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THE ABSTRACT GLIDING HUMP PROPERTIES AND APPLICATIONS

Junde Wu, Jianwen Luo and Chengri Cui

Abstract. In this paper, by using the section mappings, we introduce the
abstract strong gliding hump property and the 0-gliding hump property in dual
pair < E, F >, and show that the gliding hump properties can substitute the
AK-property of the dual spaces for the characterizions of the barrelledness of
normed spaces.

1. INTRODUCTION

Let < E, F > be a pair of (real or complex) vector spaces placed in duality by a
bilinear mapping <, >: E ×F → K. For every n ∈ N, let ρn : E → E : x → x[n]

and ρn : F → F : y → y[n] be linear mappings on E resp. F , continuous for
σ(E, F ) resp. σ(F, E), and suppose the following axioms are satisfied:

(S1) < x, y[n] >=< x[n], y[n] >=< x[n], y > for every n ∈ N and all x ∈ E, y ∈
F ;

(S2) (x[n])[m] = x[n∧m] whenever x ∈ E, n, m∈ N : n ∧ m denotes min(n, m).

Then we shall refer to this construction as a system of sections on < E, F >
(see [1, P104]).

Let a system of sections be fixed on < E, F > and τ be any admissible locally
convex topology on E . If for every x ∈ E, {x[n]} converges to x (n → ∞) with
respect to τ , then (E, τ) is said to be an AK-space.

Example 1. For 1 ≤ p < ∞, let lp = {(tj) :
∑

j |tj |p < ∞}. Then
< lp, lq > is a dual pair, where 1

p + 1
q = 1. For each n ∈ N, let ρn : lp → lp be
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ρn(tj) = (t1, t2, · · · , tn, 0, · · ·), then {ρn} is a system of sections on < lp, lq >.
Furthermore, (lp, ||.||p) is an AK-space. But, (l∞, ||.||∞) is not an AK-space.

We denote by E[n], F [n], n ∈ N, the spaces of vectors x[n], x ∈ E , and y[n], y ∈
F , respectively, and refer to x[n], y[n] as the sections of x, y respectively.

Let a system of sections be fixed on < E, F >. We denote by E<β> the β-dual
space of E which consisting of all sequences (yn)∞n=1 of vectors having yn ∈ F [n],
y

[m]
n = ym whenever m < n and limn→∞ < x, yn > exists for every x ∈ E .

Example 2. Let λ be a scalar-valued sequence space and c00 be the scalar
valued sequence space which are 0 eventually, the β-dual space of λ to be defined by:
λβ = {(uj) :

∑
j ujtj is convergence for each (tj) ∈ λ}. Then < λ, λβ > is a dual

pair with respect to the bilinear pairing < t, u >=
∑

j ujtj , where t = (tj) ∈ λ, u =
(uj) ∈ λβ. For each n ∈ N, let ρn : λ → λ be ρn(tj) = (t1, t2, · · · , tn, 0, · · · ).
Then {ρn} is a system of sections on < λ, λβ >, and λ<β> is just λβ. That is,
when the space E is a sequence space λ, the abstract β-dual space of E is just the
usual β-dual space of λ.

Lemma 1. [1, Prop. 3]. Let E be a barrelled locally convex space with dual
F and let a system of sections be fixed on < E, F >. If E is a (weakly) AK-space,
then E<β> = F .

Lemma 2. [1, Prop. 2]. Let E be a metrizable locally convex space with
dual F and let a system of sections be fixed on < E, F >. If F is an AK-space
with respect to the strong topology β(F, E), then E is also an AK-space in its
metrizable topology.

Let a system of sections be fixed on < E, F >. The section mappings {ρn}
are said to have the uniform boundedness property if for every bounded subset B

of (E, σ(E,F )), {ρn(x) : x ∈ B, n ∈ N} is a bounded subset of (E, σ(E,F )).
If n, m ∈ N, m > n, denote [n, m] = {j : j ∈ N, n ≤ j ≤ m} and

x[n,m] = x[m] − x[n]. A sequence of intervals {[nk, mk]} is said to be increasing if
k1 < k2 we have mk1 < nk2 . Generalizing Noll [2] we say that a sequence {zk}
of non-zero vectors in E is a block sequence if there exists an increasing interval
sequence {[nk, mk]} in N and a sequence {xk} ⊆ E such that

zk = x
[mk]
k − x

[nk]
k , k ∈ N.

The section mappings {ρn} are said to have the strong gliding hump property, if
given any block sequence {zk} in E , which is weakly bounded in E , there exists a
sequence of {ki} such that the series

∑∞
i=1 zki is σ(E, F )-convergent to an element

z ∈ E .
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Let a system of sections be fixed on < E, F > and τ be an admissible locally
convex topology on E . The section mappings {ρn} are said to have the 0-gliding
hump property with respect to the topology τ , if {xk} converges to 0 with respect
to τ and {[nk, mk]} is an increasing sequence of intervals in N, there exists a
subsequence {xki} of {xk} and a subsequence {[nki , mki ]} of {[nk, mk]} such that
the series

∑∞
i=1 x

[nki
,mki

]

ki
is τ -converges to an element z ∈ E .

Many important classical sequence spaces have the strong gliding hump property
or 0-gliding hump property (see [3, 4]). Now, we present two spaces, one has the
strong gliding hump property and another has the 0-gliding hump property, but they
are both not sequence spaces.

Let (Ω,U , µ) be a σ-finite measure space and {Ωn} be an increasing sequence in
Ω with union Ω such that µ(Ωn) < ∞ for every n ∈ N, where µ is a measure on U .
For p ≥ 1, let (Lp, ||.||p) = (Lp(Ω,U , µ), ||.||) denote the space of all equivalence
classes of p-integrable functions and (L∞, ||.||∞) = (L∞(Ω,U , µ), ||.||∞) denote
the space of all equivalence classes of essentially bounded functions.

Example 3. Let E = L∞ = L∞(Ω,U , µ). Define a system of sections on
< E, E

′
> by setting f [n] = fχn, where χ denotes the characteristic function of

Ωn. Then {ρn} has the uniform boundedness property and the strong gliding hump
property, but (L∞, ||.||∞) is not an AK-space.

Example 4. Let E = Lp = Lp(Ω,U , µ), 1 ≤ p < ∞. Define also a system of
sections on < Lp, Lq > by setting f [n] = fχn, where q satisfies that 1

p + 1
q = 1. The

space (Lp, ||.||p) has the 0-gliding hump property and (Lp, ||.||p) is an AK-space.
The space E is said to have the bounded uniform convergence property if for

every (zk) ∈ E<β> and every σ(E, F )-bounded subset B of E , the sequence
{< x, zk >} converges uniformly with respect to x ∈ B.

It is clear that if E<β> = F and β(F, E) is an AK-space, then E has the
bounded uniform convergence property. Furthermore, we have

Lemma 3. Let a system of sections be fixed on < E, F > and the section
mappings {ρn} have the uniform boundedness property and the strong gliding hump
property. Then E has the bounded uniform convergence property.

Proof. If not, there is ε > 0, a bounded subset B of σ(E, F ) and y = (yk) ∈
E<β> such that for every k ∈ N, there is xk ∈ B and nk ∈ N, k < nk satisfying
that | < xk, y

[nk] > − < xk, y > | ≥ ε. Note that limn→∞ < xk, y
[n] >=<

xk, y >, so there is mk ∈ N, nk < mk such that

| < xk, y[mk] > − < xk, y > | <
ε

2
.
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Thus we have
| < xk, y

[mk] > − < xk, y
[nk] > | ≥ ε

2
.

Pick xk+1 ∈ B and nk+1 ∈ N such that mk < nk+1 and | < xk+1, y
[nk+1] >

− < xk+1, y > | ≥ ε. Similarly, we can obtain mk+1 such that nk+1 < mk+1 and

| < xk+1, y
[mk+1] > − < xk+1, y

[nk+1] > | ≥ ε

2
.

Inductively, we obtain two sequences {nk} and {mk} in N such that nk < mk <
nk+1 < mk+1 and

| < xk, y[mk] > − < xk, y
[nk] > | ≥ ε

2
, k ∈ N.

It follows from the axiom (S1) that

| < x
[mk]
k , y > − < x

[nk]
k , y > | ≥ ε

2
, k ∈ N.

Or equivalently,

(1) | < x
[mk]
k − x

[nk]
k , y > | ≥ ε

2
, k ∈ N.

Note that the section mappings {ρn} have the uniform boundedness property
and the strong gliding hump property, so there are a subsequence {x[mki

]

ki
− x

[nki
]

ki
}

of {x[mk]
k − x

[nk ]
k } and x ∈ E such that

∑
i x

[mki
]

ki
− x

[nki
]

ki
converges to x with

respect to σ(E, F ). Thus we have
∑

i

< x
[mki

]

ki
− x

[nki
]

ki
, y >=< x, y > .

So, limi < x
[mki

]

ki
− x

[nki
]

ki
, y >= 0. This contradicts (1) and Lemma 3 is proved.

As we knew, the study of the barrelledness of locally convex spaces is an
important topic in locally convex spaces theory ([5-10]). Noll and Stadler in [1]
introduced the above section mappings {ρn} and gave an abstract characterization of
the barrelledness of the normed spaces by their β-dual spaces. Note that many such
theorems asked that the dual spaces of the normed spaces must be AK-spaces, but,
the normed space (l1, ||.||1) is a Banach space, so it is also a barrelled space, but
(l1, ||.||1)′ = (l∞, ||.||∞) is not an AK-space, thus, the barrelledness of (l1, ||.||1)
cannot be obtained by these known theorems. Now, we substitute the AK-property
of the dual spaces of the normed spaces with the gliding hump property, then the
barrelledness of normed spaces can also be characterized by their β-dual spaces.

Our main theorem is:
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Theorem 1. Let (E, ||.||) be a normed space with dual F and a system of
section mappings {ρn} be fixed on < E, F >, E be a GAK-space with respect
to the norm topology. If E has the bounded uniform convergence property or the
section mappings {ρn} have the 0-gliding hump property with respect to the norm
topology, then the following statements are equivalent:

(1) (E, ||.||) is barrelled,
(2) Every (E [n], ||.||), n ∈ N, is barrelled and E<β> = F .

Proof. (2) follows from (1) and Lemma 1 immediately.
If (2) is satisfied but (E, ||.||) is not a barrelled space, then there is a pointwise

bounded sequence {yi} ⊆ F such that sup{||yi|| : i ∈ N} = ∞. i.e.,

sup{| < x, yi > | : x ∈ B(E), i ∈ N} = ∞.

Here B(E) is the unit ball of (E, ||.||).
Note that for every n ∈ N, (E[n], ||.||) is a barrelled space and {yi} ⊆ F is

pointwise bounded, so for every n ∈ N,

sup
i
{||y[n]

i || : i ∈ N} < ∞.

Case 1. E has the bounded uniform convergence property:
Let us define {in}∞n=1 and {jn}∞n=1 as following:
Suppose that i1 = 1, i2, · · · , in and j1 = 1, j2, · · · , jn have been defined. Pick

in+1 > in and xin+1 ∈ B(E) such that

||yin+1|| ≥ | < xin+1 , yin+1 > | > ||yin+1 || − 1 > n2n(1 + sup
q≤jn

{||y[q]
i || : i ∈ N}).

Note that for every x ∈ B(E), y ∈ F , {< x, y[n] >} converges to < x, y >

uniformly with respect to x ∈ B(E), so there is jn+1 > jn + 1 such that

sup{| < x, yin+1 − y
[jn+1−1]
in+1

> | : x ∈ B(E)} <
1
n

.

Thus, two strictly increasing sequences i1, i2, · · · and j1, j2, · · · have been well
defined. If jn ≤ k < jn+1, n ∈ N, let

zk =
y

[k−1,k]
in+1

| < xin+1 , yin+1 > | ,

and

ωj =
j∑

k=1

zk,
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where y
[0]
i2

= 0. At first, we show that (ωj) /∈ E<β> = F , i.e., there is not a ω ∈ F ,
such that ω [j] = ωj, j ∈ N. If not, we can find a ω ∈ F satisfying the condition,
then

| < xin+1 , ω
[jn,jn+1−1] > | =

| < xin+1 , y
[jn,jn+1−1]
in+1

> |
| < xin+1 , yin+1 > |

≥
(| < xin+1 , yin+1 > | − | < xin+1 , y

[jn]
in+1

> | − | < xin+1 , yin+1 − y
[jn+1−1]
in+1

> |)
| < xin+1 , yin+1 > |

> 1 − 1
n2n

− 1
n22n

.

So whenever n → ∞,

| < xin+1 , ω
[jn,jn+1−1] > | ≥ 1

2
.

Note that for every y ∈ F , {< x, y[n] >} converges to < x, y > uniformly with
respect to x ∈ B(E), so | < xin+1 , ω

[jn,jn+1−1] > | → 0. This is a contradiction.
Thus, (ωj) /∈ E<β> = F .

On the other hand, if x ∈ B(E), j1 ≤ p0 < q0, pick k, l ∈ N such that
jl ≤ p0 < jl+1, jk ≤ q0 < jk+1, then

|< x, ωq0 − ωp0−1 >| =
q0∑

j=p0

< x, zj >

∣∣∣∣∣≤
k∑

m=l

∣∣∣∣∣

jm+1−1∑

j=jm

< x, zj >

∣∣∣∣∣∣

+

∣∣∣∣∣∣

p0∑

j=jl

< x, zj >

∣∣∣∣∣∣
+

∣∣∣∣∣∣

jk+1−1∑

j=q0

< x, zj >

∣∣∣∣∣∣
.

Since
∣∣∣∣∣∣

jm+1−1∑

j=jm

< x, zj >

∣∣∣∣∣∣
=

∣∣∣< x, y
[jm,jm+1−1]
im+1

>
∣∣∣

∣∣< xim+1 , yim+1 >
∣∣

≤
(
∣∣< x, yim+1 >

∣∣ +
∣∣∣< x, y

[jm]
im+1

>
∣∣∣ +

∣∣∣< x, yim+1 − y
[jm+1−1]
im+1

>
∣∣∣)

∣∣< xim+1 , yim+1 >
∣∣

≤
(sup{|< x, yn >| : n ∈ N} +

∣∣∣< x, y
[jm]
im+1

>
∣∣∣ + 1

m)
∣∣< xim+1 , yim+1 >

∣∣

≤ 1
2m

(sup{|< x, yn >| : n ∈ N} + 2).
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Thus we have

(2)
k∑

m=l

|
jm+1−1∑

j=jm

< x, zj > | ≤ 1
2l−1

(sup{| < x, yn > | : n ∈ N}+ 2).

Since ||yin+1|| ≥ | < xin+1 , yin+1 > | > ||yin+1 || − 1 > n2n, so

(3) lim
n

||yin ||
| < xin , yin > | = 1.

Note that (E, ||.||) is an AK-space, we have

(4) lim
u,v

sup
y∈F,||y||≤1

| < x, y[u,v] > | = lim
u,v

sup
y∈F,||y||≤1

| < x[u,v], y > | = 0.

Thus,

|
p0∑

j=jl

< x, zj > | =
| < x, y

[p0]
i1+1

− y
[jl]
il+1

> |
| < xil+1

, yil+1
> |

=
||yil+1

||
| < xil+1

, yil+1
> | ×

| < x[jl,p0], yil+1
> |

||yil+1
|| .

|
jk+1−1∑

j=q0

< x, zj > | =
||yik+1

||
| < xik+1

, yik+1
> | ×

| < x[q0,jk+1−1], yik+1
> |

||yik+1
|| .

It follows from (2), (3) and (4) that whenever p0, q0 → ∞,

| < x, ωq0 − ωp0−1 > | → 0.

So {< x, ωk >} is convergent. Thus, we have proved that (ωk) ∈ E<β>. This is
a contradiction. The case 1 is proved.

Case 2. (E, ||.||) has the 0-gliding hump property:
Since sup{| < x, yi > | : x ∈ B(E), i ∈ N} = ∞, so there are r1 ∈ N,

x1 ∈ B(E) such that | < x1, yr1 > | ≥ 1+ 1
2 . Note that E<β> = F , so there exists

n1 ∈ N such that
| < x1, y

[n1]
r1

> | ≥ 1.

Similarly, for 2 + sup{| < x, y
[n1]
i > | : i ∈ N, x ∈ B(E)} + 1, there are

r2 > r1, x2 ∈ B(E) such that

| < x2, yr2 > | ≥ 2 + sup{| < x, y
[n1]
i > | : i∈ N, x ∈ B(E)}+ 1.
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So, there is a n2 ∈ N, satisfying

| < x2, y
[n1+1,n2]
r2

> | ≥ 2.

Continuing this construction we can obtain n1 < n2 < · · · , r1 < r2 < · · · , and
{xk} ⊆ B(E) such that

| < xk, y
[nk−1+1,nk ]
rk > | ≥ k, k ∈ N, k ≥ 2.

That is
1√
k
| < xk,

y
[nk−1+1,nk]
rk √

k
> | ≥ 1, k ∈ N, k ≥ 2.

Equivalently,

(5)
1√
k
| <

x
[nk−1+1,nk ]
k √

k
, yrk

> | ≥ 1, k ∈ N, k ≥ 2.

Consider the infinite matrix ( 1√
k

<
x
[ni−1+1,ni ]

i √
i

, yrk
>). It is clear that for every

i ∈ N,

lim
k→∞

1√
k

<
x

[ni−1+1,ni]
i √

i
, yrk

>= 0.

For every k ∈ N, it follows from {xi√
i
} converging to 0 and (E, ||.||) having the 0-

gliding hump property that every subsequence {[nip−1 +1, nip ]} of {[ni−1 +1, ni]}
has a subsequence {[nipm−1 +1, nipm

]} of {[nip−1 +1, nip]} and x0 ∈ E such that
in the norm topology,

∞∑

m=1

x
[nipm−1+1,nipm

]

ipm √
ipm

= x0.

So we have

lim
k→∞

1√
k

<
∑

m=1

x
[nipm−1+1,nipm

]

ipm √
ipm

, yrk
>= lim

k→∞
1√
k

< x0, yrk
>= 0.

By the Antosik-Mikusinski basic matrix theorem ( [11]) that

lim
k→∞

1√
k

<
x

[nk−1+1,nk]
k √

k
, yrk

>= 0.

This contradicts (5) and so case 2 is also true. The theorem is proved.
It follows from Lemma 3 and Theorem 1 that:
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Corollary 1. Let E be a normed space with dual F and let a system of sections
be fixed on < E, F > and E be an AK-space with respect to the norm topology. If
the section mappings {ρn} have the uniform boundedness property and the strong
gliding hump property, then the following statements are equivalent:

(1) E is barrelled,
(2) Every E [n], n ∈ N, is barrelled and E<β> = F .
Note that if E<β> = F and β(F, E) is an AK-space, then E has the bounded

uniform convergence property. In addition, it follows from Lemma 2 that if E
′ is

an AK-space, then E is also an AK-space. Thus, we can obtain the main result of
[1], that is

Corollary 2. [1]. Let E be a normed space with dual F and let a system of
sections be fixed on < E, F >, E

′
= F be an AK-space with respect to the dual

norm topology. Then the following statements are equivalent:
(1) E is barrelled,
(2) Every E [n], n ∈ N, is barrelled and E<β> = F .
Finally, we use Theorem 1 to prove the barrelledness of the dense subspace

(lp, ||.||) (0 < p < 1) of (l1, ||.||1).
Following the terminology of references [1], [6] and [7], a Banach space E with

a system of sections has the Wilansky property, provided a dense subspace D of E

is barrelled if and only if the β-duals of D and E coincide. The practical use of
this property is the following:

Suppose we want to show that two spaces E and F coincide, (where F is a
dense subspace of E , say). If the Banach space E has the Wilansky property, and
if F is itself a Banach space with a finer topology, then it suffices to show that the
β-duals of E and F coincide. Because then F will be barrelled as a subspace of
E , and the identity I : F → E will be continuous for these two topologies by the
closed graph theorem, so the two topologies will coincide, and since F is dense,
this will imply E = F .

In a concrete situation, the use of this might be that we want to show that two
properties E and F are equivalent. While it may be hard to show this directly, it
could be much easier to show that the β-duals of E and F coincide. So we hope
that E has the Wilansky property.

But, note that the Banach space (l1, ||.||1) does not have the Wilansky property
in the sense above, so it is not possible to identify barrelledness of the subspace
(lp, ||.||1) (0 < p < 1) by means of their β-dual space. In addition, note that
the dual space (l∞, ||.||∞) of (lp, ||.||1) (0 < p < 1) is not an AK-space, so the
barrelledness of (lp, ||.||1) (0 < p < 1) can not also be obtained by the Corollary
2. On the other hand, it is very easily to prove that (lp, ||.||1) (0 < p < 1) has the
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0-gliding hump property, so it follows from Theorem 1 that (lp, ||.||1) (0 < p < 1)
is a barrelled subspace of (l1, ||.||1). That is

Corollary 3. Let 0 < p < 1 and lp = {(tj) :
∑

j |tj|p < ∞}. Then (lp, ||.||1)
is a proper dense barrelled subspace of (l 1, ||.||1).

Corollary 3 showed that our Theorem 1 extended substantially the main result
in [1].
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