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KdV-Caudrey-Dodd-Gibbon Equation from Fluid Dynamics

Jian-Min Tu, Shou-Fu Tian*, Mei-Juan Xu and Tian-Tian Zhang

Abstract. In this paper, a generalized KdV-Caudrey-Dodd-Gibbon (KdV-CDG) equa-

tion is investigated, which describes certain situations in the fluid mechanics, ocean

dynamics and plasma physics. By using Bell polynomials, a lucid and systematic

approach is proposed to systematically study its Hirota’s bilinear form and N -soliton

solution, respectively. Furthermore, based on the Riemann theta function, the one-

quasi- and two-quasi-periodic wave solutions are also constructed. Finally, an asymp-

totic relation of the quasi-periodic wave solutions are strictly analyzed to reveal the

relations between quasi-periodic wave solutions and soliton solutions.

1. Introduction

It is well known that nonlinear equations are more and more widely investigated to describe

a lot of significant phenomena and dynamic processes in many fields, such as physics,

chemistry, biology and mechanics, etc. Consequently, it is meaningful for us to investigate

the exact solutions of the nonlinear equations. A good number of effective methods have

been come up to obtain the wave solutions. They contains inverse scattering transform [1],

Lie group [4], the Darboux transformation [21], Hirota direct method [10, 11], algebro-

geometrical approach [3] and Painlevé analysis [17,38], etc. Among these methods, Hirota

bilinear method is one of vital convenient approaches used for constructing soliton solutions

of the nonlinear equations. Interestingly, the method combining with Riemann theta

functions has also been developed to get exact quasi-periodic wave solutions.

In 1980s, Nakamura propose a straight and effective approach to construct quasi-

periodic solutions for nonlinear equations in his essay [24]. Combining with Riemann

theta functions, one can obtain the quasi-periodic wave solutions of the given nonlinear

equations. Recently, Fan and Hon [6,7] extend this method to investigate the discrete Toda
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lattice, (2+1)-dimensional Bogoyavlenskii’s breaking soliton equation and the asymmetri-

cal Nizhnik-Novikov-Veselov equation. Ma [18,20] construct one- and two- quasi-periodic

wave solutions to a class of (2+1)-dimensional Hirota bilinear equations. Chow [5] present

the exact quasi-periodic solutions to some evolution equations. Chen, et al. [22,36] inves-

tigate the bilinear forms, bilinear Bäcklund transformations, Lax pairs and conservation

laws of some KdV-type equations. In [28–32], Tian, et al. present the methods to con-

struct the quasi-periodic wave solutons of some nonlinear differential equations, discrete

soliton equations and supersymmetric equations.

Recently, more and more mathematicians and physicists pay attention to the gen-

eralized nonlinear equations because the generalized nonlinear equations could describe

more realistic physical phenomena than their constant-coefficient counterparts in various

fields [13–15,25,33,34]. In this paper, we consider the following generalized KdV-Caudrey-

Dodd-Gibbon (KdV-CDG) equation

(1.1) ut + (h1uxx + h2u
2)x + (h3u

3 + h4uuxx + h5uxxxx)x = 0,

where u is a function of the variable x, t, ut = ∂u
∂t , ux = ∂u

∂x , hi (i = 1, 2, 3, 4, 5) are arbitrary

constants. Obviously, (1.1) can be reduced to the KdV equation, Caudrey-Dodd-Gibbon

equation and the Sawada-Kotera equation etc. Some important examples are given as

follows.

• The Korteweg-de Vries (KdV) equation [19,35,39]

(1.2) ut + uxxx + 6uux = 0

has been found to model many physical, mechanical and engineering phenomena,

such as ion-acoustic waves, geophysical fluid dynamics, lattice dynamics, the jams

in congested traffic, etc.

• The Caudrey-Dodd-Gibbon (CDG) equation [26,37]

(1.3) ut + uxxxxx + αuxuxx + αuuxxx +
α2

5
u2ux = 0

is completely integrable and admits multiple-soliton solutions. Meanwhile, (1.3) has

the Painlevé property.

• The Sawada-Kotera (SK) equation [16,27]

(1.4) ut + uxxxxx + 15uxuxx + 15uuxxx + 45u2ux = 0

can be used to describe the evolution of steep waves of short wave-length.
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To the best of our knowledge, it has not been studied the quasi-periodic wave solutions

for the generalized KdV-CDG equation (1.1). The main purpose of this paper is to apply

the Bell polynomial approach to construct its bilinear form, N -soliton solution and quasi-

periodic wave solutions. Furthermore, we present an asymptotic relation to reveal the

relations between quasi-periodic wave solutions and soliton solutions. In the procedure of

applying the Bell polynomials, some relevant constraint condition on (1.1) are naturally

found, i.e.,

(1.5) 15h3h5 = h24, h1h4 = 5h2h5.

In the present work, the results of the generalized KdV-CDG equation are investigated

under the condition (1.5).

The rest of this paper is organized as follows. In Section 2, the Hirota bilinear form

of the generalized KdV-CDG equation is obtained by using the Bell polynomials. In

addition, some special cases are also investigated. In Section 3, the N -soliton solutions

of generalized KdV-CDG equation are constructed with a detailed proof. After that one

can obtain the one-soliton and two-soliton solutions of the equation. Through use of the

Riemman theta functions, we obtain the quasi-periodic wave solutions in Section 4. In

Section 5, we present a relation between quasi-periodic wave solutions and soliton solutions

by a limiting procedure. Finally, some important characters of binary Bell polynomials

are briefly introduced.

2. The bilinear form

Based on the Bell polynomials [2, 9, 12], we obtain the bilinear form of the generalized

KdV-CDG equation.

By introducing the following transformation

(2.1) u = m(t)q2x,

where m = m(t) is a free function to be determined with Bell’s polynomials. Substituting

the transformation (2.1) into (1.1), one obtains

m(t)q2x,t +mt(t)q2x + (h1m(t)q4x + h2m(t)2q22x)x

+ (h3m(t)3q32x + h4m(t)2q2xq4x + h5m(t)q6x)x = 0.
(2.2)

If m(t) 6= 0, (2.2) is equivalent to

q2x,t + ∂t(lnm(t))q2x + (h1q4x + h2m(t)q22x)x

+ (h3m(t)2q32x + h4m(t)q2xq4x + h5q6x)x = 0.
(2.3)
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Integrating (2.3) with respect to x, (2.3) becomes

qx,t + ∂t(lnm(t))qx + h1q4x + h2m(t)q22x + h3m(t)2q32x + h4m(t)q2xq4x + h5q6x = δ,

where δ = δ(t) is an integration constant. Let

(2.4) h2 = 3h1m
−1(t), h3 = 15h5(m

−1(t))2 and h4 = 15h5m
−1(t),

we get

qx,t + h1(q4x + 3q22x) + h5(15q32x + 15q2xq4x + q6x) = δ.

Integrating with the P -polynomials, it shows that

(2.5) E(q) = Pxt(q) + h1P4x(q) + h5P6x(q) = δ.

Especially, taking δ = 0, (2.5) can be simplified as follows

(2.6) E(q) ≡ Pxt(q) + h1P4x(q) + h5P6x(q) = 0.

At last, through use of the property (A.2), we have

q = 2 ln f ⇐⇒ u = m(t)q2x,

where m(t) is determined by (2.4) and f = f(x, t). From (2.4), we define m(t) as below

m(t) =


3h1h

−1
2 when h1h2 6= 0,

15h5h
−1
4 when h4h5 6= 0,√

15h5h
−1
3 when h3h5 > 0.

When h1h2 6= 0, h4h5 6= 0, h3h5 > 0, these three m(t) are equivalent with each other. In

the following derivation process, we take m(t) = 3h1h
−1
2 as an example, i.e.,

q = 2 ln f ⇐⇒ u = m(t)q2x = 6h1h
−1
2 (ln f)xx.

Using the standard identities of the Hirota D-operator

Dn
xD

k
t f(x, t) · g(x, t) = (∂x − ∂x′)n(∂t − ∂t′)kf(x, t) · g(x′, t′)

∣∣
x=x′,t=t′

,

one can obtain the bilinear representation of the KdV-CDG equation

(2.7)
(
DxDt + h1D

4
x + h5D

6
x

)
f · f = 0,

where h1h2 6= 0, and h1, h2, h5 are arbitrary parameters. Formula (2.7) is a new bilinear

form. Choosing different coefficients hi (i = 1, . . . , 5), m(t) may be different. But using

the similar way, the bilinear representation can be certainly obtained.
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Case 1. Let h1 = 1, h2 = 3, h5 = 0, (1.1) becomes KdV equation (1.2), meanwhile, the

Hirota bilinear form (2.7) can be written as

(2.8)
(
DxDt +D4

x

)
f · f = 0,

which is the same as (2.8) in [30].

Case 2. Let h1 = 0, h2 = 0, h3 = α2/15, h4 = α, h5 = 1, (1.1) becomes Caudrey-

Dodd-Gibbon equation (1.3). Especially, when α = 30, by making the transformation

m(t) = 15h5h
−1
4 =

√
15h5h

−1
3 = 1/2 in the above proof procedure, the Hirota bilinear of

(1.3) is given by (
DxDt +D6

x

)
f · f = 0,

which is also obtained in [26].

Case 3. Let h1 = 0, h2 = 0, h3 = 15, h5 = 1, h4 = 15, (1.1) becomes Sawada-Kotera

equation (1.4). Making the transformation m(t) = 15h5h
−1
4 =

√
15h5h

−1
3 = 1, and the

bilinear form for (1.4) is given by(
DxDt +D6

x

)
f · f = 0,

which is equivalent to (2) in [16].

When h1h2 6= 0, the Hirota bilinear form (2.7) admits a more general conclusion and

applications than the bilinear form which has definite coefficients, e.g. (2.8). It would

make sense to us. When h1h2 = 0, other cases can be discussed by the similar process.

Representatively, we discuss the bilinear form (2.7) in the rest of this paper.

3. The solitary solutions

In this section, we construct the N -soliton solutions of the generalized KdV-CDG equation

by using the Hirota bilinear form (2.7) with a detailed proof.

Theorem 3.1. The N -soliton solution of the generalized KdV-CDG equation is obtained

as follows

u = 6h1h
−1
2 (ln f)xx,

f =
∑
ρ=0,1

exp

 N∑
j=1

ρjφj +

N∑
1≤j<i≤N

ρiρjAij

 ,
(3.1)

in which φi = kix+ωit+σi, e
Aij =

−(ωi−ωj)(ki−kj)−h1(ki−kj)4−h5(ki−kj)6
(ωi+ωj)(ki+kj)+h1(ki+kj)4+h5(ki+kj)6

with ωi = −h1k3i −
h5k

5
i , (1 ≤ j < i ≤ N). ki is a free parameter characterizing the j-th soliton.

∑N
1≤j<i≤N

is the summation over all possible pairs selected from N elements under the condition

(1 ≤ j < i ≤ N), and
∑

ρ=0,1 shows the summation over all possible combinations of

ρi, ρj = 0, 1 (i, j = 1, 2, . . . , N).
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Proof. Considering the bilinear form (2.7), (3.1) can be written as

∑
ρ=0,1

∑
ρ′=0,1

D

− N∑
j=1

(ρj − ρ′j)(h1k3j + h5k
5
j ),

N∑
j=1

(ρj − ρ′j)kj


× exp

 N∑
j=1

(ρj + ρ′j)φj +

N∑
1≤j<i≤N

(ρiρj + ρ′iρ
′
j)Aij

 = 0,

(3.2)

and then we let the coefficient of the factor

exp

 N∑
j=1

(ρj + ρ′j)φj

 = G (ρ, ρ′) = exp

 m∑
j=1

φj + 2
n∑

j=m+1

φj

 .

Moreover, for the left-hand side of (3.2), we introduce the following function

M =
∑
ρ=0,1

∑
ρ′=0,1

G (ρ, ρ′)D

− N∑
j=1

(ρj − ρ′j)(h1k3j + h5k
5
j ),

N∑
j=1

(ρj − ρ′j)kj


× exp

 N∑
1≤j<i≤N

(ρiρj + ρ′iρ
′
j)Aij


= 0,

(3.3)

where the coefficient G (ρ, ρ′) on behalf of the summations about ρ and ρ′ under the

conditions provided by the following formulas

ρj =


1− ρ′j , if 1 ≤ j ≤ m,

ρ′j = 1, if m+ 1 ≤ j ≤ n,

ρ′j = 0, if n+ 1 ≤ j ≤ N.

Now, introducing a new variable

(3.4) $j = ρj − ρ′j ,

we have

exp

 N∑
1≤j<i≤N

(ρiρj + ρ′iρ
′
j)Aij

 =
m∑

1≤j<i≤N

1

2
(1 +$i$j)Aij +

m∑
i=1

n∑
j=m+1

Aij

+
n∑

1≤j<i≤N

n∑
j=m+1

Aij .

(3.5)

By considering $i, $j = ±1 and the following relations

D(−h1k3j − h5k5j , kj) = D(h1k
3
j + h5k

5
j ,−kj),

exp(Aij) = −
D(h1(k

3
i − k3j ) + h5(k

5
i − k5j ), kj − ki)

D(−h1(k3i + k3j )− h5(k5i + k5j ), ki + kj)
,

(3.6)
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we have

(3.7)
m∑

1≤j<i≤N

1

2
(1 +$i$j)Aij = −

D(h1(k
3
i − k3j ) + h5(k

5
i − k5j ), kj − ki)

D(−h1(k3i + k3j )− h5(k5i + k5j ), ki + kj)
×$i$j .

Combining equations (3.3), (3.4)–(3.7), we obtain

M = A
∑
$=±1

D

− N∑
j=1

$j(h1k
3
j + h5k

5
j ),

N∑
j=1

$jkj


×

N∏
j<i

D
(
h1(k

3
i − k3j ) + h5(k

5
i − k5j ), kj − ki

)
$i$j

= 0,

(3.8)

where A = A (exp(Aij)). There’s no relation between the A and the summation indices

$i (i = 1, 2, . . . , N). By considering the bilinear equation (2.7), (3.8) can be rewritten as

follows

M̂N ≡ A
∑
$=±1

−
N∑

i,j=1

$i$j(h1k
3
i + h5k

5
i )kj + h1

 N∑
j=1

$jkj

4

+ h5

[
N∑
i=1

$jkj

]6
×

N∏
j<i

D(h1(k
3
i − k3j ) + h5(k

5
i − k5j ), kj − ki)$i$j

= 0.

(3.9)

This implies that M̂N (−k1,−k2, . . . ,−kN ) = M̂N (k1, k2, . . . , kN ) from the above equation

(3.9). Suppose A ≡ 1, k1 = ±k2, we have

M̂N (k1, k2, . . . , kN )

≡ (132h1k
4
1 + 68h5k

6
1)

N∏
j=3

(k1 − kj)2

×
{

(2h1(k1 − kj)2 + 3h1k1kj + 2h5(k1 − kj)4 + 5h5(k1k
3
j + k31kj − k21k2j )

}
× M̂N−2(k3, k4, . . . , kN ).

(3.10)

Assume that the identity hold for N − 2. Through using the relevance (3.10), it shows

that M̂N−2(k1, k2, . . . , kN ) is the factor by the following polynomial

M̂N (k1, k2, . . . , kN )

≡
N∏
i=1

(33h1k
4
i + 17h5k

6
i )

N∏
i<j

(ki − kj)2

×
{

(2h1(ki − kj)2 + 3h1kikj + 2h5(ki − kj)4 + 5h5(kik
3
j + k3i kj − k2i k2j )

}
× M̂N (k1, k2, . . . , kN ).

(3.11)
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From (3.9) and (3.11), we know that M̂N (k1, k2, . . . , kN ) = 0 must be zero when A ≡ 1,

n ≥ 2. From above, we have demonstrated the expression (3.1) is the N -soliton solution

for the generalized KdV-CDG equation(1.1).

Through using Theorem 3.1, the following corollary can be easily obtained.

Corollary 3.2. When N = 1, the one-soliton solution of the generalized KdV-CDG equa-

tion (1.1) is given by

(3.12) u = 6h1h
−1
2 ∂2x ln(1 + eφ) =

3

2
h1h

−1
2 k2 sec2

kx+ ωt+ σ

2
,

with φ = kx− (h1k
3 + h5k

5)t+ σ. When N = 2, the two-soliton solution is given by

(3.13) u1 = 6h1h
−1
2 ∂2x ln(1 + eφ1 + eφ2 + eφ1+φ2+A12),

with φi = kix+ (−h1k3i − h5k5i )t+ σi, i = 1, 2 eA12 = −(ω1−ω2)(k1−k2)−h1(k1−k2)4−h5(k1−k2)6
(ω1+ω2)(k1+k2)+h1(k1+k2)4+h5(k1+k2)6

and ωi = −h1k3i − h5k5i , (i = 1, 2).

The graphics of the one-soliton and two-soliton wave solutions (3.12) and (3.13) are

plotted as Figures 3.1–3.4 by selecting the suitable parameters, respectively.

(a) The perspective view of

the wave.

(b) The overhead view of

the wave.

(c) The wave propagation

pattern of the wave along

the x taxis.

Figure 3.1: (Color online) Spatial structures of the one-soliton solution (3.12) with the

parameters h1 = 1, h2 = 3, h3 = 15, h4 = 15, h5 = 1, k = 1 and σ = 1.

(a) The perspective view of the

wave.

(b) The overhead view of the

wave.

(c) The wave propagation

pattern of the wave along

the x taxis.

Figure 3.2: (Color online) Spatial structures of the one-soliton solution (3.12) with the

parameters h1 = 2, h2 = 6, h3 = 15, h4 = 15, h5 = 1, k = 0.1 and σ = 1.
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(a) The perspective view of

the wave.

(b) The overhead view of

the wave.

(c) The corresponding

contour plot.

Figure 3.3: (Color online) Spatial structures of the two-soliton solution (3.13) with the

parameters h1 = 1, h2 = 3, h3 = 15, h4 = 15, h5 = 1, k1 = 2, k2 = −1.5 and σ1 = 1,

σ2 = 0.

(a) The perspective view of

the wave.

(b) The overhead view of

the wave.

(c) The corresponding

contour plot.

Figure 3.4: (Color online) Spatial structures of the two-soliton solution (3.13) with the

parameters h1 = 1, h2 = 3, h3 = 15, h4 = 15, h5 = 1, k1 = 2, k2 = −1.5 and σ1 = 1,

σ2 = 1.

4. Quasi-periodic wave solutions

Firstly, we introduce the multidimensional Riemann theta function [8, 23,28] of genus N

(4.1) ϑ(ξ) = ϑ(ξ, τ) =
∑
n∈ZN

eπi〈nτ,n〉+2πi〈ξ,n〉,

in which the integer-valued vector n = (n1, . . . , nN )T ∈ ZN and complex phase variable

ξ = (ξ1, . . . , ξN )T ∈ CN . The inner product is defined as

(4.2) 〈f, g〉 = f1g1 + f2g2 + · · ·+ fNgN .

Particularly, when N = 1, the Riemann theta function (4.1) becomes

(4.3) ϑ(ξ, τ) =

+∞∑
n=−∞

eπin
2τ+2πinξ,

with the phase variable ξ = αx+ βt+ ε and Im(τ) > 0. When N = 2, the Riemann theta

function (4.1) becomes

(4.4) ϑ(ξ, τ) = ϑ(ξ1, ξ2, τ) =
∑
n∈Z2

eπi〈τn,n〉+2πi〈ξ,n〉,
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with the phase variable ξi = αix+ βit+ εi, i = 1, 2, n = (n1, n2)
T ∈ Z2, ξ = (ξ1, ξ2) ∈ C2,

and −iτ is a positive definite and real-valued symmetric 2× 2 matrix, the τ is given by

τ =

τ11 τ12

τ12 τ22

 ,

which is a symmetric complex matrix and has a positive definite imaginary part. In this

paper, we make the matrix τ be pure imaginary matrix to promise the theta function (4.4)

real valued.

Furthermore, to construct the quasi-periodic wave solutions of the generalized KdV-

CDG equation (1.1), we consider a more generalized form of the bilinear equation (2.7).

Suppose (1.1) satisfies the nonzero limiting condition u→ u0 as |ξ| → 0. The solution to

(1.1) can be written as

(4.5) u = u0 + 6h1h
−1
2 ∂2x lnϑ(ξ),

where u0 is a constant solution to (1.1). The phase variable ξ is of the form ξ =

(ξ1, . . . , ξN )T , ξi = αix + βit + εi, i = 1, 2, . . . , N . Combining (1.1) with (4.5), and

integrating with respect to x, we obtain the generalized form as follows

M (Dx, Dt)ϑ(ξ) · ϑ(ξ)

=
(
DxDt + h1D

4
x + u0h1D

4
x + h5D

6
x + u0h5D

6
x + c

)
ϑ(ξ) · ϑ(ξ)

= 0,

(4.6)

where c = c(t) is an integration constant.

4.1. One-quasi-periodic wave solutions

According to the bilinear representation (4.6), we construct the one-quasi-periodic wave

solutions through use of the Riemann theta function in this subsection.

Considering Theorem 1 in [28], we know that α, β, ε satisfy the following system

+∞∑
n=−∞

W (4nπiα, 4nπiβ)e2n
2πiτ = 0,

+∞∑
n=−∞

W (2πi(2n− 1)α, 2πi(2n− 1)β)e(2n
2−2n+1)πiτ = 0.

(4.7)
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Combining (4.6) with (4.7), we get

W̃ (0) =
∞∑

n=−∞

(
−16π2n2αβ + 256h1π

4n4α4 + 256h1u0π
4n4α4

− 4096h5π
6n6α6 − 4096h5u0π

6n6α6 + c
)
e2πin

2τ

= 0,

W̃ (1) =

∞∑
n=−∞

(
−4π2(2n− 1)2αβ + 16h1π

4(2n− 1)4α4 + 16h1u0π
4(2n− 1)4α4

− 64h5π
6(2n− 1)6α6 − 64h5u0π

6(2n− 1)6α6 + c
)
eπi(2n

2−2n+1)τ

= 0.

(4.8)

If we set R = eπiτ , (4.8) can be rewritten as

(4.9)

a11 a12

a21 a22

β
c

 =

b1
b2

 ,

in which

a11 = −
∞∑

n=−∞
16π2n2αR2n2

,

a12 =
∞∑

n=−∞
R2n2

,

a21 = −
∞∑

n=−∞
4π2(2n− 1)2αR2n2−2n+1,

a22 =
∞∑

n=−∞
R2n2−2n+1,

b1 = −
∞∑

n=−∞

(
−256h1π

4n4α4 − 256h1u0π
4n4α4 + 4096h5π

6n6α6

+ 4096h5u0π
6n6α6

)
R2n2

,

b2 =

∞∑
n=−∞

(
−16h1π

4(2n− 1)4α4 − 16h1u0π
4(2n− 1)4α4 + 64h5π

6(2n− 1)6α6

+ 64h5u0π
6(2n− 1)6α6

)
R2n2−2n+1,

(4.10)

Solving the system (4.9), we obtain

(4.11) β =
b1a22 − b2a12
a11a22 − a12a21

, c =
b1a21 − b2a11
a12a21 − a11a22

,

where a11a22− a12a21 6= 0. Namely, we obtain the one-quasi-periodic wave solution of the

generalized KdV-CDG equation (1.1)

(4.12) u = u0 + 6h1h
−1
2 ∂2x lnϑ(ξ),
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where the vector (β, c)T and the theta function ϑ(ξ) can be determined by (4.11) and (4.3)

respectively. The one-quasi-periodic wave solution is completely depended on arbitrary

parameters α, τ and ε.

The graphics of the one-quasi-periodic wave solution (4.12) are plotted as Figures 4.1

and 4.2 by selecting the suitable parameters.

(a) The perspective view of

the wave.

(b) The overhead view of

the wave.

(c) The wave propagation

pattern of the wave along

the x taxis.

Figure 4.1: (Color online) Spatial structures of the one-quasi-periodic wave solution (4.12)

with the parameters h1 = 1, h2 = 3, h3 = 15, h4 = 15, h5 = 1, τ = i, α = 2, u0 = 0 and

ε = 0.

(a) The perspective view of

the wave.

(b) The overhead view of

the wave.

(c) The wave propagation

pattern of the wave along

the x taxis.

Figure 4.2: (Color online) Spatial structures of the one-quasi-periodic wave solution (4.12)

with the parameters h1 = 1, h2 = 3, h3 = 15, h4 = 15, h5 = 1, τ = i, α = 3, u0 = 0 and

ε = 0.

4.2. Two-quasi-periodic wave solutions

In this subsection, we search for the two-quasi-periodic wave solutions for (1.1) by a similar

way. By considering Theorem 2 in [28], αi, βi, εi should satisfy the following system

W̃ (0, 0) =
∑
n∈Z2

W (2πi 〈2n− θ1, α〉 , 2πi 〈2n− θ1, β〉)eπi[〈τ(n−θ1),n−θ1〉+〈τn,n〉] = 0,

W̃ (1, 0) =
∑
n∈Z2

W (2πi 〈2n− θ2, α〉 , 2πi 〈2n− θ2, β〉)eπi[〈τ(n−θ2),n−θ2〉+〈τn,n〉] = 0,

W̃ (0, 1) =
∑
n∈Z2

W (2πi 〈2n− θ3, α〉 , 2πi 〈2n− θ3, β〉)eπi[〈τ(n−θ3),n−θ3〉+〈τn,n〉] = 0,

W̃ (1, 1) =
∑
n∈Z2

W (2πi 〈2n− θ4, α〉 , 2πi 〈2n− θ4, β〉)eπi[〈τ(n−θ4),n−θ4〉+〈τn,n〉] = 0,

(4.13)
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where θi = (θ1i , θ
2
i )
T , i = 1, 2, 3, 4, θ1 = (0, 0)T , θ2 = (1, 0)T , θ3 = (0, 1)T and θ4 = (1, 1)T .

Combining (4.13) with (4.6), (4.13) can be rewritten as∑
n∈Z2

[
−4π2 〈2n− θ1, α〉 〈2n− θ1, β〉+ 16h1π

4 〈2n− θ1, α〉4 + 16h1u0π
4 〈2n− θ1, α〉4

− 64h5π
6 〈2n− θ1, α〉6 − 64h5u0π

6 〈2n− θ1, α〉6 + c
]
eπi[〈τ(n−θ1),n−θ1〉+〈τn,n〉] = 0,∑

n∈Z2

[
−4π2 〈2n− θ2, α〉 〈2n− θ2, β〉+ 16h1π

4 〈2n− θ2, α〉4 + 16h1u0π
4 〈2n− θ2, α〉4

− 64h5π
6 〈2n− θ2, α〉6 − 64h5u0π

6 〈2n− θ2, α〉6 + c
]
eπi[〈τ(n−θ2),n−θ2〉+〈τn,n〉] = 0,∑

n∈Z2

[
−4π2 〈2n− θ3, α〉 〈2n− θ3, β〉+ 16h1π

4 〈2n− θ3, α〉4 + 16h1u0π
4 〈2n− θ3, α〉4

− 64h5π
6 〈2n− θ3, α〉6 − 64h5u0π

6 〈2n− θ3, α〉6 + c
]
eπi[〈τ(n−θ3),n−θ3〉+〈τn,n〉] = 0,∑

n∈Z2

[
−4π2 〈2n− θ4, α〉 〈2n− θ4, β〉+ 16h1π

4 〈2n− θ4, α〉4 + 16h1u0π
4 〈2n− θ4, α〉4

− 64h5π
6 〈2n− θ4, α〉6 − 64h5u0π

6 〈2n− θ4, α〉6 + c
]
eπi[〈τ(n−θ4),n−θ4〉+〈τn,n〉] = 0.

Similarly, by considering the following system

(4.14)


h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44




β1

β2

u0

c

 =


b1

b2

b3

b4

 ,

we obtain

hi1 = −4π2
∑

(n1,n2)∈Z2

〈2n− θi, α〉 (2n1 − θ1i )=i(n),

hi2 = −4π2
∑

(n1,n2)∈Z2

〈2n− θi, α〉 (2n2 − θ2i )=i(n),

hi3 =
∑

(n1,n2)∈Z2

(
16h1π

4 〈2n− θi, α〉4 − 64h5π
6 〈2n− θi, α〉6

)
=i(n),

hi4 =
∑

(n1,n2)∈Z2

=i(n),

bi = 16π4
∑

(n1,n2)∈Z2

(
−h1 〈2n− θi, α〉4 + 4h5π

2 〈2n− θi, α〉6
)
=i(n)

=i(n) = R
n2
1+(n1−θ1i )2

1 R
n2
2+(n2−θ2i )2

2 R
n1n2+(n1−θ1i )(n2−θ2i )
3 ,

R1 = eπiτ11 , R2 = eπiτ22 , R3 = e2πiτ12 , i = 1, 2, 3, 4,

(4.15)
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where θi = (θ1i , θ
2
i )
T , i = 1, 2, 3, 4, θ1 = (0, 0)T , θ2 = (1, 0)T , θ3 = (0, 1)T , θ4 = (1, 1)T , and

αi, τij , εi (i, j = 1, 2) are free parameters. Solving system (4.14), based on the formulas

(4.15), we can obtain the vector (β1, β2, u0, c)
T . Furthermore the theta function ϑ(ξ) can

be identified by virtue of the vector (β1, β2, u0, c)
T . Then, we get the two-quasi-periodic

wave solution of the generalized KdV-CDG equation (1.1) as follows

(4.16) u = u0 + 6h1h
−1
2 ∂2x lnϑ(ξ1, ξ2, τ).

The graphics of the two-quasi-periodic wave solution (4.16) are plotted as Figures 4.3 and

4.4 by selecting the suitable parameters, respectively.

(a) The perspective view of

the wave.

(b) The overhead view of

the wave.

(c) The wave propagation

pattern of the wave along

the t taxis.

Figure 4.3: (Color online) Spatial structures of the two-quasi-periodic wave solution (4.16)

with the parameters h1 = 2, h2 = 6, h3 = 15, h4 = 15, h5 = 1, α1 = −2, α2 = 1, u0 = 0,

τ11 = i, τ12 = 0.5i, τ22 = 2i and ε1 = 1, ε2 = 0.

(a) The perspective view of

the wave.

(b) The overhead view of

the wave.

(c) The wave propagation

pattern of the wave along

the t taxis.

Figure 4.4: (Color online) Spatial structures of the two-quasi-periodic wave solution (4.16)

with the parameters h1 = 2, h2 = 6, h3 = 15, h4 = 15, h5 = 1, α1 = −1, α2 = 2, u0 = 0,

τ11 = i, τ12 = 0.5i, τ22 = 2i and ε1 = 1, ε2 = 1.

5. Limiting behavior of quasi-periodic wave solutions

In this section, we research the asymptotic behaviour of the quasi-periodic solutions. In

what follows, we obtain that the one-quasi- and two-quasi-periodic wave solutions (4.12),

(4.16) that expressed by ϑ(ξ, τ), ϑ(ξ1, ξ2, τ) can be degenerated into the one- and two-

soliton solutions (3.12), (3.13) as the amplitude R → 0, respectively.
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Theorem 5.1. If the vector (β, c)T is a solution of the system (4.9), and for the one-

quasi-periodic wave solution (4.12), we take

(5.1) u0 = 0, α =
k

2πi
, ε =

σ − πiτ
2πi

,

where k, σ are free constants and lie on (3.13). Then we have the limiting properties as

the following

c→ 0, ξ → φ− πiτ
2πi

, ϑ(ξ, τ)→ 1 + eφ, when R → 0,

which means that the quasi-one-periodic wave solution (4.12) can be degenerated into the

one-soliton solution (3.12) by a small amplitude limit R → 0.

Proof. Expanding the matrix elements aij (i = 1, 2) and bi (i = 1, 2) in terms of R based

on (4.10) we obtain

a11 = −32π2α(R2 + 4R8 + · · ·+ n2R2n2
+ · · · ),

a12 = 1 + 2(R2 + R8 + · · ·+ R2n2
+ · · · ),

a21 = −8π2α(R + 9R5 + · · ·+ (2n− 1)2R2n2−2n+1 + · · · ),

a22 = 2(R + R5 + · · ·+ R2n2−2n+1 + · · · ),

b1 = 512π4α4
[
(−h1 − h1u0 + 16h5π

2α2 + 16h5u0π
2α2)R2

+ 16(−h1 − h1u0 + 32h5π
2α2 + 32h5u0π

2α2)R8 + · · ·

+ (−h1n4 − h1u0n4 + 16h5n
6π2α2 + 16h5u0n

6π2α2)R2n2
+ · · ·

]
,

b2 = 32π4α4
[
(−h1 − h1u0 + 4h5π

2α2 + 4h5u0π
2α2)R

+ 81(−h1 − h1u0 + 36h5π
2α2 + 36h5u0π

2α2)R5 + · · ·

+
(
−h1(2n− 1)4 − h1u0(2n− 1)4 + 4h5π

2(2n− 1)6α2

+ 4h5u0π
2(2n− 1)6α2

)
R2n2−2n+1 + · · ·

]
.

(5.2)

From (5.2), based on (4.10) and (4.12) in [28], we can get the following formulas

A0 =

0 1

0 0

 , A1 =

 0 0

−8π2α 2

 , A2 =

−32π2α 2

0 0

 ,

A5 =

 0 0

−72π2α 2

 , A3 = A4 = 0, . . . ,

B0 = 0, B1 =
(
0, 32π4α4(−h1 − h1u0 + 4h5π

2α2 + 4h5u0π
2α2)

)T
,

B2 =
(
512π4α4(−h1 − h1u0 + 16h5π

2α2 + 16h5u0π
2α2), 0

)T
, B3 = 0,

B5 =
(
0, 2592π4α4(−h1 − h1u0 + 36h5π

2α2 + 36h5u0π
2α2)

)T
, B4 = 0, . . . .

(5.3)
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According to the Proposition 3 in [28], and combining with system (5.3), we have

X0 =

4π2α3(h1 + h1u0 − 4h5π
2α2 − 4h5u0π

2α2)

0

 ,

X2 =

 32π2α3(h1 + h1u0 − 4h5π
2α2 − 4h5u0π

2α2)

128π4α4(h1 + h1u0 − 4h5π
2α2 − 4h5u0π

2α2)

 ,

X4 =

 (480h1π
2α3 − 12288h5π

4α5)(1 + u0)

768π4α4(h1 + h1u0 − 4h5π
2α2 − 4h5u0π

2α2)

 , X1 = X3 = 0, . . . .

From (4.11) in [28], the following formulas can be obtainedβ
c

 =

4π2α3(h1 + h1u0 − 4h5π
2α2 − 4h5u0π

2α2)

0


+

 32π2α3(h1 + h1u0 − 4h5π
2α2 − 4h5u0π

2α2)

128π4α4(h1 + h1u0 − 4h5π
2α2 − 4h5u0π

2α2)

R2

+

 (480h1π
2α3 − 12288h5π

4α5)(1 + u0)

768π4α4(h1 + h1u0 − 4h5π
2α2 − 4h5u0π

2α2)

R4 + o(R4),

namely

β = 4π2α3
(
h1 + h1u0 − 4h5π

2α2 − 4h5u0π
2α2
)

+ 32π2α3
(
h1 + h1u0 − 4h5π

2α2 − 4h5u0π
2α2
)
R2

+
(
480h1π

2α3 − 12288h5π
4α5
)

(1 + u0)R
4 + o(R4),

c = 128π4α4
(
h1 + h1u0 − 4h5π

2α2 − 4h5u0π
2α2
)
R2

+ 768π4α4
(
h1 + h1u0 − 4h5π

2α2 − 4h5u0π
2α2
)
R4 + o(R4).

By considering the formulas (5.1), we have

(5.4) c→ 0, β → 4π2α3(h1 + h1u0 − 4h5π
2α2 − 4h5u0π

2α2), if R → 0,

which means

(5.5) 2πiβ → −h1k3 − h5k5.

Furthermore, the quasi-periodic function ϑ(ξ) can be rewritten as

(5.6) ϑ(ξ, τ) = 1 +
(
e2πiξ + e−2πiξ

)
R +

(
e4πiξ + e−4πiξ

)
R4 + · · · .
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Considering the transformation (5.1), we get

ϑ(ξ, τ) = 1 + eξ̃ +
(
e−ξ̃ + e2ξ̃

)
R2 +

(
e−2ξ̃ + e3ξ̃

)
R6 + · · · → 1 + eξ̃, when R → 0,

ξ̃ = 2πiξ + πiτ = kx+ 2πiβt+ σ.

(5.7)

From (5.4) to (5.7), we obtain

ξ̃ → kx+ (−h1k3 − h5k5)t+ σ = φ, when R → 0,

ξ → φ− πiτ
2πi

, when R → 0.
(5.8)

Combining (5.7) and (5.8), we further have

ϑ(ξ)→ 1 + eφ, when R → 0.

From all the above, this implies that the one-quasi-periodic solution (4.12) tends to the

one-soliton solution (3.12) under a small amplitude limit R → 0.

Theorem 5.2. If the vector (β1, β2, u0, c)
T is a solution of the system (4.14), and for the

two-quasi-periodic wave solution (4.16), we consider

αi =
ki

2πi
, εi =

σi − πiτii
2πi

, τ12 =
A12

2πi
, i = 1, 2,(5.9)

where ki, σi, A12, i = 1, 2 are depended on (3.13) and ki, σi are free constants. And then

we have the limiting properties as follows

u0 → 0, c→ 0, ξi →
φi − πiτii

2πi
, i = 1, 2,

ϑ(ξ1, ξ2, τ)→ 1 + eφ1 + eφ2 + eφ1+φ2+A12 , as R1,R2 → 0.

This means that the two-quasi-periodic wave solution (4.16) tends to the two-soliton solu-

tion (3.13) under a small amplitude limit, that is, (u,R1,R2)→ (u1, 0, 0).

Proof. First, we write the functions H, b, (β1, β2, u0, c)
T as the series about R


h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44

 = H0 +H1R1 +H2R2 +H3R
2
1 +H4R

2
2 +H5R1R2 + · · · ,

(5.10)

(β1, β2, u0, c)
T = Λ0 + Λ1R1 + Λ2R2 + Λ3R

2
1 + Λ4R

2
2 + Λ5R1R2 + · · · ,(5.11)

(b1, b2, b3, b4)
T = B1R1 +B2R2 +B3R

2
1 +B4R

2
2 +B5R1R2 + · · · .(5.12)
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From (4.15) and (5.10)–(5.12), we can obtain

H =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

+


0 0 0 0

−8π2α1 0 32h1π
4α4

1 − 128h5π
6α6

1 2

0 0 0 0

0 0 0 0

R1

+


0 0 0 0

0 0 0 0

0 −8π2α2 32h1π
4α4

2 − 128h5π
6α6

2 2

0 0 0 0

R2

+


−32π2α1 0 512h1π

4α4
1 − 8192h5π

6α6
1 2

0 0 0 0

0 0 0 0

0 0 0 0

R2
1

+


0 −32π2α2 512h1π

4α4
2 − 8192h5π

6α6
2 2

0 0 0 0

0 0 0 0

0 0 0 0

R2
2

+


0 0 0 0

0 0 0 0

0 0 0 0

T1 T2 T3 T4

R1R2 + o(Ri
1R

j
2), i+ j ≥ 2,

b =


0

Υ1

0

0

R1 +


0

0

Υ2

0

R2 +


Υ3

0

0

0

R2
1

+


Υ4

0

0

0

R2
2 +


0

0

0

Υ5

R1R2 + o(Ri
1R

j
2), i+ j ≥ 3,
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
β1

β2

u0

c

 =


β
(00)
1

β
(00)
2

u
(00)
0

c(00)

+


β
(11)
1

β
(11)
2

u
(11)
0

c(11)

R1 +


β
(21)
1

β
(21)
2

u
(21)
0

c(21)

R2 +


β
(12)
1

β
(12)
2

u
(12)
0

c(12)

R2
1

+


β
(22)
1

β
(22)
2

u
(22)
0

c(22)

R2
2 +


β
(2)
1

β
(2)
2

u
(2)
0

c(2)

R1R2 + o(Ri
1R

j
2), i+ j ≥ 2,

with

T1 = −8π2(α1 − α2)− 8π2(α1 + α2)R3,

T2 = 8π2(α1 − α2)− 8π2(α1 + α2)R3,

T3 = 32π4(α1 − α2)
4
(
h1 − 4h5π

2(α1 − α2)
2
)

+ 32π4(α1 + α2)
4
(
h1 − 4h5π

2(α1 + α2)
2
)
R3,

T4 = 2 + 2R3,

Υ1 = −32h1π
4α4

1 + 128h5π
6α6

1,

Υ2 = −32h1π
4α4

2 + 128h5π
6α6

2

Υ3 = −512h1π
4α4

1 + 8192h5π
6α6

1,

Υ4 = −512h1π
4α4

2 + 8192h5π
6α6

2,

Υ5 = −32π4(α1 − α2)
4
(
h1 − 4h5π

2(α1 − α2)
2
)

− 32π4(α1 + α2)
4
(
h1 − 4h5π

2(α1 + α2)
2
)
R3.

Meanwhile, from the system (4.14) and (5.10)–(5.12), we have

(5.13)

H0Λ0 = 0, H1Λ0 +H0Λ1 = B1,

H0Λ2 +H2Λ0 = B2, H0Λ3 +H1Λ1 +H3Λ0 = B3,

H0Λ4 +H2Λ2 +H4Λ0 = B4, H0Λ5 +H1Λ2 +H2Λ1 +H5Λ0 = B5.

Furthermore, we have the following formulas based on (5.13)

c(00) = c(11) = c(21) = c(2) = c(3) = 0,

−8π2α1β
(00)
1 + (32h1π

4α4
1 − 128h5π

6α6
1)u

(00)
0 = Υ1,

−8π2α2β
(00)
2 + (32h1π

4α4
2 − 128h5π

6α6
2)u

(00)
0 = Υ2,

c(12) − 32π2α1β
(00)
1 + (512h1π

4α4
1 − 8192h5π

6α6
1)u

(00)
0 = Υ3,
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−8π2α1β
(11)
1 + (32h1π

4α4
1 − 128h5π

6α6
1)u

(11)
0 = 0,

c(22) − 32π2α2β
(00)
2 + (512h1π

4α4
2 − 8192h5π

6α6
2)u

(00)
0 = Υ4,

−8π2α2β
(21)
2 + (32h1π

4α4
2 − 128h5π

6α6
2)u

(21)
0 = 0,

−8π2α1β
(21)
1 + (32h1π

4α4
1 − 128h5π

6α6
1)u

(21)
0 = 0,

−8π2α2β
(11)
2 + (32h1π

4α4
2 − 128h5π

6α6
2)u

(11)
0 = 0,

T1β
(00)
1 + T2β

(00)
2 + T3u

(00)
0 = Υ5.

Considering u
(00)
0 = 0 yields

u0 = o(R1,R2)→ 0,

c =
(
−384h1π

4α4
1 + 7680h5π

6α6
1

)
R2

1 +
(
−384h1π

4α4
2 + 7680h5π

6α6
2

)
R2

2

+ o(R1R2)→ 0,

β1 = 4h1π
2α3

1 − 16h5π
4α5

1 + o(R1R2)→ 4h1π
2α3

1 − 16h5π
4α5

1,

β2 = 4h1π
2α3

2 − 16h5π
4α5

2 + o(R1R2)→ 4h1π
2α3

2 − 16h5π
4α5

2,

(5.14)

when (R1,R2)→ (0, 0). Combining with (5.9) yields

(5.15) 2πiβ1 → −h1k31 − h5k51, 2πiβ2 → −h1k32 − h5k52, when (R1,R2)→ (0, 0).

Furthermore, the quasi-periodic wave function ϑ(ξ1, ξ2, τ) can be rewritten as

ϑ(ξ1, ξ2, τ) = 1 +
(
e2πiξ1 + e−2πiξ1

)
eπiτ11 +

(
e2πiξ2 + e−2πiξ2

)
eπiτ22

+
(
e2πi(ξ1+ξ2) + e−2πi(ξ1+ξ2)

)
eπi(τ11+2τ12+τ22) + · · · .

(5.16)

Under transformation (5.9), we have

ϑ(ξ1, ξ2, τ) = 1 + eξ̃1 + eξ̃2 + eξ̃1+ξ̃2+2πiτ12 + R2
1e
−ξ̃1 + R2

2e
−ξ̃2

+ R2
1R

2
2e
−ξ̃1−ξ̃2+2πiτ12 + · · ·

→ 1 + eξ̃1 + eξ̃2 + eξ̃1+ξ̃2+A12 ,

(5.17)

as R1,R2 → 0, with ξ̃i = kix+ 2πiβit+ σi, i = 1, 2. From (5.14) to (5.17), we obtain

(5.18) ξ̃i → kix+ ωit+ σi = φi, ξi →
φi − πiτii

2πi
as R1,R2 → 0.

Combining (5.17) and (5.18), we have

ϑ(ξ1, ξ2, τ)→ 1 + eφ1 + eφ2 + eφ1+φ2+A12 , as R1,R2 → 0.

This implies that the two-quasi-periodic wave solution (4.16) degenerated to the two-

soliton solution (3.13) under a small amplitude limit, that is, (u,R1,R2)→ (u1, 0, 0).
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6. Conclusions and discussions

In this paper, we investigate a generalized KdV-Caudrey-Dodd-Gibbon (KdV-CDG) equa-

tion, which can be used to describe certain situations from the fluid mechanics, ocean

dynamics and plasma physics. Based on Bell polynomials, we derive the Hirota bilinear

form of the generalized KdV-CDG equation, based on which, we present its N -soliton

solutions with a detailed proof. Furthermore, the quasi-periodic wave solutions are ob-

tained by using the properties of Riemman theta functions. And then we investigate the

limiting behavior of the quasi-periodic solutions. As a result, we obtain the relationship

between the soliton solutions and the quasi-periodic solutions, that is the one-quasi- and

two-quasi-periodic wave solution that expressed by ϑ(ξ, τ) ϑ(ξ1, ξ2, τ) can be degenerated

into the one- and two-soliton solutions as the amplitude R → 0, respectively. Finally, we

hope that the discussed method is much meaningful for us to do further research nonlinear

problems in mathematical physics.

Appendix: Multidimensional Bell polynomials

We narrate some necessary notations on multidimensional binary Bell polynomials con-

cisely as follows, for details refer, for example, to Lembert and Gilson’s work [2, 9, 12].

Let f = f(x1, x2, . . . , xn) be a C∞ multi-variables function. Considering n = 1, Bell

polynomials are given as follows

Ynx(f) ≡ Yn(f1, . . . , fn) =
∑ n!

s1! · · · sn!(1!)s1 · · · (n!)sn
f s11 · · · f

sn
n , n =

n∑
k=1

ksk,

Yx(f) = fx, Y2x(f) = f2x + f2x , Y3x(f) = f3x + 3fxf2x + f3x , . . . .

To correlate the Bell polynomials with the Hirota D-operator, one can define the multi-

dimensional binary Bell polynomials as follows [9]

Yn1x1,...,nrxr(υ, ω) = Yn1,...,nr(f)
∣∣
fl1x1,...,lrxr

=

υl1x1,...,lrxr l1 + · · ·+ lr is odd,

ωl1x1,...,lrxr l1 + · · ·+ lr is even,

Yx(υ, ω) = υx, Y2x(υ, ω) = υ2x + ω2x, Yx,t(υ, ω) = υxυt + ωxt,

Y3x(υ, ω) = υ3x + 3υxω2x + υ3x, . . . .

The above formulas inherit the easily recognizable partial structure of the Bell polynomials.

The relationship between the Y -polynomials and the Hirota bilinear equation Dn1
x1 · · ·

Dnr
x1F ·G [10] can be presented by the following formula [9]

(A.1) Yn1x1,...,nrxr (υ = lnF/G, ω = lnFG) = (FG)−1Dn1
x1 · · ·D

nr
xrF ·G,



844 Jian-Min Tu, Shou-Fu Tian, Mei-Juan Xu and Tian-Tian Zhang

with F and G both the functions about x and t. Particularly, when F = G, the formula

(A.1) becomes

F−2Dn1
x1 · · ·D

nr
xrF · F = Y (0, q = 2 lnF ) =

0 n1 + · · ·+ nr is odd,

Pn1x1,...,nrxr(q) n1 + · · ·+ nr is even,

where the P -polynomials can be substituted by an equally recognizable even part parti-

tional structure

P2x(q) = q2x, Px,t(q) = qxt, P4x(q) = q4x + 3q22x, P6x(q) = q6x + 15q2xq4x + 15q32x, . . . .

The binary Bell polynomials Yn1x1,...,nrxr(υ, ω) can be separated into P -polynomials and

Y -polynomials

(FG)−1Dn1
x1 · · ·D

nr
xrF ·G

= Yn1x1,...,nrxr(υ, ω)
∣∣
υ=lnF/G,ω=lnFG

= Yn1x1,...,nrxr(υ, υ + q)
∣∣
υ=lnF/G,ω=lnFG

=
∑

n1+···+nr=even

n1∑
l1=0

· · ·
nr∑
lr=0

r∏
i=0

(
ni
li

)
Pl1x1,...,lrxr(q)Y(n1−l1)x1,...,(nr−lr)xr(υ).

The multidimensional Bell polynomials have the following key property

(A.2) Yn1x1,...,nrxr(υ)
∣∣
υ=lnψ

= ψn1x1,...,nrxr/ψ,

which shows that the binary Bell polynomials Yn1x1,...,nrxr(υ, ω) can be linearized through

use of the Hopf-Cole transformation υ = lnψ, that is, ψ = F/G.
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transformation and an infinite number of conservation laws, Progr. Theoret. Phys.

53 (1975), no. 2, 419–436. http://dx.doi.org/10.1143/ptp.53.419

http://dx.doi.org/10.1088/0031-8949/36/6/001
http://dx.doi.org/10.1143/ptp.51.1355
http://dx.doi.org/10.1016/j.jmaa.2010.05.070
http://dx.doi.org/10.1016/j.cnsns.2010.04.003
http://dx.doi.org/10.1088/1751-8113/45/5/055203
http://dx.doi.org/10.1016/j.chaos.2012.12.004
http://dx.doi.org/10.1111/sapm.12026
http://dx.doi.org/10.1007/s11401-015-0908-6
http://dx.doi.org/10.1080/14029251.2015.1023562
http://dx.doi.org/10.1143/ptp.53.419


848 Jian-Min Tu, Shou-Fu Tian, Mei-Juan Xu and Tian-Tian Zhang

[36] Y.-H. Wang and Y. Chen, Binary Bell polynomials, bilinear approach to exact periodic

wave solutions of (2+1)-dimensional nonlinear evolution equations, Commun. Theor.

Phys. (Beijing) 56 (2011), no. 4, 672–678.

http://dx.doi.org/10.1088/0253-6102/56/4/14

[37] A. M. Wazwaz, Multiple soliton solutions for the (2 + 1)-dimensional Sawada-Kotera

and Caudrey-Dodd-Gibbon (CDG) equations, Math. Methods Appl. Sci. 34 (2011),

no. 13, 1580–1586.

[38] J. Weiss, M. Tabor and G. Carnevale, The Painlevé property for partial differential
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