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SOLVING THE HAMILTONIAN CYCLE PROBLEM USING SYMBOLIC
DETERMINANTS

V. Ejov, J. A. Filar, S. K. Lucas and J. L. Nelson

Abstract. In this note we show how the Hamiltonian Cycle problem can be
reduced to solving a system of polynomial equations related to the adjacency
matrix of a graph. This system of equations can be solved using the method
of Gröbner bases, but we also show how a symbolic determinant related to
the adjacency matrix can be used to directly decide whether a graph has a
Hamiltonian cycle.

1. INTRODUCTION

The Hamiltonian Cycle Problem (HCP) is a well known NP-complete problem
(see for example Cormen et al. [1] or Johnson and Papadimitriou [5]). Given a
graph G = (V, E), can a cycle be found that visits every vertex v ∈ V exactly once.
Such a cycle is known as a Hamiltonian Cycle (HC), and a graph G with an HC is
called Hamiltonian.

While not as well developed as the Travelling Salesman Problem, there are a
number of algorithms specifically developed for the HCP, many of which are well
summarised in Vandegriend [9]. The algorithms naturally fall into two classes:
backtrack and heuristic. Backtrack algorithms systematically go through every pos-
sible path from a given starting vertex, eliminating those that reach dead ends and
cannot form an HC. They are guaranteed to find an HC if one exists, or show the
graph is not Hamiltonian, but are of exponential complexity as the graph size in-
creases. Heuristic algorithms are approximate ones which will usually find an HC
(if there is one) in polynomial time, but are not guaranteed to find one that exists.
The heuristic algorithms described in Vandegriend [9] are typically some form of
genetic algorithm, while in the optimisation community, the HCP is converted to an
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integer programming problem and then solved by heuristics inspired either by other
integer programming heuristics or by the structure of the graph (see for instance,
the survey papers in Lawler et al. [7]). An alternative form of heuristic algorithm
has recently been developed based on embedded Markov chains (see Ejov et al. [3]
or Feinberg [4]).

The aim of this paper is to introduce a new style of algorithm for the HCP which
guarantees finding an HC if it exists, and for non-Hamiltonian graphs at least will
find its longest cycle. The method is motivated by applications in symbolic linear
algebra, and essentially investigates the symbolic determinant of a graph’s adjacency
matrix. While this method is not computationally competitive with backtrack algo-
rithms, it has advantages in terms of ease of finding long cycles in non-Hamiltonian
graphs, and in terms of novelty for practitioners of the HCP.

2. GRAPH PROPERTIES

2.1. Definitions and the Adjacency Matrix

We define a graph G = (V, E) as a set of vertices V and a set of edges E that
are associated with pairs of vertices. A directed graph is one in which a direction
is associated with each edge, and so each edge is described as an ordered pair (i, j)
where i, j ∈ V . An undirected graph is one where each edge can be traversed in
either direction, and is equivalent to a directed graph where (i, j) ∈ V → (j, i) ∈ V
for i, j ∈ V . We will also only be considering simple graphs, in the sense that
(i, i) �∈ E , or there are no loops.

One simple way to represent a graph is by its adjacency matrix. Given a graph
with n vertices, define

A = (aij), where aij =
{

1 if (i, j) ∈ E,

0 otherwise.

The adjacency matrix of an undirected graph will be symmetric, and a simple graph
will have zeros on the main diagonal.

One of the more obvious approaches to a graph is to look at the eigenvalues
of its adjacency matrix. Unfortunately, this approach will not determine if a graph
is Hamiltonian. For example, consider the two graphs in Figure 1 with adjacency
matrices

A1 =




0 0 1 0 0
1 0 0 1 0
0 1 0 0 0
0 0 0 0 1
1 0 0 1 0


 and A2 =




0 0 0 0 1
1 0 0 1 1
0 1 0 0 0
0 1 1 0 0
0 0 0 0 0


 .
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Figure. 1. A pair of graphs with the same characteristic polynomial.

An arrow represents a directed edge, while a line can be traversed in either direction.
The first graph is Hamiltonian with an HC 1− 3− 2− 4− 5− 1, while the second
is not Hamiltonian, but det(λI − A1) = det(λI − A2) = λ5 − λ3 − λ2.

2.2. A Property of Hamiltonian Cycles

We begin with a theorem of Fröbenius, which is described in a more general
form in Varga [10].

Theorem 1. Given a connected graph, it is called cyclic of index k if its
adjacency matrix has k > 1 eigenvalues λ j that satisfy |λj| = maxi |λi| for j =
0, 1, . . . , k − 1. Additionally, these k eigenvalues are the roots of

λk −
(

max
i

|λi|
)k

= 0.

While we could use this theorem here, the proof presented in Varga [10] is overly
complex. What follows is a specialisation of Theorem 1 tailored to our particular
problem. First, we note that a Hamiltonian cycle is a subgraph of a given graph
with all the original n vertices and only n selected edges. Since a Hamiltonian
cycle will enter and leave each vertex exactly once, each row and column of the
adjacency matrix for a Hamiltonian cycle will contain exactly one entry of ‘1’, and
all the rest zeros. This is in fact the definition of a permutation matrix, and thus:

Theorem 2. An n × n permutation matrix is the adjacency matrix of some
Hamiltonian cyclic graph on n vertices if and only if its characteristic polynomial
is λn − 1 = 0.

In what follows, we only need to consider the n × n permutation matrix

Cn =




0 1 0 · · · 0
0 0 1 · · · 0
...

... . . . . . . ...
0 0 · · · 0 1
1 0 · · · 0 0




,
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since any other permutation matrix An corresponding to a Hamiltonian cycle can
be transformed to Cn by a combination of row and column swaps. This means that
An can be written in terms of Cn as An = PCnP−1 for some other permutation
matrix P , so An and Cn are similar, and have the same characteristic polynomial.

To find the characteristic polynomial of Cn, we first prove a lemma concerning
submatrices of λI − Cn.

Lemma 3. All n × n matrices of the form

S(1)
n =




0 −1 0 · · · 0
0 λ −1 · · · 0
...

... . . . . . . ...
0 0 · · · λ −1
−1 0 · · · 0 λ




,

have determinant equal to −1, and all n × n matrices of the form

S(2)
n =




λ −1 0 · · · 0
0 λ −1 · · · 0
...

... . . . . . . ...
0 0 · · · λ −1
0 0 · · · 0 λ




,

have determinant equal to λn.

Proof. We use an inductive argument to prove the first part of this lemma. For
the base case,

det(S(1)
2 ) =

∣∣∣∣ 0 −1
−1 λ

∣∣∣∣ = −1.

If we assume det(S(1)
n ) = −1, we want to prove det(S(1)

n+1) = −1. We can expand
along the first row of the determinant of S

(1)
n+1, whose only nonzero element is

s
(1)
1,2 = −1. We thus have det(S(1)

n+1) = (−1)1+2(−1) det(S(1)
n ) = −1 using the

assumption. Thus the first part of the lemma follows by induction for all positive
integers n. The second part is immediately obvious.

Given this lemma, we can now prove Theorem 2. Let us begin by proving the
case n = 2:

det(λI − C2) =
∣∣∣∣ λ −1
−1 λ

∣∣∣∣ = λ2 − 1.
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For n > 3, let us expand the determinant of λI − Cn across the first row:
∣∣∣∣∣∣∣∣∣∣∣

λ −1 0 · · · 0
0 λ −1 · · · 0
...

...
. . . . . .

...
0 0 · · · λ −1
−1 0 · · · 0 λ

∣∣∣∣∣∣∣∣∣∣∣
= (−1)1+1λS

(2)
n−1 + (−1)1+2(−1)S(1)

n−1

= λλn−1 + (−1) = λn − 1,

which completes the proof.

3. REDUCTION TO A SYSTEM OF POLYNOMIAL EQUATIONS

We are now in a position to use Theorem 2 to establish whether a given graph
is Hamiltonian. To do so, we first need to define the modified adjacency matrix of
a graph. Instead of placing a one at row i column j when there a (directed) edge
from vertex i to vertex j, we place the variable xij in that position. For the graphs
in Figure 1, we obtain modified adjacency matrices of the form

X1 =




0 0 x1,3 0 0
x2,1 0 0 x2,4 0
0 x3,2 0 0 0
0 0 0 0 x4,5

x5,1 0 0 x5,4 0


 ,

and

X2 =




0 0 0 0 x1,5

x2,1 0 0 x2,4 x2,5

0 x3,2 0 0 0
0 x4,2 x4,3 0 0
0 0 0 0 0


 .

Our aim is to choose values of the xij’s to form a Hamiltonian cycle within the
graph, if at all possible.

3.1. Characterisation as a System of Polynomial Equations

The variables xij in the modified adjacency matrix X have certain restrictions
when forming a (hopefully Hamiltonian) subgraph. Since the entries in an adjacency
matrix can only take the values zero or one, a natural constraint is xij(xij − 1) = 0
for all xij variables in the modified adjacency matrix. In addition, a Hamiltonian
cycle must be a permutation matrix, with exactly one 1 in every row and column.
This ensures only one arc joins a vertex, and only one leaves. This can be written
as

∑
i xij − 1 = 0 for all j, and

∑
j xij − 1 = 0 for all i.
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Finally, we require the result of Theorem 2, that the adjacency matrix has char-
acteristic polynomial λn − 1. This can be written as det(λI − X) − λn + 1 = 0,
where we should read this equation as equating each of the n + 1 coefficients of
the polynomial to zero.

In summary, given the modified adjacency matrix of a graph X , a Hamiltonian
cycle is equivalent to the solution of the system of polynomial equations

(1)




xij(1 − xij) = 0 for all (i, j) ∈ E,∑
j

xij − 1 = 0, for all i

∑
i

xij − 1 = 0 for all j,

det(λI − X)− λn + 1 = 0.

If this system of polynomial equations has no solution, then the graph does not have
a Hamiltonian cycle.

3.2. Solution Using Gröbner Bases

A powerful technique for solving systems of polynomial equations uses the
technique of Gröbner bases, as applied using Buchberger’s algorithm. The technique
transforms a system of polynomial equations into a “canonical” form which is much
easier to solve. We do not intend to provide a tutorial on Gröbner bases, but refer
the reader to the literature (for example Cox et al. [2] or Kreuzer and Robbiano [6])
for more details. One important detail is related to Hilbert’s Nullstellensatz, which
states that a system of polynomial equations has no solution if its Gröbner basis is
{1}. Thus the Gröbner basis method provides an easy check on whether a graph
is Hamiltonian or not. Finally, we should note that in general the computational
complexity of solving a system of polynomial equations via Gr̈obner bases is at least
exponential [2, 6].

3.3. Examples

Let us begin by considering the two examples from Figure 1, using the symbolic
manipulation package Maple. For the first case, after finding the determinant of
λI − X1 and equating coefficients, we have the input

with(grobner):ff:=[x13*(1-x13),x21*(1-x21),x24*(1-x24),
x32*(1-x32),x45*(1-x45),x51*(1-x51),x54*(1-x54),x21+x51-1,
x32-1,x13-1,x24+x54-1,x45-1,x13-1,x21+x24-1,x32-1,x45-1,
x51+x54-1,x45*x54,x21*x32*x13,x21*x32*x13*x45*x54-x51*x32*
x13*x24*x45+1];

gbasis(ff,[x13,x21,x24,x32,x45,x51,x54])



HCP Using Symbolic Determinants 333

which returns

gbasis= [x13 - 1, x21, x24 - 1, x32 - 1, x45 - 1, x51 - 1, x54]

and implies that x13 = 1, x21 = 0, x24 = 1, x32 = 1, x45 = 1, x51 = 1 and
x54 = 0, so is the Hamiltonian cycle 1-3-2-4-5-1.

In the second case, with input
with(grobner):ff:=[x15*(1-x15),x21*(1-x21),x24*(1-x24),

x25*(1-x25),x32*(1-x32),x42*(1-x42),x43*(1-x43),x21-1,
x32+x42-1,x43-1,x24-1,x15+x25-1,x15-1,x21+x24+x25-1,x32-1,
x42+x43-1,x24*x42,x32*x43*x24,0];

gbasis(ff,[x14,x21,x24,x25,x32,x52,x53])
which perhaps unsurprisingly returns the output [1] indicating no Hamiltonian
cycle, since the characteristic polynomial for X2 has no constant term, immediately
leading to an equation 0 = 1.

The last example we wish to consider here is for the (undirected) cubic graph
with six nodes whose graphical and modified adjacency matrix representations are
in Figure 2. The associated system of equations as input to Maple is quite large.
One part is the characteristic polynomial which is equated to λn − 1. It is:

(2)

λ6−(x23x32+x36x63+x14x41+x12x21+x15x51+x56x65+x54x45

+x26x62+x34x43)λ4−(x26x63x32+x14x51x45+x36x23x62+x54x41x15)
λ3+(−x14x43x32x21+x54x23x32x45+x56x23x32x65+x12x56x21x65

+x54x62x45x26+x54x12x21x45+x34x43x56x65−x12x51x26x65

+x12x21x36x63+x14x56x41x65−x56x21x15x62+x34x43x26x62

+x14x41x36x63−x34x63x45x56+x51x15x36x63+x51x26x15x62

+x54x45x36x63+x34x12x43x21−x54x36x43x65−x34x12x23x41

+x14x62x41x26+x15x51x23x32+x34x51x43x15+x14x23x32x41)
λ2+(−x54x12x41x26x65+x54x62x45x36x23−x34x12x63x41x26

+x14x63x32x41x26+x54x41x15x23x32−x54x43x32x26x65

+x14x51x62x45x26−x14x51x36x43x65+x51x36x23x15x62

+x14x62x41x36x23−x56x21x15x63x32−x14x62x45x56x21

+x54x41x26x15x62+x54x41x15x36x63+x14x51x45x36x63

−x54x21x15x43x32−x34x12x51x23x45−x12x51x36x23x65

+x14x51x23x32x45+x51x26x15x63x32−x14x62x36x43x21

−x34x63x56x41x15+x54x63x32x45x26−x34x23x45x56x62)
λ+(+x54x41x26x15x63x32+x54x41x36x23x15x62−x54x12x41x36x23x65

−x14x51x43x32x26x65+x14x43x32x56x21x65+x34x43x56x21x15x62

−x34x12x43x56x21x65−x34x51x43x26x15x62+x34x12x51x43x26x65

+x54x12x21x36x43x65+x14x51x62x45x36x23+x34x12x63x45x56x21

−x34x12x51x63x45x26−x14x63x32x45x56x21+x14x51x63x32x45x26

−x54x12x21x45x36x63−x14x23x32x56x41x65−x34x23x56x41x15x62

+x34x12x23x56x41x65−x54x21x36x43x15x62).
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Figure 2. A cubic graph with its modified adjacency matrix.

The solution returned from the Maple Gröbner basis implementation is

[x43ˆ2 - x43, 2 x54 x43 - x43 - x54 + x65, x54ˆ2 - x54,
x56 x43, x54 x56, x56ˆ2 - x56, x43 x63, x54 x63,
2 x56 x63 - x43 - x54 - 2 x56 - 2 x63 - x65 + 2, x63ˆ2 -
x63, 2 x43 x65 - x43 + x54 - x65, 2 x65 x54 + x43 - x54 -
x65, x65 x56, x63 x65, x65ˆ2 - x65, x32 - x43 - x56 - x63 -
x65 + 1, x23 + x43 + x63 - 1, x14 - x43 - x56 - x63 - x65 +
1, x12 + x43 + x56 - 1, x15 + x63 + x65 - 1, x21 - x43 -
x54 - x56 - x63 + 1, x26 + x54 + x56 - 1, x43 + x34 + x54 +
x56 + x63 + x65 - 2, x35 - x54, x41 + x43 + x63 - 1, x45 -
x63, x51 + x54 + x56 - 1, x62 + x63 + x65 - 1],

which can be easily solved using Maple’s solve command to give the six sets of
solutions 



x14 = x21 = x32 = x45 = x56 = x63 = 1,

x15 = x23 = x34 = x41 = x56 = x62 = 1,

x12 = x26 = x34 = x45 = x51 = x63 = 1,

x14 = x26 = x32 = x43 = x51 = x65 = 1,

x12 = x23 = x36 = x41 = x54 = x65 = 1,

x15 = x21 = x36 = x43 = x54 = x62 = 1,

where the other variables in each case take the value zero. These solutions naturally
lead to the six distinct Hamiltonian cycles 1-4-5-6-3-2-1, 1-5-6-2-3-4-1, 1-2-6-3-
4-5-1, 1-4-3-2-6-5-1, 1-2-3-6-5-4-1, and 1-5-4-3-6-2-1, although the last three are
reversals of the first three.

4. SOLUTION USING THE SYMBOLIC DETERMINANT

While theoretically elegant, the procedure as described above is not likely to be
competitive with backtrack algorithms. It is well known that forming a Gröbner
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basis is of at least exponential time complexity, but more importantly, the number of
terms in the initial system of equations grows at least exponentially, and the process
of forming the symbolic characteristic polynomial before inputting to Buchberger’s
algorithm is itself of at least exponential complexity. Combined with the additional
computational effort in performing symbolic algebraic manipulation, this algorithm
will be relatively slow. However, the results shown previously hint at a more
efficient method for establishing the existence of Hamiltonian cycles, or the longest
subcycle in non-Hamiltonian graphs.

Consider, for example, the constant term of (2), which is the symbolic expansion
of det(X3). It is made up of 21 product terms, where each term appears to represent
a set of subcycles on all the vertices of the graph in a particular order. For example,
the first product term is x54x41x26x15x63x32. If all these coefficients equal one, we
can follow the path defined by the order of the subscripts, and see that it represents
the pair of subcycles of length three 5-4-1-5 and 2-6-3-2. By checking each product
term, we obtain the same six distinct Hamiltonian cycles observed previously, as
well as a host of different sets of subcycles. In fact, this is not simply a coincidence,
and we can state.

Theorem 3. The product terms making up the symbolic determinant of the
modified adjacency matrix represent sets of subcycles on all vertices of a given
graph. In addition, a Hamiltonian cycle will be obtained when the path from any
vertex visits every other vertex before returning.

Proof. As described in most undergraduate linear algebra texts, an elementary
product from a matrix A is a product of n entries from the matrix, exactly one
from each row and column. It can thus be written as a1j1a2j2 · · · , anjn where
(j1, j2, . . . , jn) is a permutation of (1, 2, . . . , n). A signed elementary product is
an elementary product multiplied by ±1 where the sign depends on whether the
permutation (j1, j2, . . . , jn) is even or odd. Finally det(A) is the sum of all the
signed elementary products from A.

In the context of the modified adjacency matrix of a graph, we will only require
elementary products of non-zero elements. Since xij represents an edge from vertex
i to vertex j, each elementary product will have exactly one (directed) edge out
from each vertex. By following these edges from any given vertex, a cycle will
be formed, which may or may not include all the vertices. If it doesn’t, then
additional subcycles can be formed by starting from a vertex not yet visited, but if
it does include all vertices in the cycle, then we have a Hamiltonian cycle, which
completes the proof.

A solution to the Hamiltonian cycle problem is thus simply stated as follows:
find the symbolic determinant of the modified adjacency matrix of the graph, and
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identify the elementary products. A simple linear scan of each elementary product
will determine whether it represents a Hamiltonian cycle or not. In fact, about one
half of the elementary products will not need to be considered, since in fact we
require det(X) = −1, so only negative elementary products should be scanned.

This new algorithm has some interesting similarities to a model for the HCP
described in Plotnikov [8], where a logical model for the existence of HCs in a graph
is derived, related to the satisfiability problem. While we have associated symbolic
variables to each edge of the graph, Plotnikov associates a Boolean variable with
each edge, and constructs a Boolean expression which is true whenever those edges
that form an HC have true Boolean variables associated with them, and the other
edges are false. The advantage of Plotnikov’s method is that Hamiltonian cycles
can be immediately obtained from the Boolean expression, whereas we have to scan
through all our product terms. Unfortunately, a key step in Plotnikov’s construction
requires identifying all the cycles in the graph that do not contain all the vertices, and
no straightforward way of doing so is described. By using the symbolic determinant
instead of logical variables, we are able to form essentially the same result as
Plotnikov, but with a well posed algorithm.

Despite its novelty, this symbolic determinant algorithm is, as one would expect,
of at least exponential complexity. In the case of a dense matrix, the number of
elementary products is of order n!, and even in the case of cubic graphs, which in
some sense are the simplest graphs for establishing Hamiltonicity, the number of el-
ementary products grows exponentially. However, we may “prune” the determinant,
cutting down on the number of product terms. If we find the symbolic determinant
step by step by expanding along rows, we notice that the terms in smaller determi-
nants are product terms of increasing length. If a term can be identified that already
represents a subcycle, it could be set to zero rather than kept in the determinant until
it eventually appears in many final product terms that include that subcycle. In fact,
this pruned determinant can be identified with more classical backtrack algorithms,
where the product terms represent the path currently chosen, and the determinant
holds information on the connectivity of the rest of the graph.

5. CONCLUSION

We have shown how the Hamiltonian Cycle problem is equivalent to both solving
a system of polynomial equations (typically using a Gr̈obner basis method) and
more efficiently, finding patterns within a symbolic determinant. In both cases, the
modified adjacency matrix representation of a graph is a crucial intermediate step.
While novel in the sense of solving the Hamiltonian Cycle problem using symbolic
algebra, unfortunately the complexity of these new methods remains exponential,
and the additional overheads of symbolic calculations make them uncompetitive
compared with more traditional algorithms.
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