(p, q, r)-GENERATIONS OF THE SPORADIC GROUP $H N$

Ali Reza Ashrafi

Abstract

A finite group G is called (l, m, n)-generated, if it is a quotient group of the triangle group $T(l, m, n)=\left\langle x, y, z \mid x^{l}=y^{m}=z^{n}=x y z=1\right\rangle$.

In [16], the question of finding all triples (p, q, r) such that non-abelian finite simple group G is (p, q, r)-generated was posed. In this paper we partially answer this question for the sporadic group $H N$. In fact, we prove that the sporadic group $H N$ is (p, q, r)-generated if and only if $(p, q, r) \neq$ $(2,3,5)$, where p, q and r are prime divisors of $|H N|$ and $p<q<r$.

1. Introduction

A group G is said to be (l, m, n)-generated if it can be generated by two elements x and y such that $o(x)=l, o(y)=m$ and $o(x y)=n$. In this case G is the quotient of the triangle group $T(l, m, n)$ and for any permutation π of S_{3}, the group G is also $((l) \pi,(m) \pi,(n) \pi)$-generated. Therefore we may assume that $l \leq m \leq n$. By [4], if the non-abelian simple group G is (l, m, n)-generated, then either $G \cong A_{5}$ or $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}<1$. Hence for a non-abelian finite simple group G and divisors l, m, n of the order of G such that $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}<1$, it is natural to ask if G is a (l, m, n) generated group. The motivation for this question came from the calculation of the genus of finite simple groups [22]. It can be shown that the problem of finding the genus of a finite simple group can be reduced to one of generations(for details see [19]).

In a series of papers, [12-17] Moori and Ganief established all possible $(p, q, r)-$ generations, p, q, r are distinct primes, of the sporadic groups $J_{1}, J_{2}, J_{3}, H S, M c L$, $\mathrm{Co}_{3}, \mathrm{Co}_{2}$, and F_{22}. Also, Ashrafi and his co-authors in [2,3] and [7-11], did the same for the sporadic groups $C o_{1}, T h, O^{\prime} N, L y$ and $H e$. The motivation for this study is outlined in these papers and the reader is encouraged to consult these papers for background material as well as basic computational techniques.

[^0]Throughout this paper we use the same notation as in [1, 7, 9, 10]. In particular, $\Delta(G)=\Delta(l X, m Y, n Z)$ denotes the structure constant of G for the conjugacy classes $l X, m Y, n Z$, whose value is the cardinality of the set $\Lambda=\{(x, y) \mid x y=z\}$, where $x \in l X, y \in m Y$ and z is a fixed element of the conjugacy class $n Z$. In Table 2, we list the values $\Delta(p X, q Y, r Z), p, q$ and r distinct prime divisors of $|H N|$, using the character table $H N$. Also, $\Delta^{\star}(G)=\Delta_{G}^{\star}(l X, m Y, n Z)$ and $\Sigma\left(H_{1} \cup H_{2} \cup \cdots \cup H_{r}\right)$ denote the number of pairs $(x, y) \in \Lambda$ such that $G=\langle x, y\rangle$ and $\langle x, y\rangle \subseteq H_{i}$ (for some $1 \leq i \leq r$), respectively. The number of pairs $(x, y) \in \Lambda$ generating a subgroup H of G will be given by $\Sigma^{\star}(H)$ and the centralizer of a representative of $l X$ will be denoted by $C_{G}(l X)$. A general conjugacy class of a subgroup H of G with elements of order n will be denoted by $n x$. Clearly, if $\Delta^{\star}(G)>0$, then G is $(l X, m Y, n Z)$-generated and $(l X, m Y, n Z)$ is called a generating triple for G. The number of conjugates of a given subgroup H of G containing a fix element z is given by $\chi_{N_{G}(H)}(z)$, where $\chi_{N_{G}(H)}$ is the permutation character of G with action on the conjugates of H (cf. [20]). In most cases we will calculate this value from the fusion map from $N_{G}(H)$ into G stored in GAP, [18].

Let G be a group and $n X$ a conjugacy class of elements of order n in G. Following Woldar [21], the group G is said to be $n X$-complementary generated if, for any arbitrary non-identity element $x \in G$, there exists a $y \in n X$ such that $G=<x, y>$. The element $y=y(x)$ for which $G=<x, y>$ is called complementary.

Now we discuss techniques that are useful in resolving generation type questions for finite groups. We begin with a result of [5] that, in certain situations, is very effective at establishing non-generations.

Theorem 1.1. Let G be a finite centerless group and suppose $l X, m Y$ and $n Z$ are G-conjugacy classes for which $\Delta^{\star}(G)=\Delta_{G}^{\star}(l X, m Y, n Z)<\left|C_{G}(z)\right|, z \in n Z$. Then $\Delta^{\star}(G)=0$ and therefore G is not $(l X, m Y, n Z)$-generated.

Further useful results that we shall use are:
Lemma 1.2. ([14]). Let G be a $(2 X, s Y, t Z)$-generated simple group then G is $\left(s Y, s Y,(t Z)^{2}\right)$-generated.

Lemma 1.3. Let G be a finite simple group and H a maximal subgroup of G containing a fixed element x. Then the number h of conjugates of H containing x is $\chi_{H}(x)$, where χ_{H} is the permutation character of G with action on the conjugates of H. In particular,

$$
h=\sum_{i=1}^{m} \frac{\left|C_{G}(x)\right|}{\left|C_{H}\left(x_{i}\right)\right|}
$$

where $x_{1}, x_{2}, \cdots, x_{m}$ are representatives of the H-conjugacy classes that fuse to the G-conjugacy class of x.

We calculated in Table 3, the value h for suitable conjugacy classes of the group $H N$.

Lemma 1.4. ([14]). Let G be a finite group and let l, m and n be integers that are pairwise coprime. Then for any integer t coprime to n, we have

$$
\Delta(l X, m Y, n Z)=\Delta\left(l X, m Y,(n Z)^{t}\right)
$$

Moreover, G is $(l X, m Y, n Z)$-generated if and only if G is $\left(l X, m Y,(n Z)^{t}\right)-$ generated.

Lemma 1.5. ([4]). Suppose a and b are permutations of N points such that a has λ_{u} cycles of length u (for $1 \leq u \leq l$) and b has μ_{v} cycles of length v (for $1 \leq v \leq m$) and their product ab is an involution having k transpositions and $N-2 k$ fixed points. If a and b generate a transitive group on these N points, then there exists a non-negative integer p such that

$$
k=2 p-2+\sum_{1 \leq v \leq m} \lambda_{u}+\sum_{1 \leq v \leq m} \mu_{v} .
$$

Throughout this paper our notation is standard and taken mainly from $[1,12,13]$. In this paper, we will prove the following theorem:

Theorem. The Harada-Norton group $H N$ is (p, q, r)-generated if and only if $(p, q, r) \neq(2,3,5)$.

2. (p, q, r)-Generations for $H N$

In this section we obtain all of triples (p, q, r)-generations of the group $H N$. We will use the maximal subgroups of $H N$ listed in the ATLAS extensively, especially those with order divisible by 19 . We listed in Table 1, all the maximal subgroups of $H N$ and in Table 3, the fusion maps of these maximal subgroups into $H N$ (obtained from GAP) that will enable us to evaluate $\Delta_{H N}^{\star}(p X, q Y, r Z)$, for prime classes $p X, q Y$ and $r Z$. In this table h denotes the number of conjugates of the maximal subgroup H containing a fixed element z; see Lemma 1.3. For basic properties of the group $H N$ and information on its maximal subgroups the reader is referred to [6]. It is a well known fact that $H N$ has exactly 14 conjugacy classes of maximal subgroups, as listed in Table 1.

2.1. $(2, p, q)-$ Generations for $H N$

If the group $H N$ is $(2,3, p)-$ generated, then by Conder's result [4], $\frac{1}{2}+\frac{1}{3}+\frac{1}{p}<1$. Thus we only need to consider the cases $p=7,11,19$. Woldar, in [22] determined which sporadic groups other than $F i_{22}, F_{23}, F_{24}^{\prime}, T h, J_{4}, B$ and M are Hurwitz

Table 1. The Maximal Subgroups of $H N$.

Group	Order	Group	Order
A_{12}	$2^{9} .3^{5} .5^{2} .7 .11$	2.HS.2	$2^{11} .3^{2} .5^{3} .7 .11$
$U_{3}(8) .3_{1}$	$2^{9} \cdot 3^{5} .7 .19$	$2^{1+8} .\left(A_{5} \times A_{5}\right) .2$	$2^{14} .3^{2} .5^{2}$
$\left(D_{10} \times U_{3}(5)\right): 2$	$2^{6} .3^{2} .5^{4} .7$	$5^{1+4}: 2^{1+4} .5 .4$	$2^{7} .5^{6}$
$2^{6} . U_{4}(2)$	$2^{12} .3^{4} .5$	$\left(A_{6} \times A_{6}\right) \cdot D_{8}$	$2^{9} .3^{4} .5^{2}$
$2^{3} .2^{2} .2^{6} .\left(3 \times L_{3}(2)\right)$	$2^{14} .3^{2} .7$	$5^{2} .5 .5^{2} .4 A_{5}$	$2^{4} .3 .5^{6}$
$M_{12} .2$	$2^{7} .3^{3} \cdot 5 \cdot 11$	$H N M 12$	$2^{7} .3^{3} .5 .11$
$3^{4}: 2\left(A_{4} \times A_{4}\right) .4$	$2^{7} .3^{6}$	$3^{1+4}: 4 A_{5}$	$2^{4} .3^{6} .5$

groups, i.e. generated by elements x and y with orders $o(x)=2, o(y)=3$ and $o(x y)=7$. In fact, G is a Hurwitz group if and only if G is $(2,3,7)$-generated. By his result, $H N$ is a Hurwitz group and so $H N$ is $(2,3,7)$-generated. For the sake of completeness, we reprove this result by using the character table of $H N$, see [6].

Lemma 2.1. The Harada-Norton group $H N$ is $(2 X, 3 Y, 7 A)$-generated, $X, Y \in\{A, B\}$, if and only if $X=Y=B$.

Proof. Using the algebra constants of $H N$, Table 2, we can see that $\Delta_{H N}(2 A$, $3 B, 7 A)=0$. Therefore, $\Delta_{H N}^{\star}(2 A, 3 B, 7 A)=0$ and $H N$ is not $(2 A, 3 B, 7 A)$ generated. On the other hand, by Table 2,

$$
\begin{aligned}
\Delta_{H N}(2 A, 3 A, 7 A) & =56<\left|C_{H N}(7 A)\right|=420 \\
\Delta_{H N}(2 B, 3 A, 7 A) & =35<\left|C_{H N}(7 A)\right|=420 .
\end{aligned}
$$

Hence by Theorem 1.1, $H N$ is not $(2 A, 3 A, 7 A)-$ and $(2 B, 3 A, 7 A)-$ generated. Finally, we consider the triple $(2 B, 3 B, 7 A)$. The maximal subgroups of $H N$, up to isomorphisms, that contain $(2 B, 3 B, 7 A)$-generated subgroups are $A_{12}, U_{3}(8) .3_{1}$ and $2^{3} \cdot 2^{2} \cdot 2^{6} .\left(3 \times L_{3}(2)\right)$. Using the structure constants, Table 2, we have,

$$
\begin{aligned}
\Delta(H N) & =2660, \Sigma\left(A_{12}\right)=140, \Sigma\left(U_{3}(8) \cdot 3_{1}\right) \\
& =7 \text { and } \Sigma\left(2^{3} \cdot 2^{2} \cdot 2^{6} \cdot\left(3 \times L_{3}(2)\right)=0\right.
\end{aligned}
$$

Therefore, $\Delta^{\star}(H N) \geq 2660-1(140)-20(7)-0>0$, and so $H N$ is $(2 B, 3 B, 7 A)$ generated.

Lemma 2.2. The Harada-Norton group $H N$ is $(2 X, 3 Y, 11 A)$-generated, $X, Y \in\{A, B\}$, if and only if $X=Y=B$.

Proof. Since $\Delta_{H N}(2 A, 3 A, 11 A)=11<\left|C_{H N}(11 A)\right|=22$, by Theorem 1.1, the Harada-Norton group $H N$ is not $(2 A, 3 A, 11 A)$-generated. Consider the triple

Table 2. The Structure Constants of the Group $H N$.

$p X$	$\Delta(2 A, 3 A, p X)$	$\Delta(2 A, 3 B, p X)$	$\Delta(2 B, 3 A, p X)$	$\Delta(2 B, 3 B, p X)$
$7 A$	56	0	35	2660
$11 A$	0	44	176	256
$19 A$	0	57	95	2565
$p X$	$\Delta(2 A, 5 A, p X)$	$\Delta(2 A, 5 B, p X)$	$\Delta(2 A, 5 C, p X)$	$\Delta(2 A, 5 D, p X)$
$7 A$	56	0	0	0
$11 A$	0	11	44	44
$19 A$	0	0	57	57
$p X$	$\Delta(2 A, 5 E, p X)$	$\Delta(2 B, 5 A, p X)$	$\Delta(2 B, 5 B, p X)$	$\Delta(2 B, 5 C, p X)$
$7 A$	2772	35	79	7980
$11 A$	1452	11	220	5610
$19 A$	513	95	95	4275
$p X$	$\Delta(2 B, 5 D, p X)$	$\Delta(2 B, 5 E, p X)$	$\Delta(2 A, 7 A, p X)$	$\Delta(2 B, 7 A, p X)$
$7 A$	7980	27090	-	
$11 A$	5610	33495	4620	171837
$19 A$	4275	28500	3781	178030
$p X$	$\Delta(2 A, 11 A, p X)$	$\Delta(2 B, 11 A, p X)$	$\Delta(3 A, 5 A, p X)$	$\Delta(3 A, 5 B, p X)$
$7 A$	-	-	4830	546
$11 A$	70110	3365755	682	2167
$19 A$	760	893		
$p X$	$\Delta(3 A, 5 C, p X)$	$\Delta(3 A, 5 D, p X)$	$\Delta(3 A, 5 E, p X)$	$\Delta(3 B, 5 A, p X)$
$7 A$	9240	9240	435960	20440
$11 A$	25630	25630	293645	19624
$19 A$	31920	31920	197505	14839
$p X$	$\Delta(3 B, 5 B, p X)$	$\Delta(3 B, 5 C, p X)$	$\Delta(3 B, 5 D, p X)$	$\Delta(3 B, 5 E, p X)$
$7 A$	27720	504840	504840	3987060
$11 A$	15444	582560	582560	3509220
$19 A$	18772	624340	624340	3743760
$p X$	$\Delta(3 A, 7 A, p X)$	$\Delta(3 B, 7 A, p X)$	$\Delta(3 A, 11 A, p X)$	$\Delta(3 B, 11 A, p X)$
$11 A$	1331451	22766700		-
$19 A$	1197323	22293612	22797093	425584952
$p X$	$\Delta(5 A, 7 A, p X)$	$\Delta(5 B, 7 A, p X)$	$\Delta(5 C, 7 A, p X)$	$\Delta(5 D, 7 A, p X)$
$11 A$	1144132	1369445	41058490	41058490
$19 A$	1033923	1305319	43409110	43409110
$p X$	$\Delta(5 E, 7 A, p X)$	$\Delta(5 A, 11 A, p X)$	$\Delta(5 B, 11 A, p X)$	$\Delta(5 C, 11 A, p X)$
$11 A$	267104035		-	-
$19 A$	260179065	19699732	24822075	827373050
$p X$	$\Delta(5 D, 11 A, p X)$	$\Delta(5 E, 11 A, p X)$	$\Delta(7 A, 11 A, p X)$	
$19 A$	827373050	4964188425	29548731391	

$(2 A, 3 B, 11 A)$. By Table 2, $\Delta_{H N}(2 A, 3 B, 11 A)=44$ and by Table $3, U_{3}(8) \cdot 3_{1}$ is the only maximal subgroup of $H N$ with non-empty intersection with all the conjugacy classes in this triple. Our calculation give $\Sigma\left(U_{3}(8) \cdot 3_{1}\right)=44$. But, $\Delta^{\star}(H N) \leq 44-44=0$ and we conclude that $H N$ is not $(2 A, 3 B, 11 A)$-generated.

We show that $(2 B, 3 A, 11 A)$ is not a generating triple for $H N$. To do this, we consider the action of $H N$ on the cosets of A_{12}. It is clear that this action is transitive. If χ denotes the permutation character of this action then $\chi=1_{A_{12}}^{H N}$ and we have:

$$
\begin{aligned}
\chi= & 1 a+133 a+133 b+760 a+3344 a+8910 a+16929 a+ \\
& 35112 a+35112 b+267520 a+365750 a+406296 a
\end{aligned}
$$

Table 3. The Partial Fusion Maps into $H N$.

A_{12}-class	2a	2b	2c	3a	3b	3c	3d	5a	5b	7a
$\rightarrow H N$	2A	2A	2B	3A	3A	3A	3B	5A	5E	7A
h										1
A_{12}-class	11a	11b								
$\rightarrow H N$	11A	11 A								
h	4	4								
2.HS.2-class	2a	2b	2c	2d	2 e	3a	5a	5b	5c	7a
$\rightarrow H N$	2A	2A	2B	2A	2B	3A	5B	5A	5E	7A
h										15
2.HS.2-class	11a									
$\rightarrow H N$	11A									
h	1									
$U_{3}(8) .3{ }_{1}$-class	2a	3a	3b	3c	3d	3 e	3f	3 g	3h	3 i
$\rightarrow H N$	2B	3A	3A	3B	3A	3A	3B	3B	3B	3B
$U_{3}(8) .33_{1}$-class	7a	19a	19a							
$\rightarrow H N$	7A	19A	19B							
h	20	1	1							
$\left(D_{10} \times U_{3}(5)\right): 2$-class	2a	2b	2c	3a	5a	5b	5c	5d	5e	5 f
$\rightarrow H N$	2 A	2 A	2B	3A	5B	5A	5E	5A	5A	5E
$\left(D_{10} \times U_{3}(5)\right): 2$-class	5 g	5h	7 a							
$\rightarrow H N$	5C	5D	7A							
h			6							
$2^{3} .2^{2} .2^{6} .\left(3 \times L_{3}(2)\right)$-class	2a	2b	2c	2d	2 e	3a	3b	3c	3d	3 e
$\rightarrow H N$	2B	2A	2B	2A	2B	3A	3A	3A	3B	3B
$2^{3} .2^{2} .2^{6} .\left(3 \times L_{3}(2)\right)$-class	7a	7b								
$\rightarrow H N$	7A	7A								
h	10	10								
$M_{12} .2$-class	2a	2b	2c	3a	3b	5a	11a			
$\rightarrow H N$	2A	2B	2B	3B	3A	5E	11A			
h							2			
HNM12-class	2a	2b	2c	3a	3b	5a	11a			
$\rightarrow H N$	2A	2B	2B	3B	3A	5E	11A			
h							2			

in which, $\mathrm{n} a$ denotes the first irreducible character with degree n , in the character table of $H N$, see [6]. Now for $g \in H N$, the value of $\chi(g)$ is the number of cosets of $H N$ fixed by g. Suppose $N=\left|H N: A_{12}\right|$. Then we have:

$$
\begin{aligned}
\lambda_{3} & =\frac{N-645}{3}=379785 \\
\mu_{11} & =\frac{N-4}{11}=103636 \\
k & =\frac{N-800}{2}=569600 .
\end{aligned}
$$

Therefore, by Lemma 1.5, $p=\frac{86181}{2}$ must be integer, a contradiction. Thus, $(2 B, 3 A, 11 A)$ is not a generating triple for $H N$.

Finally, we consider the triple $(2 B, 3 B, 11 A)$. The maximal subgroups of $H N$ that may contain $(2 B, 3 B, 11 A)$-generated proper subgroups are isomorphic to A_{12}, $M_{12} .2$ and $H N M 12$. We calculate that $\Delta(H N)=2156, \Sigma\left(A_{12}\right)=220$ and $\Sigma\left(M_{12} \cdot 2\right)=\Sigma(H N M 12)=11$. Thus, $\Delta^{\star}(H N) \geq \Delta(H N)-4 . \Sigma\left(A_{12}\right)-$ $2 . \Sigma\left(M_{12} .2\right)-2 . \Sigma(H N M 12)>0$, and so $H N$ is $(2 B, 3 B, 11 A)$-generated. This completes the proof.

Lemma 2.3. The Harada-Norton group $H N$ is $(2 X, 3 Y, 19 Z)$-generated, for every $X, Y, Z \in\{A, B\}$.

Proof. By Table 3, there is no maximal subgroup of $H N$ that contains $(2 A, 3 X, 19 A)-$ generated proper subgroups. Therefore, $\Delta_{H N}^{\star}(2 A, 3 X, 19 A)=$ $\Delta_{H N}(2 A, 3 X, 19 A)>0$. Thus, $H N$ is $(2 A, 3 X, 19 A)$-generated. We now consider the triple $(2 B, 3 A, 19 A)$. Amongst the maximal subgroups of $H N$ with order divisible by 19 , the only maximal subgroups with non-empty intersection with any conjugacy classes in this triple are isomorphic to $U_{3}(8) .3_{1}$. Our calculations give, $\Delta^{\star}(H N)=\Delta(H N)=95>0$, proving the generation of $H N$ by this triple. Next, we consider the triple $(2 B, 3 B, 19 A)$, then by Table 3, the maximal subgroups of $H N$, up to isomorphisms, that contain $(2 B, 3 B, 19 A)$-generated subgroups are $U_{3}(8) .3_{1}$. We calculate that $\Delta(H N)=2565$ and $\Sigma\left(U_{3}(8) \cdot 3_{1}\right)=57$. Using Table 2, we have, $\Delta^{\star}(H N) \geq 2565-1(57)>0$, and so $H N$ is $(2 B, 3 B, 19 A)$-generated. Thus $(2 X, 3 Y, 19 A)$ is a generating triple for the group $H N, X, Y \in\{A, B\}$.

Finally, since $(19 A)^{2}=19 B$ and $(19 B)^{2}=19 A[6]$, we can apply Lemma 1.4, to prove that the Harada-Norton group $H N$ is $(2 X, 3 Y, 19 B)$-generated, $X, Y \in$ $\{A, B\}$, proving the lemma.

Lemma 2.4. The Harada-Norton group $H N$ is $(2 X, 5 Y, 11 A)$-generated, $X, Y \in\{A, B\}$, if and only if $X=B$ and $Y=C$ or D.

Proof. Using algebra constants of $H N$, Table 2, $\Delta_{H N}(2 A, 5 B, 7 A)=$ $\Delta_{H N}(2 A, 5 C, 7 A)=\Delta_{H N}(2 A, 5 D, 7 A)=0$. Thus $H N$ is not $(2 A, 5 B, 7 A)-$,
$(2 A, 5 C, 7 A)-$ and $(2 A, 5 D, 7 A)$-generated. On the other hand, $\Delta_{H N}(2 A$, $5 A, 7 A)=56<420=\left|C_{H N}(7 A)\right|$. Hence, by Theorem 1.1, the sporadic group $H N$ is not $(2 A, 5 A, 7 A)$-generated. We now consider the triple $(2 A, 5 E, 7 A)$. Using the permutation character of the group $H N$ on the cosets of A_{12}, computed in Lemma 2.2, we can see that

$$
\begin{aligned}
\lambda_{5} & =\frac{N-50}{5}=227990 \\
\mu_{7} & =\frac{N-1}{7}=162857 \\
k & =\frac{N-8800}{2}=565600
\end{aligned}
$$

Therefore by Lemma $1.5, p=\frac{174755}{2}$ must be integer, which is a contradiction. Thus, $(2 A, 5 E, 7 A)$ is not a generating triple for $H N$. Also, we can apply a similar method to show that the group $H N$ is not $(2 B, 5 E, 7 A)$-generated.

Using Table 2, we calculate that $\Delta_{H N}(2 B, 5 B, 7 A)=0$, so $H N$ is not $(2 B, 5 B, 7 A)$-generated. Also, $\Delta_{H N}(2 B, 5 A, 7 A)=35<420=\left|C_{H N}(7 A)\right|$. Hence, by Theorem 1.1, the group $H N$ is not $(2 B, 5 A, 7 A)-$ generated. We now consider the triple $(2 A, 5 C, 7 A)$. The maximal subgroups of $H N$ that may contain $(2 B, 5 C, 7 A)$-generated proper subgroups are isomorphic to $\left(D_{10} \times U_{3}(5)\right): 2$. We calculate that $\Delta(H N)=7980$ and $\Sigma\left(\left(D_{10} \times U_{3}(5)\right): 2\right)=0$. Thus, $\Delta^{\star}(H N)=\Delta(H N)=7980>0$, and so $H N$ is $(2 B, 5 C, 7 A)$-generated. But $(5 C)^{2}=5 D$, so by Lemma 1.4, $H N$ is $(2 B, 5 D, 7 A)$-generated, as desired.

Lemma 2.5. The Harada-Norton group $H N$ is $(2 X, 5 Y, 11 A)$-generated, $X \in\{A, B\}$ and $Y \in\{A, B, C, D, E\}$, if and only if $X=Y=B$ or $Y \in\{C, D\}$.

Proof. Since $\Delta_{H N}(2 A, 5 A, 11 A)=0$, the group $H N$ is not $(2 A, 5 A, 11 A)-$ generated. Consider the triples $(2 A, 5 B, 11 A)$ and $(2 B, 5 A, 11 A)$. By the algebra constants of the group $H N$, Table 2,

$$
\Delta_{H N}(2 A, 5 B, 11 A)=\Delta_{H N}(2 B, 5 A, 11 A)=11<22=\left|C_{H N}(11 A)\right|,
$$

and by Theorem 1.1, these are not generating triples for $H N$. On the other hand, there is no maximal subgroup of $H N$ with non-empty intersection with all the conjugacy classes in triples $(2 X, 5 Y, 11 A), X \in\{A, B\}$ and $Y \in\{C, D\}$. Thus, these are generating triples for $H N$.

We show that $(2 A, 5 E, 11 A)$ is not a generating triple for $H N$. To do this, we consider the action of $H N$ on the cosets of maximal subgroup $5^{1+4}: 2^{1+4} .5 .4$. Since this action is transitive, if χ denotes the permutation character of the action
then $\chi=1_{5^{1+4: 2^{1+4.5 .4}}}^{H N}$ and we have:

$$
\begin{aligned}
\chi= & 1 a+2.8910 a+16929 a+65835 a+65835 b+69255 a+69255 b \\
& +214016 a+267520 a+2.365750 a+2.653125 a+656250 a+656250 b \\
& +718200 a+718200 b+4.1185030 a+2.1354320 a+1361920 a \\
& +1625184 a+2031480 a+3.2375000 a+2.2407680 a+4.2661120 a \\
& +3.2784375 a+2.2985984 a+3200000 a+3.3424256 a+2.3878280 a \\
& +4156250 a+2.4561920 a+3.4809375 a+5103000 a+5103000 b \\
& +2.5332635 a+2.5878125 a .
\end{aligned}
$$

Therefore by Lemma 1.5, the equation $68246640=2 p-2+27303087+12410496$ has an integer solution, which is a contradiction. Thus, $(2 A, 5 E, 11 A)$ is not a generating triple for $H N$. A similar argument shows that $H N$ is not $(2 A, 5 E$, $11 A)$-generated. Finally, $\Delta_{H N}(2 B, 5 B, 11 A)=220,2 . H S .2$ is the only maximal subgroup of $H N$ with a non-empty intersection with the conjugacy classes $2 B, 5 B, 11 A$, and $\Sigma(2 . H S .2)=0$. Hence, $H N$ is $(2 B, 5 B, 11 A)$-generated. This completes the proof.

Lemma 2.6. The group $H N$ is $(2 X, 5 Y, 19 Z)$-generated, $X, Z \in\{A, B\}$ and $Y \in\{A, B, C, D, E\}$, if and only if $(X, Y) \neq(A, A),(A, B)$.

Proof. By the character table of $H N$ [6], we can see that there is no maximal subgroup of $H N$ which its order is divisible by 5×19. On the other hand, if $(X, Y) \neq(A, A),(A, B)$ then $\Delta_{H N}(2 X, 5 Y, 19 Z) \neq 0$, proving the lemma.

Lemma 2.7. The group $H N$ is $(2 X, 7 A, 11 A)-,(2 X, 7 A, 19 Y)-$ and $(2 X$, $11 A, 19 Y)$-generated, where $X, Y \in\{A, B\}$.

Proof. Using Table 2, we can see that $\Delta_{H N}(2 X, 11 A, 19 Y)>0$, where $X, Y \in\{A, B\}$. On the other hand, there is no maximal subgroup with order divisible by 11×19, so $\Delta_{H N}^{\star}(2 X, 11 A, 19 Y)=\Delta_{H N}(2 X, 11 A, 19 Y)>0$. Therefore, the group $H N$ is $(2 X, 11 A, 19 Y)$-generated. We now claim that $H N$ is $(2 A, 7 A, 11 A)$-generated. To do this, the only maximal subgroup of $H N$, up to isomorphisms, with non-empty intersection with any conjugacy class in above triples are A_{12} and 2.HS.2. By Tables 2 and 3, we calculate that $\Delta_{H N}(2 A, 7 A, 11 A)=$ $4620,, \Sigma\left(A_{12}\right)=22$ and $\Sigma(2 . H S .2)=396$. Thus, $\Delta_{H N}^{\star}(2 A, 7 A, 11 A) \geq 4620-$ $4(22)-396>0$ and $H N$ is $(2 A, 7 A, 11 A)$-generated. Next, we show that $H N$ is $(2 B, 7 A, 11 A)-$ generated. To see this, the only maximal subgroups of $H N$ that may contain $(2 B, 7 A, 11 A)$-generated subgroups, are isomorphic to A_{12} and 2.HS.2. We easily calculate the structure constant $\Delta_{H N}(2 B, 7 A, 11 A)=171237$,
$\Sigma(2 . H S .2)=429$ and $\Sigma\left(A_{12}\right)=110$. Therefore, $\Delta_{H N}^{\star}>0$ and the group $H N$ is ($2 B, 7 A, 11 A$)-generated.

Finally, we find the $(2 X, 7 A, 19 Y)$-generations of the sporadic group $H N$. To do this, by the character table of $H N$, it is enough to assume that $Y=A$. If $X=A$ then by Table 1 and 3, there is no maximal subgroup of $H N$ that contains $(2 A, 7 A, 19 A)-$ generated proper subgroups. Therefore, $\Delta_{H N}^{\star}(2 A, 7 A, 19 A)=$ $\Delta_{H N}(2 A, 7 A, 19 A)>0$, and so the group $H N$ is $(2 A, 7 A, 19 A)$-generated. Also, for the case $X=B$, amongst the maximal subgroups of $H N$ with order divisible by 19 , the only maximal subgroups with non-empty intersection with any conjugacy class in this triple are isomorphic to $U_{3}(8) .3_{1}$. On the other hand, by Tables 2 and $3, \Delta_{H N}(2 B, 7 A, 19 A)=178030$ and $\Sigma\left(U_{3}(8) .3_{1}\right)=513$. Thus, $\Delta_{H N}^{\star}(2 B, 7 A, 19 A) \geq 178030-1(513)>0$ and $H N$ is $(2 B, 7 A, 19 A)$. This completes the proof.

We now summarize the above results in the following theorem.
Theorem 2.8. The Harada-Norton group $H N$ is (2,p,q)-generated for all $p, q \in\{3,5,7,11,19\}$ with $p<q$.

Proof. The proof follows from Lemmas 2.1-2.7 and the fact that the triangular group $T(2,3,5) \cong A_{5}$.

2.2. $(3, p, q)$-Generations for $H N$.

We consider triples $(3, p, q)$, in which p, q are primes and $q>p \geq 5$. The next lemma which proves the $(3 A, 5 A, 7 A)$ - generation of $H N$ is critical and done by Thomas Breuer. In the end of the paper, we include a GAP program which we need it in the proof of Lemma 2.9. Also, the algorithm of the program seems to be useful for similar generation type problems. This program is also written by Thomas Breuer and the author wishes to express here his gratitude to him.

Lemma 2.9. (Thomas Breuer) The group $H N$ is (3A,5A, 7A)-generated.
Proof. We will find a generating $(3 A, 5 A, 7 A)$ triple for $H N$. Using the AtlasRep package of GAP, we can get a permutation representation for the group $H N$ and compute the conjugacy classes of this permutation representation. We will use this fact that no proper subgroup of $H N$ contains elements of the orders 11 and 19. By the character table of $H N$ [6], if a and b are elements of orders 21 and 35 , respectively, then $a^{7} \in 3 A$ and $b^{7} \in 5 A$. Therefore, it is enough to find elements a and b of orders 21 and 35 , respectively, such that $x=a^{7} b^{7}$ has order 7 and $H N=\left\langle a^{7}, b^{7}\right\rangle$.

To do this, we look at the orders of 100 pseudo random elements and check whether the elements generate the whole group. Finally, a GAP program shows that there is an $(3 A, 5 A, 7 A)$-generation triple for $H N$.

Lemma 2.10. The group $H N$ is ($3 X, 5 Y, 7 A$)-generated, $X, Y \in\{A, B\}$, if and only if $(X, Y) \neq(A, B)$.

Proof. By Lemma 2.9, $H N$ is $(3 A, 5 A, 7 A)$-generated. Thus, it is enough to investigate the case $(X, Y) \neq(A, A)$. We first assume that $X=A$. For $Y=B$, the maximal subgroup 2.HS.2 intersects the triple $(3 A, 5 B, 7 A)$. Moreover, by Table 2 and $3, \Delta_{H N}(3 A, 5 B, 7 A)=546$ and $\Sigma(2 . H S .2)=143$. Thus,

$$
\Delta_{H N}(3 A, 5 B, 7 A)-143=403<420=\left|C_{H N}(7 A)\right| .
$$

Hence by Theorem 1.1, $(3 A, 5 B, 7 A)$ is not a generating triple for $H N$. Suppose $Y \in\{C, D\}$. In this case $\Delta_{H N}(3 A, 5 Y, 7 A)=9240$ and $\left(D_{10} \times U_{3}(5)\right): 2$ is the unique maximal subgroups of $H N$, up to isomorphisms, with non-empty intersection with each of the classes $3 A, 5 Y$ and $7 A$. However, $\Sigma\left(\left(D_{10} \times U_{3}(5)\right)\right.$: $2)=0$, proving the $(3 A, 5 C, 7 A)-$ and $(3 A, 5 D, 7 A)-$ generation of $H N$. We now complete the case $X=A$. To do this, we assume that $Y=E$. From the list of maximal subgroups of $H N$, Table 1, we observe that, up to isomorphisms, $A_{12}, 2 . H S .2$ and $\left(D_{10} \times U_{3}(5)\right): 2$ are the only maximal subgroups of $H N$ that admit $(3 A, 5 E, 7 A)$-generated subgroups. From the structure constant we calculate $\Delta_{H N}(3 A, 5 E, 7 A)=435960, \Sigma\left(A_{12}\right)=3780, \Sigma(2 . H S .2)=3500$ and $\Sigma\left(\left(D_{10} \times U_{3}(5)\right): 2\right)=280$. Thus, $\Delta_{H N}^{\star}(3 A, 5 E, 7 A) \geq \Delta_{H N}(3 A, 5 E, 7 A)-$ $1(3780)-15(3500)-6(280)>0$. This shows that the group $H N$ is $(3 A, 5 E, 7 A)-$ generated.

Next we suppose that $X=B$. If $Y \in\{C, D\}$ then there is no maximal subgroups which intersects the conjugacy classes $3 B, 5 Y$ and $7 A$. Since by Table $2, \Delta_{H N}(3 B, 5 Y, 7 A) \neq 0, H N$ is $(3 B, 5 Y, 7 A)$-generated, for $Y \in\{C, D\}$. Suppose $Y \in\{A, E\}$. The only maximal subgroups of $H N$ with non-empty intersection with the conjugacy classes in this triple is, up to isomorphisms, A_{12}. We calculate that $\Delta_{H N}(3 B, 5 Y, 7 A)-\Sigma\left(A_{12}\right)>0$. Hence the group $H N$ is $(3 A, 5 Y, 7 A)-$ generated, for $Y \in\{A, E\}$. Finally, for the case of $Y=B$, $\Delta_{H N}(3 B, 5 B, 7 A)=27720$ and there is no maximal subgroups of $H N$ that contains $(3 B, 5 B, 7 A)$-generated proper subgroups. Therefore, $\Delta_{H N}^{\star}(3 B, 5 B, 7 A)=$ $\Delta_{H N}(3 B, 5 B, 7 A)=27720$, and so $H N$ is $(3 B, 5 B, 7 A)$-generated. This completes the proof.

Lemma 2.11. The group $H N$ is $(3 X, p A, q Z)$-generated, for $5<p<q$.
Proof. For the case $p=11$, we can see that $\Delta_{H N}(3 B, 5 B, 7 A)>0$ and there is no maximal subgroups of $H N$ that contains ($3 X, 11 A, 19 Z$)-generated proper sub-
groups, $Z \in\{A, B\}$. Therefore, $\Delta_{H N}^{\star}(3 X, 11 A, 19 Z)=\Delta_{H N}(3 X, 11 A, 19 Z)>$ 0 , and so $H N$ is $(3 X, 11 A, 19 Z)$-generated, for $Z \in\{A, B\}$. We now assume that $p=7$ and $q=17$. In this case, $U_{3}(8) \cdot 3_{1}$ is the unique maximal subgroups of $H N$, up to isomorphisms, with non-empty intersection with each of the classes $3 X, 11 A$ and $19 Z, X, Z \in\{A, B\}$. If $X=A$ then $\Delta_{H N}(3 A, 11 A, 19 Z)=1197323$ and we calculate, $\Sigma\left(U_{3}(8) \cdot 3_{1}\right)=2052$ and $\Delta_{H N}^{\star}(3 A, 11 A, 19 Z) \geq 1197323-2052>0$, $Z \in\{A, B\}$. Thus, $H N$ is $(3 A, 11 A, 19 A)-$ and $(3 A, 11 A, 19 B)$-generated. If $X=B$ then $\Delta_{H N}(3 B, 11 A, 19 Z)=22293612$ and we calculate, $\Sigma\left(U_{3}(8) \cdot 3_{1}\right)=$ 19494 and $\Delta_{H N}^{\star}(3 B, 11 A, 19 Z) \geq 22293612-19494>0, Z \in\{A, B\}$. Thus, $H N$ is $(3 B, 11 A, 19 A)-$ and $(3 B, 11 A, 19 B)-$ generated.

Finally, we assume that $p=7$ and $q=11$. Our main proof will consider two separate cases. We first assume that $X=A$. Amongst the maximal subgroups of $H N$ with order divisible by $3 \times 7 \times 11$, the only subgroups with non-empty intersection with any conjugacy classes in this triple are isomorphic to A_{12} and 2.HS.2. We can see that $\Delta_{H N}(3 A, 7 A, 11 A)=1331451, \Sigma\left(A_{12}\right)=$ 1176 and $\Sigma(2 . H S .2)=8899$. Our calculations give, $\Delta_{H N}^{\star}(3 A, 7 A, 11 A) \geq$ $\Delta_{H N}(3 A, 7 A, 11 A)-4(1176)-1(8899)>0$. Thus, $H N$ is $(3 A, 7 A, 11 A)$-generated. Next we assume that $X=B$. In this case, $\Delta_{H N}(3 B, 7 A, 11 A)=22766700$ and the only maximal subgroups with non-empty intersection with any conjugacy classes in this triple are isomorphic to A_{12}. We calculate that $\Sigma\left(A_{12}\right)=2200$. Our calculations give, $\Delta_{H N}^{\star}(3 B, 7 A, 11 A) \geq \Delta_{H N}(3 B, 7 A, 11 A)-4(2200)>0$. Therefore, $H N$ is $(3 B, 7 A, 11 A)$-generated and the proof is complete.

Theorem 2.12. The Harada-Norton group $H N$ is ($3 X, p Y, q Z$)-generated for all $p, q \in\{5,7,11,19\}$ with $p<q$.

Proof. The proof is straightforward and follows from Lemmas 2.9, 2.10 and 2.11.
2.3. (p, q, r)-Generations for $H N, p>3$.

We consider triples (p, q, r), in which $p \geq 5$ and p, q and r are prime numbers. We deal separately with each case in the following two lemmas.

Lemma 2.13. The group $H N$ is $(5 X, 7 A, 19 Y)-$, $(5 X, 11 A, 19 Y)-$ and (7A, 11A, 19Y)-generated, for $X \in\{A, B, C, D, E\}$ and $Y \in\{A, B\}$.

Proof. By Table 3, there is no maximal subgroup of $H N$ that contains ($5 X$, $7 A, 19 Y)-,(5 X, 11 A, 19 Y)-$ and $(7 A, 11 A, 19 Y)$-generated proper subgroups,
for $X \in\{A, B, C, D, E\}$ and $Y \in\{A, B\}$. Therefore by Table 2,

$$
\begin{aligned}
\Delta_{H N}^{\star}(5 X, 7 A, 19 Y) & =\Delta_{H N}(5 X, 7 A, 19 Y)>0 \\
\Delta_{H N}^{\star}(5 X, 11 A, 19 Y) & =\Delta_{H N}(5 X, 11 A, 19 Y)>0 \\
\Delta_{H N}^{\star}(7 A, 11 A, 19 Y) & =\Delta_{H N}(7 A, 11 A, 19 Y)>0 .
\end{aligned}
$$

Thus, $H N$ is $(5 X, 7 A, 19 Y)-,(5 X, 11 A, 19 Y)-$ and $(7 A, 11 A, 19 Y)-$ generated, as desired.

Lemma 2.14. The group $H N$ is $(5 X, 7 A, 11 A)$-generated, for $X \in\{A, B$, $C, D, E\}$.

Proof. If $X \in\{C, D\}$ then by Table 1 and 3, there is no maximal subgroup of $H N$ that contains $(5 X, 7 A, 11 A)$-generated proper subgroups. Therefore, $\Delta_{H N}^{\star}(5 X, 7 A, 11 A)=\Delta_{H N}(5 X, 7 A, 11 A)>0$, and so the group $H N$ is $(5 C, 7 A, 11 A)$ - and $(5 D, 7 A, 11 A)$-generated. If $Y \in\{A, E\}$ then the only maximal subgroups of $H N$ that may contain $(5 Y, 7 A, 11 A)$-generated proper subgroups are isomorphic to A_{12} and 2.HS.2. Using a similar argument as in above, we can see that in any case

$$
\Delta_{H N}^{\star}(5 Y, 7 A, 11 A) \geq \Delta_{H N}(5 Y, 7 A, 11 A)-4 \Sigma\left(A_{12}\right)-\Sigma(2 . H S .2)>0
$$

Hence $H N$ is $(5 A, 7 A, 11 A)-$ and $(5 E, 7 A, 11 A)$-generated. Finally, by Table $3,2 . H S .2$ is the unique maximal subgroups of $H N$, up to isomorphisms, with non-empty intersection with each of the classes $5 B, 7 A$ and $11 A$. Our calculations give $\Delta_{H N}(5 B, 7 A, 11 A)=1369445$ and $\Sigma(2 . H S .2)=6332$. Thus, $\Delta_{H N}^{\star}(5 B, 7 A, 11 A) \geq \Delta_{H N}(5 B, 7 A, 11 A)-\Sigma(2 . H S .2)>0$, proving the $(5 B, 7 A$, $11 A)$-generation of $H N$. This concludes the lemma.

Theorem 2.15. The Harada-Norton group $H N$ is ($p X, q Y, r Z$)-generated for all prime numbers p, q and r with $3<p<q$.

Proof. The proof is straightforward and follows from Lemmas 2.13 and 2.14.
We now summarize the above results in the following theorem.
Theorem 2.16. The Harada-Norton group $H N$ is (p, q, r)-generated if and only if $(p, q, r) \neq(2,3,5)$.

Proof. The proof is follows from Theorem 2.8, 2.12 and 2.15.

A GAP Program for Constructing a (3A, 5A, 7A)-Generating Triple for $H N$

```
gap> # How to find a generating (3A,5A, 7) triple for HN.
gap> # Later we will use that no proper subgroup of HN contains elements
gap> # of the orders 11 and 19.
gap>
gap> hntbl:= CharacterTable( "HN" );;
gap> maxes:= List( Maxes( hntbl ), CharacterTable );;
gap> Filtered( maxes,t - > Size(t) mod (11*19) = 0 );;
gap>
gap> # Get a permutation representation of HN.
gap>
gap> RequirePackage( "atlasrep");;
gap> gens:= OneAtlasGeneratingSet( "HN" );;
gap> hn:= Group( gens.generators );;
gap>SetSize( hn, Size( hntbl ) );
gap>
gap> # Find elements in the classes 3A and 5A.
gap> # We could also use the straight line program for computing conjugacy
gap> # class representatives.
gap>
gap> # Any element of order 21 powers to a 3A element.
gap> repeat
>a:= PseudoRandom( hn );
> until Order( a ) = 21;
gap>a:= a
gap>
gap> # Any element of order 35 powers to a 5A element.
gap> repeat
>b:= PseudoRandom( hn );
> until Order( b ) = 35;
gap>b:= b
gap>
gap> repeat
>
> Print( "Try to find a generating (3A,5A,7) triple",\n" );
>
```

```
> # Conjugate the 5A element until the product has order }7
> repeat
>b:= b^PseudoRandom( hn );
> until Order( a*b ) = 7;
>
> # Check whether the elements generate the whole group.
> # For that, we look at the orders of 100 pseudo random elements.
>
> u:= SubgroupNC( hn, [a,b] );;
> found11:= false;;found19:= false;;
>> for i in [1..100] do
> ord:= Order( PseudoRandom( u ) );
> if ord mod 11=0 then
> foundl1:= true; fi;
> if ord mod 19 = 0 then
> found19:= true; fi;
> if found11 and found19 then
> Print(" a and b generate HN, i = ", i,"\n");
> break; fi; od; fi; od;
    > until found11 and found19;
Try to find a generating (3A,5A,7) triple.
a and b generate HN, i=4.
gap>
gap> # How long did the computations run?
gap> # The workspace was about 200m.
gap> Runtime();
81710
gap>
gap> # If we do not believe the character theoretic argument then
gap> # we may compute the order of the group.
gap> # Random methods suffice, but still we should allow GAP to get
gap> # sufficient workspace for that (command line option -o 700m).
gap>
gap> StabChainOptions( u ).random:= 100;;
gap>Size( u ) = Size( g );
true
```


Acknowledgement

The author wishes to thanks Dr. Thomas Breuer for writing a program to prove Lemma 2.10.

References

1. M. Aschbacher, Sporadic Group, Cambridge University Press, U.K., 1997.
2. A. R. Ashrafi, Generating Pairs for the Thompson Group Th, SUT J. Math., 39(1) (2003), 41-54.
3. A. R. Ashrafi, Generating Pairs for the Held Group He, J. Appl. Math. \& Computing, 10 (2002), 167-174.
4. M. D. E. Conder, Some results on quotients of triangle groups, Bull. Austral. Math. Soc., 30 (1984), 73-90.
5. M. D. E. Conder, R. A. Wilson and A. J. Wolder, The symmetric genus of sporadic groups, Proc. Amer. Math. Soc., 116 (1992), 653-663.
6. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford Univ. Press (Clarendon), Oxford, 1985.
7. M. R. Darafsheh and A. R. Ashrafi, Generating Pairs for the Sporadic Group Ru, J. Appl. Math. \& Computing, 12(1-2) (2003), 143-154.
8. M. R. Darafsheh and A. R. Ashrafi, $(2, p, q)$-Generation of the Conway group $C o_{1}$, Kumamoto J. Math., 13 (2000), 1-20.
9. M. R. Darafsheh, A. R. Ashrafi and G. A. Moghani, (p, q, r)-Generations and $n X$ Complementary Generations of the Sporadic Group Ly, Kumamoto J. Math., 16 (2003), 13-25.
10. M.R. Darafsheh ; A.R. Ashrafi and G.A. Moghani, (p, q, r)-Generations of the Conway group $C o_{1}$, for odd p, Kumamoto J. Math., 14 (2001), 1-20.
11. M. R. Darafsheh, A. R. Ashrafi and G. A. Moghani, (p, q, r)-Generations of the Sporadic group $O^{\prime} N$, Groups St. Andrews 2001 in: Oxford. Vol. I, 101-109, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 2003, p. 304.
12. S. Ganief and J. Moori, (p, q, r)-Generations of the smallest Conway group $C o_{3}, J$. Algebra, 188 (1997), 516-530.
13. S. Ganief and J. Moori, Generating pairs for the Conway groups Co_{2} and $\mathrm{Co}_{3}, \mathrm{~J}$. Group Theory, 1 (1998), 237-256.
14. S. Ganief and J. Moori, 2-Generations of the Forth Janko Group J4, J. Algebra, 212 (1999), 305-322.
15. S. Ganief and J. Moori, (p, q, r)-Generations and $n X$-complementary generations of the sporadic groups $H S$ and $M c L$, J. Algebra 188 (1997), 531-546.
16. J. Moori, (p, q, r)-Generations for the Janko groups J_{1} and J_{2}, Nova J. Algebra and Geometry, 2(3) (1993), 277-285.
17. J. Moori, $(2,3, p)$-Generations for the Fischer group F_{22}, Comm. Algebra, 2(11) (1994), 4597-4610.
18. M. Schonert et al., GAP, Groups, Algorithms and Programming, Lehrstuhl De fur Mathematik, RWTH, Aachen, 1992.
19. A. J. Woldar, Representing M_{11}, M_{12}, M_{22} and M_{23} on surfaces of least genus, Comm. Algebra, 18 (1990), 15-86.
20. A. J. Woldar, Sporadic simple groups which are Hurwitz, J. Algebra, 144 (1991), 443-450.
21. A. J. Woldar, $3 / 2$-Generation of the Sporadic simple groups, Comm. Algebra, 22(2) (1994), 675-685.
22. A. J. Woldar, On Hurwitz generation and genus actions of sporadic groups, Illinois Math. J., 33(3) (1989), 416-437.

Ali Reza Ashrafi
Department of Mathematics,
Faculty of Science,
University of Kashan,
Kashan, Iran
E-mail: ashrafi@kashanu.ac.ir

[^0]: Received October 9, 2002; accepted May 21, 2004.
 Communicated by Pjek-Hwee Lee.
 2000 Mathematics Subject Classification: Primary 20D08, 20 F05.
 Key words and phrases: Harada-Norton group, (p, q, r)-Generation, Triangle group.

