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COMPLETELY CONTINUOUS SUBSPACES OF OPERATOR IDEALS

S. M. Moshtaghioun and J. Zafarani

Abstract. Ülger, Saksman and Tylli have shown that if X is a reflexive
Banach space and A is a subalgebra of K(X) such that A∗ has the Schur
property, then A is completely continuous. Here by introducing the concept of
a strongly completely continuous subspace of an operator ideal, we improve
their results. In particular, when X is an lp- direct sum and Y is an lq- direct
sum of finite-dimensional Banach spaces with 1 < p ≤ q < ∞, we give
a characterization of Schur property of the dual M∗ of a closed subspace
M ⊆ K(X, Y ) in terms of strong complete continuity of M.

1. INTRODUCTION

A Banach space X has the Schur property if every weakly convergent sequence
in X converges in norm. There are many Banach spaces with the Schur property.
For example the space l1 of absolutely summable sequences has this property. In
1995, S. W. Brown [1] proved that if A is a commutative closed subalgebra of the
algebra K(H) of all compact operators on a Hilbert space H , that satisfies a very
mild condition of density, then the dual A∗ of A has the Schur property. Following
this work of S. W. Brown, A. Ülger [8], characterized all closed subspaces of
K(H) such that their duals have the Schur property. He also proved that for a
closed subalgebra A of K(X) of all compact operators on a reflexive Banach space
X , the Schur property of A∗ is a sufficient condition for the complete continuity of
A that is, all left and right multiplication operators of elements in A are compact
operators on A. In [7] E. Saksman and H. O. Tylli gave a new proof of this
result. Furthermore, if A is commutative, then it is completely continuous [8].
Here, we introduce the concept of strongly completely continuous subspaces of the
space of operator ideals and generalize the results of [7] and [8]. We also obtain
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a characterization of this concept in terms of relative compactness of all its point
evaluations related to that subspace. Moreover, when X is either an lp- or c0- direct
sum of finite-dimensional Banach spaces with 1 < p < ∞, we show that if A
is a completely continuous subalgebra of K(X) which satisfies a certain density
condition, then A∗ has the Schur property.

The notations and terminology concerning Banach spaces are standard. Through-
out this article H is a Hilbert space and X , Y , Z and W denote arbitrary Banach
spaces. The closed unit ball of a Banach space X is denoted by X1 and X∗ is the
dual of X . The duality between X and X∗ is denoted by 〈x, x∗〉 and T ∗ refers
to the adjoint of the operator T . (U , A) is always a (Banach) operator ideal U
with norm A and its components are denoted by U(X, Y ). For arbitrary Banach
spaces X and Y we use L(X, Y ) and K(X, Y ) for Banach spaces of all bounded
and compact linear operators between Banach spaces X and Y , respectively. The
abbreviation U(X) is used for U(X, X). The projective tensor product of X andY

is denoted by X̃⊗πY. We refer the reader to [4] and [5] for undefined terminology.

2. STRONGLY COMPLETELY CONTINUOUS SUBSPACES

For a subspace M ⊆ U(X, Y ), one can find the point evaluations related to M
by M1(x) = {Tx : T ∈ M1} and M̃1(y∗) = {T ∗y∗ : T ∈ M1}, where x ∈ X
and y∗ ∈ Y ∗. In Section 2 of [6], the authors proved that for many Banach spaces
X and Y and a closed subspace M ⊆ U(X, Y ), if M∗ has the Schur property,
then all point evaluations M1(x) and M̃1(y∗) are relatively (norm) compact in Y
and X∗, respectively. Thus the results of this section, in many cases, extend those
in [7] and [8].

We recall that a subalgebra A of U(X) is completely continuous if for each
S ∈ A, the left and right multiplications LS and RS are compact operators on A,
where LS(T ) = ST and RS(T ) = TS. We give a refinement of this concept for
subspaces of U(X, Y ):

Definition 2.1. A linear subspace M ⊆ U(X, Y ) is called strongly completely
continuous in K(X, Y ) (resp., U(X, Y )) if for all Banach spaces W and Z and all
compact operators R : Y → W and S : Z → X , the left and right multiplication
operators LR and RS as operators from M into K(X, W ) and K(Z, Y ) (resp.,
U(X, W ) and U(Z, Y )) respectively, are compact.

It is trivial that the strong complete continuity implies complete continuity in
the case of closed subalgebras A ⊆ K(X). In Example 2.8 we will show that the
converse is not true in general. In the following theorem we present a wide class
of subspaces of L(X, Y ) with strong complete continuity.
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Theorem 2.2. Let M be a linear subspace of L(X, Y ) such that all point eval-
uations M1(x) and M̃1(y∗) are relatively compact. Then M is strongly completely
continuous in K(X, Y ).

Proof. It is enough to prove that RM1 and M1S are relatively compact in
K(X, W ) and K(Z, Y ), respectively, where R : Y → W and S : Z → X are
compact operators.

Let M1(X1) = {Tx : T ∈ M1, x ∈ X1} and let Ω be the norm closure
of R(M1(X1)) in W . Since R is a compact operator, Ω is a compact subset
of W . This shows that the set F of all restrictions of elements of W ∗

1 to Ω is an
equicontinuous subset of C(Ω) and by the classical theorem of Ascoli, it is relatively
compact in C(Ω). Now fix an arbitrary sequence (Tn) ⊆ M1. For each ε > 0 one
can find a finite ε/3- net w∗

1, ..., w
∗
l for F . Since M̃1(R∗w∗

k), 1 ≤ k ≤ l, are
relatively compact in X∗, the sequence (Tn) has a subsequence, which is denoted
again by (Tn), such that for all sufficiently large m, n,

‖T ∗
n(R∗w∗

k)− T ∗
m(R∗w∗

k)‖ < ε/3, for all 1 ≤ k ≤ l.

This shows that for each x ∈ X1, w∗ ∈ W ∗
1 and suitable 1 ≤ k ≤ l,

|〈w∗, (RTn − RTm)x〉| ≤ |〈w∗ − w∗
k, RTnx〉|

+|〈w∗
k, (RTn − RTm)x〉|+ |〈w∗

k − w∗, RTmx〉|

≤ ε/3 + ‖T ∗
n(R∗w∗

k) − T ∗
m(R∗w∗

k)‖ + ε/3 < ε.

Thus ‖RTn − RTm‖ < ε, for sufficiently large m, n and so RM1 is relatively
compact.

Similarly, since M̃ ⊆ L(Y ∗, X∗) and S is compact, then Φ, the norm closure
of S∗(M̃1(Y ∗

1 )), is compact in Z∗, hence again by Ascoli’s theorem the set G of all
restriction of elements of Z1 to Φ is a relatively compact subset of C(Φ). Now, if
(Tn) ⊆ M1 and ε > 0 are given and z1, ..., zl ∈ Z1 is a finite ε/3- net for G, then by
a method similar to that of the last paragraph together with the relative compactness
of all M1(Szk), 1 ≤ k ≤ l, we conclude that |〈(S∗T ∗

n − S∗T ∗
m)y∗, z〉| < ε, for

all z ∈ Z1, y∗ ∈ Y ∗
1 and all sufficiently large m, n. Hence ‖S∗T ∗

n − S∗T ∗
m‖ < ε,

for sufficiently large m, n. This proves that the set M̃1S = S∗M̃1 is relatively
compact and so M1S is relatively compact.

As a corollary, we extend Theorem 2.2 to some class of operator ideals. We
recall that an operator ideal U is closed if its components U(X, Y ) are closed in
L(X, Y ).
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Corollary 2.3. Let U be a closed operator ideal and M be a linear subspace
of U(X, Y ) such that all of the point evaluations M 1(x) and M̃1(y∗) are relatively
compact. Then M is strongly completely continuous in U(X, Y ).

Proof. We first note that by the definition of operator ideal, LR and RS are
operators into U(X, W ) and U(Z, Y ), respectively. Now as M is a linear subspace
of L(X, Y ), by Theorem 2.2, RM1 and M1S are relatively compact in K(X, W )
and K(Z, Y ), respectively. But U(X, W ) and U(Z, Y ) are closed in L(X, W ) and
L(Z, Y ) respectively and therefore the proof is completed.

Now we will prove that the converse of the above result is also valid in every
operator ideal U .

Theorem 2.4. Let M be a linear subspace of U(X, Y ) such that for some
Banach spaces W and Z, the operators LR : M → U(X, W ) and RS : M →
U(Z, Y ) are compact for all finite-rank operators R : Y → W and S : Z → X .
Then all point evaluations M 1(x) and M̃1(y∗) are relatively compact.

Proof. We only prove the relative compactness of M1(x). The proof of the
relative compactness of M̃1(y∗) is the same. Let x ∈ X be arbitrary. Fix a
normalized element z ∈ Z and choose a normalized element z∗ ∈ Z∗ such that
z∗(z) = 1. If we set S = z∗ ⊗ x, then S(z) = x and by assumption M1S is
relatively compact in U(Z, Y ). So M1(x) = (M1S)(z) is relatively compact in
Y .

From Corollary 2.3 and Theorem 2.4, we deduce the following result.

Corollary 2.5. Let U be a closed operator ideal and M be a linear subspace
of U(X, Y ). Then the following assertions are equivalent:

(a) All of the point evaluations M 1(x) and M̃1(y∗) are relatively compact in Y
and X∗ respectively.

(b) M is strongly completely continuous in U(X, Y ).
(c) M is strongly completely continuous in K(X, Y ).
(d) For some Banach spaces W and Z, the operators L R : M → U(X, W ) and

RS : M → U(Z, Y ) (or into K(X, W ) and K(Z, Y )) are compact for all
finite-rank operators R : Y → W and S : Z → X .

Remark. In the case when X is an lp- direct sum and Y is an lq- direct sum
of finite-dimensional Banach spaces with 1 < p ≤ q < ∞, and M is a closed
subspace of K(X, Y ), then by Theorem 2.3 (or Theorem 2.5) and Corollary 3.5 of
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[6], the assertions of this corollary are also equivalent to the Schur property of M∗.
Thus the above Corollary refines Corollary 4, Theorem 4 and Theorem 6 of [7].

The following Theorem extends Theorem 5 of [8] to a not necessarily reflexive
Banach space X .

Theorem 2.6. Let X be an arbitrary Banach space. Then every commutative
subalgebra A of K(X) is completely continuous.

Proof. Let Ω = X ∗∗
1 endowed with the relative weak∗- topology of X∗∗.

Since for each T ∈ K(X), T∗∗(X∗∗) ⊆ X , we can embed K(X) isometrically
into the Banach space C(Ω, X) of all continuous X- valued functions on Ω with
the sup norm. So it is enough to show that, for each fixed S ∈ A1, the set
A1S = {TS : T ∈ A1}, when identified by its image in C(Ω, X), is a relatively
compact subset of C(Ω, X). This is straightforward by the vector-valued version
of Ascoli’s theorem. As A is commutative, by the compactness of S, the set
A1S(x∗∗) = S∗∗({T ∗∗x∗∗ : T ∈ A1}) is relatively compact in X for all x∗∗ ∈ X∗∗.
Also by the compactness of S , the restricted operator S∗∗|Ω : Ω → X is weak∗-
norm continuous and so for each ε > 0 there exists a weak∗ neighborhood V of 0 in
Ω such that ||S∗∗x∗∗|| < ε for all x∗∗ ∈ V . This shows that A1S is equicontinuous
on Ω, because ||(TS)∗∗x∗∗|| < ε for all T ∈ A1 and all x∗∗ ∈ V .

In the rest of this article we always assume that A is a subalgebra of U(X)
such that spanA(X) and spanÃ(X∗) are dense in X and X ∗, respectively, where
Ã = {S∗ : S ∈ A}. In this case, we say that A satisfies the density condition. We
conclude the article by proving a result similar to Theorem 1.1 of [1] and Theorem
7 of [8] for some reflexive and nonreflexive Banach spaces. We prove that the same
conclusion is valid for closed subalgebras of K(X) where X is either an lp- or c0-
direct sum of finite-dimensional Banach spaces with 1 < p < ∞.

In the following we obtain a refinement of Theorem 7 of [8]. Let us recall that
when (U , A) is an operator ideal, then ‖T‖ ≤ A(T ) for each T ∈ U(X).

Theorem 2.7. Let X be an arbitrary Banach space and A be a completely
continuous subalgebra of U(X) that satisfies the density condition. Then all of the
point evaluations A1(x) and Ã1(x∗) are relatively compact.

Proof. We follow the technique given for the proof of Theorem 7 of [8].
Let x ∈ X and ε > 0 be given. By the density condition of A, there ex-
ists an element y = λ1T1(x1) + ... + λnTn(xn) in X such that ‖x − y‖ <
ε. As A is completely continuous, the last remark shows that, each of the sets
λ1(A1T1)(x1), λ2(A1T2)(x2), ..., λn(A1Tn)(xn) is relatively compact in X . It fol-
lows that the set Kε = λ1(A1T1)(x1) + λ2(A1T2)(x2) + ... + λn(A1Tn)(xn) is
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also relatively compact in X and A1(x) ⊆ A1(x−y)+A1(y) ⊆ εX1 +Kε. Hence
A1(x) is a relatively compact subset of X . Similarly, using (TS)∗ = S∗T ∗, the
density assumption and the relative compactness of TA1, we can show as above
that for each x∗ in X∗, the set Ã1(x∗) is relatively compact in X∗.

In the following example, we will show that the density condition of Brown and
Ülger is essential in our Theorem 2.7. Moreover, this example provides a closed
commutative subalgebra which is completely continuous but not strongly completely
continuous.

Example 2.8. Let (en) be the standard orthonormal basis in l 2. Put H1 =
[e2n : n = 1, 2, ...] and H2 = [e2n+1 : n = 0, 1, 2, ...].

Take A = {
(

0 0
U 0

)
: U ∈ K(H1, H2)} ⊂ K(l2).

Here ST = 0 whenever S, T ∈ A, so that A ⊂ K(l2) is a closed commutative
subalgebra, which is trivially completely continuous (L S = RS = 0 for S ∈ A).
The closed linear span [Sx : S ∈ A, x ∈ l2] equals H2, so that the density
condition fails. Moreover, e2n+1 ∈ A1(e1) for n = 0, 1, ..., so that A1(e1) is not
relatively compact in l2. Therefore the complete continuity of A ⊆ K(l 2) does
not imply the relative compactness of the point evaluations in the absence of the
density condition. On the other hand, Corollary 2.5 implies that A is not strongly
completely continuous in K(l 2). Thus, the strong complete continuity is a strictly
stronger notion than the complete continuity for closed subalgebras A ⊆ K(l 2).

As a consequence of the above result we establish that if A is a subalgebra of
K(X), then the converse of Theorem 2.7 is also valid.

Corollary 2.9. Let X be a Banach space and A ⊆ K(X) be a closed
subalgebra that satisfies the density condition. Then A is completely continuous if
and only if all of the point evaluations A 1(x) and Ã1(x∗) are relatively compact.

Proof. The sufficiency condition deduces from Corollary 2.5, because every
strongly completely continuous subalgebra of K(X) is completely continuous. The
necessity condition is a direct consequence of Theorem 2.7.

Remark. When A is a commutative subalgebra of K(X) that satisfies the
density condition, Theorem 2.6 implies that A is completely continuous. Now
from Corollary 2.9 we deduce that all point evaluations A1(x) and Ã1(x∗) are
relatively compact. In particular, when X is either an lp- or c0- direct sum of finite-
dimensional Banach spaces with 1 < p < ∞, Corollaries 3.5 and 3.6 of [6] imply
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the Schur property of A∗. This improves the main theorem of [1] for a subalgebra
A of K(X) for some Banach space X instead of K(H). We also remark that when
X is an lp- direct sum of finite-dimensional Banach spaces and A is a commutative
closed subalgebra of K(X), then one can prove the relative compactness of all point
evaluations related to A by the same methods as for Lemmas 1.2 and 1.4 of [1].
In fact, since X has the RNP and the approximation property, by Proposition 16.7
of [5], N (X∗)∗ = L(X) = K(X)∗∗, where N (X∗) is the operator ideal of all
nuclear operators on X∗, which is essential in the proof of these lemmas.

The following corollary is an improvement of Theorem 6 of [7] and Theorem 7
of [8] for a subalgebra of K(X) for some Banach space X instead of K(H).

Corollary 2.10. Let X be either an lp- or c0- direct sum of finite dimensional
Banach spaces with 1 < p < ∞. If A is a completely continuous subalgebra of
K(X) that satisfies the density condition, then A ∗ has the Schur property.

Proof. By Corollary 2.9, all point evaluations are relatively compact. Now an
appeal to Corollaries 3.5 and 3.6 of [6] completes the proof.

We conclude this paper by an application of our results for the class of all
compact operators on special Banach spaces which improves Theorem 6 of [7] and
Theorem 7 of [8].

Corollary 2.11. Let X be an lp- direct sum of finite-dimensional Banach
spaces with 1 < p < ∞. Let A be a closed subalgebra of K(X) that satisfies the
above density condition. Then the following assertions are equivalent:

(a) A has the Dunford- Pettis property.
(b) A∗ has the Schur property.
(c) A is completely continuous.
(d) All of the point evaluations A 1(x) and Ã1(x∗) are relatively compact in X

and X∗ respectively.
(e) A is strongly completely continuous in K(X).
(f) For some Banach spaces Y and Z, the operators L R : A → K(X, Y ) and

RS : A → K(Z, X) are compact for all finite-rank operators R : X → Y
and S : Z → X .

Proof. Since by Corollary 1.12 of [2], K(X) contains no copy of l1, the
statements (a) and (b) are equivalent by [3]. (b) implies (c) by Proposition 6 of
[8]. (c) implies (d) by Theorem 2.7. (d) implies (b) by Corollary 3.5 of [6] and
finally, by Corollary 2.5, (d), (e) and (f) are equivalent.
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