= Ci i, j = 1, 2, i �= j.

Since x ∈ X , from (2.19) and (2.20)

xl
i ≤ ln

{
au

ij�j + al
jj�i

al
11a

l
22 − au

21a
u
12

}
:= Hi, xu

i ≥ ln
{�1ω

au
11

}
:= H i,

hence

(2.22) xi(t) ≤ xl
i +
∫ ω

0
|x′

i(t)|dt ≤ Hi + Ci,

(2.23) xi(t) ≥ xu
i −
∫ ω

0
|x′

i(t)|dt ≥ Hi − Ci,

sup
t∈[0,ω]

|xi(t)| < max{|Hi + Ci| + 1, |Hi − Ci|+ 1} := Di.

Clearly, Di is independent of λ.
In view of Theorem 2.2, algebraic equations

�1 − ā11e
x1 + ā12e

x2 = 0, �2 − ā22e
x2 + ā21e

x1 = 0

have a unique solution x∗ = (x∗
1, x

∗
2)

T ∈ R2. Set D = ‖(D1, D2)T‖+ B, where B
is taken sufficiently large such that the unique solution of (2.24) satisfies ‖x∗‖ =
‖(x∗

1, x
∗
2)

T‖ < B, and ‖x(tk + 0)‖ < D, k = 1, 2 · · ·q, then ‖x‖C < D.
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Let Ω = {x = (x1, x2)T ∈ X | ‖(x1, x2)T‖C < D}, then it is clear that Ω
verifies the requirement (a) of Lemma 2.1. When x = (x1, x2)T ∈ ∂Ω

⋂
KerL =

∂Ω
⋂

R2, x = (x1, x2)T is a constant vector in R2 with ‖x‖C = ‖(x1, x2)T‖C =
D. Then

QNx =
(

1
ω

(
∫ ω

0
[−di(t) − aii(t)exi + aij(t)exj )]dt

+
q∑

k=1

ln(1 + bik + hik))2×1, (0, · · ·0)2×1

)

=
(
(�i − āiie

xi + āije
xj)2×1 , (0, · · ·0)2×1

) �= (0, · · ·0)2×1

.

In view of Theorem 2.2, from direct calculation, we get

deg(JQN, Ω
⋂

KerL, 0) =
∑

x∗∈QN−1(0)

sgnJQN (x∗),

JQN (x∗) =
∣∣∣∣ −ā11 ā12

ā21 −ā22

∣∣∣∣ > 0,

then deg(JQN, Ω
⋂

KerL, 0) �= 0, where the isomorphism J of ImQ onto KerL
can be chosen to be the identity mapping, since ImQ = KerL. By now we
have proved that Ω verifies all requirements of Lemma 2.1, then Lx = Nx has at
least one solution in DomL

⋂
Ω̄, i.e., (1.6) has at least one ω periodic solution in

DomL
⋂

Ω̄, say x = (x∗1(t), x
∗
2(t))

T . Set y∗ = (y∗1(t), y
∗
2(t))

T = (ex∗
1(t), ex∗

2(t))T ,
then y∗ = (y∗1(t), y∗2(t))T is one positive ω periodic solution of system (1.2). The
proof is complete.

Remark 2.1. Theorem 2.2 tells us that, if the rate of the birth and the harvesting
(stocking) is larger than the death rate and the effect of the intraspecies competition
is greater than the mutualism then (1.2) admits a positive ω-periodic solution. These
conditions looks very reasonable.
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