
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 10, No. 3, pp. 613-629, March 2006
This paper is available online at http://www.math.nthu.edu.tw/tjm/

(p, q, r)-GENERATIONS OF THE SPORADIC GROUP HN

Ali Reza Ashrafi

Abstract. A finite group G is called (l, m, n)-generated, if it is a quotient
group of the triangle group T (l, m, n) = 〈x, y, z|xl = ym = zn = xyz = 1〉.

In [16], the question of finding all triples (p, q, r) such that non-abelian
finite simple group G is (p, q, r)−generated was posed. In this paper we
partially answer this question for the sporadic group HN . In fact, we prove
that the sporadic group HN is (p, q, r)−generated if and only if (p, q, r) �=
(2, 3, 5), where p, q and r are prime divisors of |HN | and p < q < r.

1. INTRODUCTION

A group G is said to be (l, m, n)-generated if it can be generated by two elements
x and y such that o(x) = l, o(y) = m and o(xy) = n. In this case G is the quotient
of the triangle group T (l, m, n) and for any permutation π of S3, the group G is
also ((l)π, (m)π, (n)π)-generated. Therefore we may assume that l ≤ m ≤ n. By
[4], if the non-abelian simple group G is (l, m, n)-generated, then either G ∼= A5 or
1
l + 1

m + 1
n < 1. Hence for a non-abelian finite simple group G and divisors l, m, n

of the order of G such that 1
l + 1

m + 1
n < 1, it is natural to ask if G is a (l, m, n)-

generated group. The motivation for this question came from the calculation of the
genus of finite simple groups [22]. It can be shown that the problem of finding the
genus of a finite simple group can be reduced to one of generations(for details see
[19]).

In a series of papers, [12-17] Moori and Ganief established all possible (p, q, r)−
generations, p, q, r are distinct primes, of the sporadic groups J1, J2, J3, HS, McL,

Co3, Co2, and F22. Also, Ashrafi and his co-authors in [2,3] and [7-11], did the
same for the sporadic groups Co1, Th, O′N , Ly and He. The motivation for this
study is outlined in these papers and the reader is encouraged to consult these papers
for background material as well as basic computational techniques.
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Throughout this paper we use the same notation as in [1, 7, 9, 10]. In particular,
∆(G) = ∆(lX, mY, nZ) denotes the structure constant of G for the conjugacy
classes lX, mY, nZ, whose value is the cardinality of the set Λ = {(x, y)|xy = z},
where x ∈ lX, y ∈ mY and z is a fixed element of the conjugacy class nZ.
In Table 2, we list the values ∆(pX, qY, rZ), p, q and r distinct prime divisors
of |HN |, using the character table HN . Also, ∆�(G) = ∆�

G(lX, mY, nZ) and
Σ(H1∪H2 ∪ · · ·∪Hr) denote the number of pairs (x, y) ∈ Λ such that G = 〈x, y〉
and 〈x, y〉 ⊆ Hi (for some 1 ≤ i ≤ r), respectively. The number of pairs (x, y) ∈ Λ
generating a subgroup H of G will be given by Σ�(H) and the centralizer of a
representative of lX will be denoted by CG(lX). A general conjugacy class of
a subgroup H of G with elements of order n will be denoted by nx. Clearly,
if ∆�(G) > 0, then G is (lX, mY, nZ)-generated and (lX, mY, nZ) is called a
generating triple for G. The number of conjugates of a given subgroup H of G
containing a fix element z is given by χNG(H)(z), where χNG(H) is the permutation
character of G with action on the conjugates of H(cf. [20]). In most cases we will
calculate this value from the fusion map from NG(H) into G stored in GAP, [18].

Let G be a group and nX a conjugacy class of elements of order n in G.
Following Woldar [21], the group G is said to be nX-complementary generated
if, for any arbitrary non-identity element x ∈ G, there exists a y ∈ nX such
that G =< x, y >. The element y = y(x) for which G =< x, y > is called
complementary.

Now we discuss techniques that are useful in resolving generation type questions
for finite groups. We begin with a result of [5] that, in certain situations, is very
effective at establishing non-generations.

Theorem 1.1. Let G be a finite centerless group and suppose lX, mY and nZ

are G-conjugacy classes for which ∆�(G) = ∆�
G(lX, mY, nZ) < |CG(z)|, z ∈ nZ.

Then ∆�(G) = 0 and therefore G is not (lX, mY, nZ)-generated.

Further useful results that we shall use are:

Lemma 1.2. ([14]). Let G be a (2X, sY, tZ)−generated simple group then G

is (sY, sY, (tZ)2)−generated.

Lemma 1.3. Let G be a finite simple group and H a maximal subgroup of G
containing a fixed element x. Then the number h of conjugates of H containing x is
χH(x), where χH is the permutation character of G with action on the conjugates
of H . In particular,

h =
m∑

i=1

|CG(x)|
|CH(xi)|

where x1, x2, · · · , xm are representatives of the H-conjugacy classes that fuse to
the G-conjugacy class of x.



(p, q, r)-Generations of the Sporadic Group HN 615

We calculated in Table 3, the value h for suitable conjugacy classes of the group
HN .

Lemma 1.4. ([14]). Let G be a finite group and let l, m and n be integers that
are pairwise coprime. Then for any integer t coprime to n, we have

∆(lX, mY, nZ) = ∆(lX, mY, (nZ)t).

Moreover, G is (lX, mY, nZ)−generated if and only if G is (lX, mY, (nZ) t)−
generated.

Lemma 1.5. ([4]). Suppose a and b are permutations of N points such that
a has λu cycles of length u (for 1 ≤ u ≤ l) and b has µv cycles of length v (for
1 ≤ v ≤ m) and their product ab is an involution having k transpositions and
N −2k fixed points. If a and b generate a transitive group on these N points, then
there exists a non-negative integer p such that

k = 2p − 2 +
∑

1≤v≤m

λu +
∑

1≤v≤m

µv .

Throughout this paper our notation is standard and taken mainly from [1, 12, 13].
In this paper, we will prove the following theorem:

Theorem. The Harada-Norton group HN is (p, q, r)−generated if and only
if (p, q, r) �= (2, 3, 5).

2. (p, q, r)−GENERATIONS FOR HN

In this section we obtain all of triples (p, q, r)−generations of the group HN .
We will use the maximal subgroups of HN listed in the ATLAS extensively, es-
pecially those with order divisible by 19. We listed in Table 1, all the maximal
subgroups of HN and in Table 3, the fusion maps of these maximal subgroups into
HN (obtained from GAP) that will enable us to evaluate ∆�

HN(pX, qY, rZ), for
prime classes pX , qY and rZ. In this table h denotes the number of conjugates of
the maximal subgroup H containing a fixed element z; see Lemma 1.3. For basic
properties of the group HN and information on its maximal subgroups the reader
is referred to [6]. It is a well known fact that HN has exactly 14 conjugacy classes
of maximal subgroups, as listed in Table 1.

2.1. (2, p, q)−Generations for HN

If the group HN is (2, 3, p)−generated, then by Conder’s result [4], 1
2+

1
3+

1
p <1.

Thus we only need to consider the cases p = 7, 11, 19. Woldar, in [22] determined
which sporadic groups other than Fi22, F23, F ′

24, Th, J4, B and M are Hurwitz
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Table 1. The Maximal Subgroups of HN .
Group Order Group Order

A12 29.35.52.7.11 2.HS.2 211.32.53.7.11
U3(8).31 29.35.7.19 21+8.(A5 × A5).2 214.32.52

(D10 × U3(5)) : 2 26.32.54.7 51+4 : 21+4.5.4 27.56

26.U4(2) 212.34.5 (A6 × A6).D8 29.34.52

23.22.26.(3× L3(2)) 214.32.7 52.5.52.4A5 24.3.56

M12.2 27.33.5.11 HNM12 27.33.5.11
34 : 2(A4 × A4).4 27.36 31+4 : 4A5 24.36.5

groups, i.e. generated by elements x and y with orders o(x) = 2, o(y) = 3 and
o(xy) = 7. In fact, G is a Hurwitz group if and only if G is (2, 3, 7)-generated. By
his result, HN is a Hurwitz group and so HN is (2, 3, 7)-generated. For the sake
of completeness, we reprove this result by using the character table of HN , see [6].

Lemma 2.1. The Harada-Norton group HN is (2X, 3Y, 7A)−generated,
X, Y ∈ {A, B}, if and only if X = Y = B.

Proof. Using the algebra constants of HN , Table 2, we can see that ∆HN(2A,

3B, 7A) = 0. Therefore, ∆�
HN(2A, 3B, 7A) = 0 and HN is not (2A, 3B, 7A)-

generated. On the other hand, by Table 2,

∆HN(2A, 3A, 7A) = 56 < |CHN(7A)| = 420

∆HN(2B, 3A, 7A) = 35 < |CHN(7A)| = 420.

Hence by Theorem 1.1, HN is not (2A, 3A, 7A)− and (2B, 3A, 7A)− generated.
Finally, we consider the triple (2B, 3B, 7A). The maximal subgroups of HN , up
to isomorphisms, that contain (2B, 3B, 7A)-generated subgroups are A12, U3(8).31

and 23.22.26.(3 × L3(2)). Using the structure constants, Table 2, we have,

∆(HN ) = 2660, Σ(A12) = 140, Σ(U3(8).31)

= 7 and Σ(23.22.26.(3× L3(2)) = 0.

Therefore, ∆�(HN ) ≥ 2660−1(140)−20(7)−0 > 0, and so HN is (2B, 3B, 7A)-
generated.

Lemma 2.2. The Harada-Norton group HN is (2X, 3Y, 11A)−generated,
X, Y ∈ {A, B}, if and only if X = Y = B.

Proof. Since ∆HN(2A, 3A, 11A) = 11 < |CHN (11A)| = 22, by Theorem 1.1,
the Harada-Norton group HN is not (2A, 3A, 11A)−generated. Consider the triple
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Table 2. The Structure Constants of the Group HN .

pX ∆(2A, 3A, pX) ∆(2A, 3B, pX) ∆(2B, 3A, pX) ∆(2B, 3B, pX)
7A 56 0 35 2660
11A 0 44 176 2156
19A 0 57 95 2565
pX ∆(2A, 5A, pX) ∆(2A, 5B, pX) ∆(2A, 5C, pX) ∆(2A, 5D, pX)
7A 56 0 0 0
11A 0 11 44 44
19A 0 0 57 57
pX ∆(2A, 5E, pX) ∆(2B, 5A, pX) ∆(2B, 5B, pX) ∆(2B, 5C, pX)
7A 2772 35 0 7980
11A 1452 11 220 5610
19A 513 95 95 4275
pX ∆(2B, 5D, pX) ∆(2B, 5E, pX) ∆(2A, 7A, pX) ∆(2B, 7A, pX)
7A 7980 27090 - -
11A 5610 33495 4620 171237
19A 4275 28500 3781 178030
pX ∆(2A, 11A, pX) ∆(2B, 11A, pX) ∆(3A, 5A, pX) ∆(3A, 5B, pX)
7A - - 4830 546
11A - - 682 2167
19A 70110 3365755 760 893
pX ∆(3A, 5C, pX) ∆(3A, 5D, pX) ∆(3A, 5E, pX) ∆(3B, 5A, pX)
7A 9240 9240 435960 20440
11A 25630 25630 293645 19624
19A 31920 31920 197505 14839
pX ∆(3B, 5B, pX) ∆(3B, 5C, pX) ∆(3B, 5D, pX) ∆(3B, 5E, pX)
7A 27720 504840 504840 3987060
11A 15444 582560 582560 3509220
19A 18772 624340 624340 3743760
pX ∆(3A, 7A, pX) ∆(3B, 7A, pX) ∆(3A, 11A, pX) ∆(3B, 11A, pX)
11A 1331451 22766700 - -
19A 1197323 22293612 22797093 425584952
pX ∆(5A, 7A, pX) ∆(5B, 7A, pX) ∆(5C, 7A, pX) ∆(5D, 7A, pX)
11A 1144132 1369445 41058490 41058490
19A 1033923 1305319 43409110 43409110
pX ∆(5E, 7A, pX) ∆(5A, 11A, pX) ∆(5B, 11A, pX) ∆(5C, 11A, pX)
11A 267104035 - - -
19A 260179065 19699732 24822075 827373050
pX ∆(5D, 11A, pX) ∆(5E, 11A, pX) ∆(7A, 11A, pX)
19A 827373050 4964188425 29548731391
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(2A, 3B, 11A). By Table 2, ∆HN(2A, 3B, 11A) = 44 and by Table 3, U3(8).31

is the only maximal subgroup of HN with non-empty intersection with all the
conjugacy classes in this triple. Our calculation give Σ(U3(8).31) = 44. But,
∆�(HN ) ≤ 44−44 = 0 and we conclude that HN is not (2A, 3B, 11A)-generated.

We show that (2B, 3A, 11A) is not a generating triple for HN . To do this,
we consider the action of HN on the cosets of A12. It is clear that this action is
transitive. If χ denotes the permutation character of this action then χ = 1HN

A12
and

we have:

χ = 1a + 133a + 133b + 760a + 3344a + 8910a + 16929a +
35112a + 35112b + 267520a + 365750a + 406296a,

Table 3. The Partial Fusion Maps into HN .

A12-class 2a 2b 2c 3a 3b 3c 3d 5a 5b 7a
→ HN 2A 2A 2B 3A 3A 3A 3B 5A 5E 7A
h 1
A12-class 11a 11b
→ HN 11A 11A
h 4 4
2.HS.2-class 2a 2b 2c 2d 2e 3a 5a 5b 5c 7a
→ HN 2A 2A 2B 2A 2B 3A 5B 5A 5E 7A
h 15
2.HS.2-class 11a
→ HN 11A
h 1
U3(8).31-class 2a 3a 3b 3c 3d 3e 3f 3g 3h 3i
→ HN 2B 3A 3A 3B 3A 3A 3B 3B 3B 3B
U3(8).31-class 7a 19a 19a
→ HN 7A 19A 19B
h 20 1 1
(D10 × U3(5)) : 2-class 2a 2b 2c 3a 5a 5b 5c 5d 5e 5f
→ HN 2A 2A 2B 3A 5B 5A 5E 5A 5A 5E
(D10 × U3(5)) : 2-class 5g 5h 7a
→ HN 5C 5D 7A
h 6
23.22.26.(3× L3(2))-class 2a 2b 2c 2d 2e 3a 3b 3c 3d 3e
→ HN 2B 2A 2B 2A 2B 3A 3A 3A 3B 3B
23.22.26.(3× L3(2))-class 7a 7b
→ HN 7A 7A
h 10 10
M12.2-class 2a 2b 2c 3a 3b 5a 11a
→ HN 2A 2B 2B 3B 3A 5E 11A
h 2
HNM12-class 2a 2b 2c 3a 3b 5a 11a
→ HN 2A 2B 2B 3B 3A 5E 11A
h 2
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in which, na denotes the first irreducible character with degree n, in the character
table of HN , see [6]. Now for g ∈ HN , the value of χ(g) is the number of cosets
of HN fixed by g. Suppose N = |HN : A12|. Then we have:

λ3 =
N − 645

3
= 379785

µ11 =
N − 4

11
= 103636

k =
N − 800

2
= 569600.

Therefore, by Lemma 1.5, p = 86181
2 must be integer, a contradiction. Thus,

(2B, 3A, 11A) is not a generating triple for HN .
Finally, we consider the triple (2B, 3B, 11A). The maximal subgroups of HN

that may contain (2B, 3B, 11A)-generated proper subgroups are isomorphic to A12,

M12.2 and HNM12. We calculate that ∆(HN ) = 2156, Σ(A12) = 220 and
Σ(M12.2) = Σ(HNM12) = 11. Thus, ∆�(HN ) ≥ ∆(HN ) − 4.Σ(A12) −
2.Σ(M12.2)− 2.Σ(HNM12) > 0, and so HN is (2B, 3B, 11A)-generated. This
completes the proof.

Lemma 2.3. The Harada-Norton group HN is (2X, 3Y, 19Z)−generated, for
every X, Y, Z ∈ {A, B}.

Proof. By Table 3, there is no maximal subgroup of HN that contains
(2A, 3X, 19A)−generated proper subgroups. Therefore, ∆�

HN(2A, 3X, 19A) =
∆HN(2A, 3X, 19A) > 0. Thus, HN is (2A, 3X, 19A)−generated. We now con-
sider the triple (2B, 3A, 19A). Amongst the maximal subgroups of HN with order
divisible by 19, the only maximal subgroups with non-empty intersection with any
conjugacy classes in this triple are isomorphic to U3(8).31. Our calculations give,
∆�(HN ) = ∆(HN ) = 95 > 0, proving the generation of HN by this triple. Next,
we consider the triple (2B, 3B, 19A), then by Table 3, the maximal subgroups
of HN , up to isomorphisms, that contain (2B, 3B, 19A)-generated subgroups are
U3(8).31. We calculate that ∆(HN ) = 2565 and Σ(U3(8).31) = 57. Using Table
2, we have, ∆�(HN ) ≥ 2565−1(57) > 0, and so HN is (2B, 3B, 19A)-generated.
Thus (2X, 3Y, 19A) is a generating triple for the group HN , X, Y ∈ {A, B}.

Finally, since (19A)2 = 19B and (19B)2 = 19A [6], we can apply Lemma 1.4,
to prove that the Harada-Norton group HN is (2X, 3Y, 19B)−generated, X, Y ∈
{A, B}, proving the lemma.

Lemma 2.4. The Harada-Norton group HN is (2X, 5Y, 11A)−generated,
X, Y ∈ {A, B}, if and only if X = B and Y = C or D.

Proof. Using algebra constants of HN , Table 2, ∆HN(2A, 5B, 7A) =
∆HN(2A, 5C, 7A) = ∆HN(2A, 5D, 7A) = 0. Thus HN is not (2A, 5B, 7A)−,
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(2A, 5C, 7A)− and (2A, 5D, 7A)−generated. On the other hand, ∆HN(2A,

5A, 7A) = 56 < 420 = |CHN(7A)|. Hence, by Theorem 1.1, the sporadic group
HN is not (2A, 5A, 7A)−generated. We now consider the triple (2A, 5E, 7A).
Using the permutation character of the group HN on the cosets of A12, computed
in Lemma 2.2, we can see that

λ5 =
N − 50

5
= 227990

µ7 =
N − 1

7
= 162857

k =
N − 8800

2
= 565600.

Therefore by Lemma 1.5, p = 174755
2 must be integer, which is a contradiction.

Thus, (2A, 5E, 7A) is not a generating triple for HN . Also, we can apply a similar
method to show that the group HN is not (2B, 5E, 7A)−generated.

Using Table 2, we calculate that ∆HN(2B, 5B, 7A) = 0, so HN is not
(2B, 5B, 7A)−generated. Also, ∆HN(2B, 5A, 7A) = 35 < 420 = |CHN(7A)|.
Hence, by Theorem 1.1, the group HN is not (2B, 5A, 7A)−generated. We now
consider the triple (2A, 5C, 7A). The maximal subgroups of HN that may contain
(2B, 5C, 7A)-generated proper subgroups are isomorphic to (D10 × U3(5)) : 2.
We calculate that ∆(HN ) = 7980 and Σ((D10 × U3(5)) : 2) = 0. Thus,
∆�(HN ) = ∆(HN ) = 7980 > 0, and so HN is (2B, 5C, 7A)-generated. But
(5C)2 = 5D, so by Lemma 1.4, HN is (2B, 5D, 7A)−generated, as desired.

Lemma 2.5. The Harada-Norton group HN is (2X, 5Y, 11A)−generated,
X ∈ {A, B} and Y ∈ {A, B, C, D, E}, if and only if X = Y = B or Y ∈ {C, D}.

Proof. Since ∆HN(2A, 5A, 11A) = 0, the group HN is not (2A, 5A, 11A)−
generated. Consider the triples (2A, 5B, 11A) and (2B, 5A, 11A). By the algebra
constants of the group HN , Table 2,

∆HN(2A, 5B, 11A) = ∆HN(2B, 5A, 11A) = 11 < 22 = |CHN(11A)|,

and by Theorem 1.1, these are not generating triples for HN . On the other hand,
there is no maximal subgroup of HN with non-empty intersection with all the
conjugacy classes in triples (2X, 5Y, 11A), X ∈ {A, B} and Y ∈ {C, D}. Thus,
these are generating triples for HN .

We show that (2A, 5E, 11A) is not a generating triple for HN . To do this,
we consider the action of HN on the cosets of maximal subgroup 51+4 : 21+4.5.4.
Since this action is transitive, if χ denotes the permutation character of the action
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then χ = 1HN
51+4:21+4.5.4

and we have:

χ = 1a + 2.8910a + 16929a + 65835a + 65835b + 69255a + 69255b

+214016a + 267520a + 2.365750a + 2.653125a+ 656250a + 656250b

+718200a + 718200b + 4.1185030a+ 2.1354320a+ 1361920a

+1625184a + 2031480a + 3.2375000a+ 2.2407680a+ 4.2661120a

+3.2784375a + 2.2985984a + 3200000a + 3.3424256a + 2.3878280a

+4156250a + 2.4561920a + 3.4809375a + 5103000a + 5103000b

+2.5332635a + 2.5878125a.

Therefore by Lemma 1.5, the equation 68246640 = 2p−2+27303087+12410496
has an integer solution, which is a contradiction. Thus, (2A, 5E, 11A) is not a
generating triple for HN . A similar argument shows that HN is not (2A, 5E,
11A)−generated. Finally, ∆HN(2B, 5B, 11A) = 220, 2.HS.2 is the only max-
imal subgroup of HN with a non-empty intersection with the conjugacy classes
2B, 5B, 11A, and Σ(2.HS.2) = 0. Hence, HN is (2B, 5B, 11A)−generated.
This completes the proof.

Lemma 2.6. The group HN is (2X, 5Y, 19Z)−generated, X, Z ∈ {A, B}
and Y ∈ {A, B, C, D, E}, if and only if (X, Y ) �= (A, A), (A,B).

Proof. By the character table of HN [6], we can see that there is no maximal
subgroup of HN which its order is divisible by 5 × 19. On the other hand, if
(X, Y ) �= (A, A), (A, B) then ∆HN(2X, 5Y, 19Z) �= 0, proving the lemma.

Lemma 2.7. The group HN is (2X, 7A, 11A)−, (2X, 7A, 19Y )− and (2X,
11A, 19Y )−generated, where X, Y ∈ {A, B}.

Proof. Using Table 2, we can see that ∆HN(2X, 11A, 19Y ) > 0, where
X, Y ∈ {A, B}. On the other hand, there is no maximal subgroup with order di-
visible by 11 × 19, so ∆�

HN(2X, 11A, 19Y ) = ∆HN(2X, 11A, 19Y ) > 0. There-
fore, the group HN is (2X, 11A, 19Y )−generated. We now claim that HN is
(2A, 7A, 11A)−generated. To do this, the only maximal subgroup of HN , up to
isomorphisms, with non-empty intersection with any conjugacy class in above triples
are A12 and 2.HS.2. By Tables 2 and 3, we calculate that ∆HN(2A, 7A, 11A) =
4620,, Σ(A12) = 22 and Σ(2.HS.2) = 396. Thus, ∆�

HN(2A, 7A, 11A) ≥ 4620−
4(22) − 396 > 0 and HN is (2A, 7A, 11A)−generated. Next, we show that HN
is (2B, 7A, 11A)− generated. To see this, the only maximal subgroups of HN
that may contain (2B, 7A, 11A)−generated subgroups, are isomorphic to A12 and
2.HS.2. We easily calculate the structure constant ∆HN(2B, 7A, 11A) = 171237,
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Σ(2.HS.2) = 429 and Σ(A12) = 110. Therefore, ∆�
HN > 0 and the group HN is

(2B, 7A, 11A)−generated.

Finally, we find the (2X, 7A, 19Y )−generations of the sporadic group HN . To
do this, by the character table of HN , it is enough to assume that Y = A. If
X = A then by Table 1 and 3, there is no maximal subgroup of HN that contains
(2A, 7A, 19A)−generated proper subgroups. Therefore, ∆�

HN(2A, 7A, 19A) =
∆HN(2A, 7A, 19A) > 0, and so the group HN is (2A, 7A, 19A)−generated.
Also, for the case X = B, amongst the maximal subgroups of HN with order
divisible by 19, the only maximal subgroups with non-empty intersection with any
conjugacy class in this triple are isomorphic to U3(8).31. On the other hand, by
Tables 2 and 3, ∆HN(2B, 7A, 19A) = 178030 and Σ(U3(8).31) = 513. Thus,
∆�

HN(2B, 7A, 19A) ≥ 178030 − 1(513) > 0 and HN is (2B, 7A, 19A). This
completes the proof.

We now summarize the above results in the following theorem.

Theorem 2.8. The Harada-Norton group HN is (2,p,q)-generated for all
p, q ∈ {3, 5, 7, 11, 19} with p < q.

Proof. The proof follows from Lemmas 2.1-2.7 and the fact that the triangular
group T (2, 3, 5)∼= A5.

2.2. (3, p, q)-Generations for HN .

We consider triples (3, p, q), in which p, q are primes and q > p ≥ 5. The next
lemma which proves the (3A, 5A, 7A)− generation of HN is critical and done by
Thomas Breuer. In the end of the paper, we include a GAP program which we
need it in the proof of Lemma 2.9. Also, the algorithm of the program seems to
be useful for similar generation type problems. This program is also written by
Thomas Breuer and the author wishes to express here his gratitude to him.

Lemma 2.9. (Thomas Breuer) The group HN is (3A, 5A, 7A)−generated.

Proof. We will find a generating (3A, 5A, 7A) triple for HN . Using the
AtlasRep package of GAP, we can get a permutation representation for the group
HN and compute the conjugacy classes of this permutation representation. We will
use this fact that no proper subgroup of HN contains elements of the orders 11
and 19. By the character table of HN [6], if a and b are elements of orders 21
and 35, respectively, then a7 ∈ 3A and b7 ∈ 5A. Therefore, it is enough to find
elements a and b of orders 21 and 35, respectively, such that x = a7b7 has order 7
and HN = 〈a7, b7〉.
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To do this, we look at the orders of 100 pseudo random elements and check
whether the elements generate the whole group. Finally, a GAP program shows that
there is an (3A, 5A, 7A)−generation triple for HN .

Lemma 2.10. The group HN is (3X, 5Y, 7A)−generated, X, Y ∈ {A, B}, if
and only if (X, Y ) �= (A, B).

Proof. By Lemma 2.9, HN is (3A, 5A, 7A)−generated. Thus, it is enough to
investigate the case (X, Y ) �= (A, A). We first assume that X = A. For Y = B,
the maximal subgroup 2.HS.2 intersects the triple (3A, 5B, 7A). Moreover, by
Table 2 and 3, ∆HN(3A, 5B, 7A) = 546 and Σ(2.HS.2) = 143. Thus,

∆HN(3A, 5B, 7A)− 143 = 403 < 420 = |CHN(7A)|.
Hence by Theorem 1.1, (3A, 5B, 7A) is not a generating triple for HN . Suppose
Y ∈ {C, D}. In this case ∆HN(3A, 5Y, 7A) = 9240 and (D10 × U3(5)) : 2
is the unique maximal subgroups of HN , up to isomorphisms, with non-empty
intersection with each of the classes 3A, 5Y and 7A. However, Σ((D10 ×U3(5)) :
2) = 0, proving the (3A, 5C, 7A)− and (3A, 5D, 7A)− generation of HN . We
now complete the case X = A. To do this, we assume that Y = E . From the
list of maximal subgroups of HN , Table 1, we observe that, up to isomorphisms,
A12, 2.HS.2 and (D10 × U3(5)) : 2 are the only maximal subgroups of HN

that admit (3A, 5E, 7A)−generated subgroups. From the structure constant we
calculate ∆HN(3A, 5E, 7A) = 435960, Σ(A12) = 3780, Σ(2.HS.2) = 3500 and
Σ((D10 × U3(5)) : 2) = 280. Thus, ∆�

HN(3A, 5E, 7A) ≥ ∆HN(3A, 5E, 7A)−
1(3780)−15(3500)−6(280) > 0. This shows that the group HN is (3A, 5E, 7A)-
generated.

Next we suppose that X = B. If Y ∈ {C, D} then there is no maximal
subgroups which intersects the conjugacy classes 3B, 5Y and 7A. Since by Ta-
ble 2, ∆HN(3B, 5Y, 7A) �= 0, HN is (3B, 5Y, 7A)−generated, for Y ∈ {C, D}.
Suppose Y ∈ {A, E}. The only maximal subgroups of HN with non-empty in-
tersection with the conjugacy classes in this triple is, up to isomorphisms, A12.
We calculate that ∆HN(3B, 5Y, 7A) − Σ(A12) > 0. Hence the group HN is
(3A, 5Y, 7A)−generated, for Y ∈ {A, E}. Finally, for the case of Y = B,
∆HN(3B, 5B, 7A) = 27720 and there is no maximal subgroups of HN that con-
tains (3B, 5B, 7A)−generated proper subgroups. Therefore, ∆�

HN(3B, 5B, 7A) =
∆HN(3B, 5B, 7A) = 27720, and so HN is (3B, 5B, 7A)-generated. This com-
pletes the proof.

Lemma 2.11. The group HN is (3X, pA, qZ)−generated, for 5 < p < q.

Proof. For the case p = 11, we can see that ∆HN(3B, 5B, 7A) > 0 and there is
no maximal subgroups of HN that contains (3X, 11A, 19Z)−generated proper sub-
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groups, Z ∈ {A, B}. Therefore, ∆�
HN(3X, 11A, 19Z) = ∆HN( 3X, 11A, 19Z) >

0, and so HN is (3X, 11A, 19Z)-generated, for Z ∈ {A, B}. We now assume that
p = 7 and q = 17. In this case, U3(8).31 is the unique maximal subgroups of HN ,
up to isomorphisms, with non-empty intersection with each of the classes 3X, 11A
and 19Z, X, Z ∈ {A, B}. If X = A then ∆HN(3A, 11A, 19Z) = 1197323 and we
calculate, Σ(U3(8).31) = 2052 and ∆�

HN(3A, 11A, 19Z) ≥ 1197323− 2052 > 0,
Z ∈ {A, B}. Thus, HN is (3A, 11A, 19A)− and (3A, 11A, 19B)−generated. If
X = B then ∆HN(3B, 11A, 19Z) = 22293612 and we calculate, Σ(U3(8).31) =
19494 and ∆�

HN(3B, 11A, 19Z) ≥ 22293612− 19494 > 0, Z ∈ {A, B}. Thus,
HN is (3B, 11A, 19A)− and (3B, 11A, 19B)−generated.

Finally, we assume that p = 7 and q = 11. Our main proof will con-
sider two separate cases. We first assume that X = A. Amongst the maximal
subgroups of HN with order divisible by 3 × 7 × 11, the only subgroups with
non-empty intersection with any conjugacy classes in this triple are isomorphic to
A12 and 2.HS.2. We can see that ∆HN(3A, 7A, 11A) = 1331451, Σ(A12) =
1176 and Σ(2.HS.2) = 8899. Our calculations give, ∆�

HN(3A, 7A, 11A) ≥
∆HN(3A, 7A, 11A)−4(1176)−1(8899) > 0. Thus, HN is (3A, 7A, 11A)−generated.
Next we assume that X = B. In this case, ∆HN(3B, 7A, 11A) = 22766700 and
the only maximal subgroups with non-empty intersection with any conjugacy classes
in this triple are isomorphic to A12. We calculate that Σ(A12) = 2200. Our calcula-
tions give, ∆�

HN(3B, 7A, 11A) ≥ ∆HN(3B, 7A, 11A)− 4(2200) > 0. Therefore,
HN is (3B, 7A, 11A)-generated and the proof is complete.

Theorem 2.12. The Harada-Norton group HN is (3X,pY,qZ)-generated for
all p, q ∈ {5, 7, 11, 19} with p < q.

Proof. The proof is straightforward and follows from Lemmas 2.9, 2.10 and
2.11.

2.3. (p, q, r)-Generations for HN, p > 3.

We consider triples (p, q, r), in which p ≥ 5 and p, q and r are prime numbers.
We deal separately with each case in the following two lemmas.

Lemma 2.13. The group HN is (5X, 7A, 19Y )−, (5X, 11A, 19Y )− and
(7A, 11A, 19Y )−generated, for X ∈ {A, B, C, D, E} and Y ∈ {A, B}.

Proof. By Table 3, there is no maximal subgroup of HN that contains (5X,

7A, 19Y )−, (5X, 11A, 19Y )− and (7A, 11A, 19Y )−generated proper subgroups,
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for X ∈ {A, B, C, D, E} and Y ∈ {A, B}. Therefore by Table 2,

∆�
HN(5X, 7A, 19Y ) = ∆HN(5X, 7A, 19Y ) > 0

∆�
HN(5X, 11A, 19Y ) = ∆HN(5X, 11A, 19Y ) > 0

∆�
HN(7A, 11A, 19Y ) = ∆HN(7A, 11A, 19Y ) > 0.

Thus, HN is (5X, 7A, 19Y )−, (5X, 11A, 19Y )− and (7A, 11A, 19Y )−generated,
as desired.

Lemma 2.14. The group HN is (5X, 7A, 11A)−generated, for X ∈ {A, B,

C, D, E}.

Proof. If X ∈ {C, D} then by Table 1 and 3, there is no maximal sub-
group of HN that contains (5X, 7A, 11A)−generated proper subgroups. There-
fore, ∆�

HN(5X, 7A, 11A) = ∆HN(5X, 7A, 11A) > 0, and so the group HN is
(5C, 7A, 11A)− and (5D, 7A, 11A)−generated. If Y ∈ {A, E} then the only max-
imal subgroups of HN that may contain (5Y, 7A, 11A)-generated proper subgroups
are isomorphic to A12 and 2.HS.2. Using a similar argument as in above, we can
see that in any case

∆�
HN(5Y, 7A, 11A) ≥ ∆HN(5Y, 7A, 11A)− 4Σ(A12)− Σ(2.HS.2) > 0.

Hence HN is (5A, 7A, 11A)− and (5E, 7A, 11A)−generated. Finally, by Ta-
ble 3, 2.HS.2 is the unique maximal subgroups of HN , up to isomorphisms,
with non-empty intersection with each of the classes 5B, 7A and 11A. Our cal-
culations give ∆HN(5B, 7A, 11A) = 1369445 and Σ(2.HS.2) = 6332. Thus,
∆�

HN(5B, 7A, 11A) ≥ ∆HN(5B, 7A, 11A)−Σ(2.HS.2) > 0, proving the (5B, 7A,
11A)-generation of HN . This concludes the lemma.

Theorem 2.15. The Harada-Norton group HN is (pX,qY,rZ)-generated for all
prime numbers p, q and r with 3 < p < q.

Proof. The proof is straightforward and follows from Lemmas 2.13 and 2.14.

We now summarize the above results in the following theorem.

Theorem 2.16. The Harada-Norton group HN is (p, q, r)−generated if and
only if (p, q, r) �= (2, 3, 5).

Proof. The proof is follows from Theorem 2.8, 2.12 and 2.15.
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A GAP Program for Constructing a
(3A, 5A, 7A)−Generating Triple for HN

gap> # How to find a generating (3A, 5A, 7) triple for HN .
gap> # Later we will use that no proper subgroup of HN contains elements
gap> # of the orders 11 and 19.
gap>

gap> hntbl:= CharacterTable( ”HN” );;
gap> maxes:= List( Maxes( hntbl ), CharacterTable );;
gap> Filtered( maxes, t − > Size( t ) mod ( 11 * 19 ) = 0 );;
gap>

gap> # Get a permutation representation of HN .
gap>

gap> RequirePackage( ”atlasrep”);;
gap> gens:= OneAtlasGeneratingSet( ”HN” );;
gap> hn:= Group( gens.generators );;
gap> SetSize( hn, Size( hntbl ) );
gap>

gap> # Find elements in the classes 3A and 5A.
gap> # We could also use the straight line program for computing conjugacy
gap> # class representatives.
gap>

gap> # Any element of order 21 powers to a 3A element.
gap> repeat
> a:= PseudoRandom( hn );
> until Order( a ) = 21;
gap> a := a7;;
gap>

gap> # Any element of order 35 powers to a 5A element.
gap> repeat
> b:= PseudoRandom( hn );
> until Order( b ) = 35;
gap> b := b7;;
gap>

gap> repeat
>

> Print( ”Try to find a generating (3A,5A,7) triple”,\n” );
>
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> # Conjugate the 5A element until the product has order 7.
> repeat
> b:= b∧PseudoRandom( hn );
> until Order( a * b ) = 7;
>

> # Check whether the elements generate the whole group.
> # For that, we look at the orders of 100 pseudo random elements.
>

> u:= SubgroupNC( hn, [a, b] );;
> found11:= false;;found19:= false;;
> > for i in [1..100] do
> ord:= Order( PseudoRandom( u ) );
> if ord mod 11 = 0 then
> found11:= true; fi;
> > if ord mod 19 = 0 then
> found19:= true; fi;
> if found11 and found19 then
> Print(”a and b generate HN, i = ”,i,”\n”);
> break; fi; od; fi; od;

> until found11 and found19;
Try to find a generating (3A,5A,7) triple.
a and b generate HN, i = 4.
gap>

gap> # How long did the computations run?
gap> # The workspace was about 200m.
gap> Runtime();
81710
gap>

gap> # If we do not believe the character theoretic argument then
gap> # we may compute the order of the group.
gap> # Random methods suffice, but still we should allow GAP to get
gap> # sufficient workspace for that (command line option -o 700m).
gap>

gap> StabChainOptions( u ).random:= 100;;
gap> Size( u ) = Size( g );
true
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