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Harbourne Constants and Arrangements of Lines on Smooth Hypersurfaces

in P3
C

Piotr Pokora

Abstract. In this note we find a bound for the so-called linear Harbourne constants

for smooth hypersurfaces in P3
C.

1. Introduction

In this short note we find a global estimate for Harbourne constants which were introduced

in [2] in order to capture and measure the bounded negativity on various birational models

of an algebraic surface.

Definition 1.1. Let X be a smooth projective surface. We say that X has bounded

negativity if there exists an integer b(X) such that for every reduced curve C ⊂ X one has

the bound

C2 ≥ −b(X).

The bounded negativity conjecture (BNC for short) is one of the most intriguing

problems in the theory of projective surfaces and attracts currently a lot of attention,

see [1, 2, 4, 8]. It can be formulated as follows.

Conjecture 1.2 (BNC). An arbitrary smooth complex projective surface has bounded

negativity.

Some surfaces are known to have bounded negativity (see [1,4]). For example, surfaces

with Q-effective anticanonical divisor such as Del Pezzo surfaces, K3 surfaces and Enriques

surfaces have bounded negativity. However, when we replace these surfaces by their blow

ups, we do not know if bounded negativity is preserved. Specifically, it is not known

whether the blow up of P2 at ten general points has bounded negativity or not.

Recently in [2] the authors have showed the following theorem.
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Theorem 1.3. [2, Theorem 3.3] Let L be a line configuration on P2
C. Let f : Xs → P2

C be

the blowing up at s distinct points on P2
C and let L̃ be the strict transform of L. Then we

have L̃2 ≥ −4 · s.

In this note, we generalize this result to the case of line configurations on smooth

hypersurfaces Sn of degree n ≥ 3 in P3
C.

A classical result tells us that every smooth hypersurface of degree n = 3 contains 27

lines. For smooth hypersurfaces of degree n = 4 we know that the upper bound of the

number of lines on quartic surfaces is 64 (claimed by Segre [9] and correctly proved by

Schütt and Rams [7]). In general, for degree n ≥ 3 hypersurfaces Sn Boissiére and Sarti

(see [3, Proposition 6.2]) showed that the number of lines on Sn is less than or equal to

n(7n− 12).

Using techniques similar to the one introduced in [2] we prove the following result.

Main Theorem 1.4. Let Sn be a smooth hypersurface of degree n ≥ 4 in P3
C. Let L ⊂ Sn

be a line configuration, with the singular locus Sing(L) consisting of s distinct points. Let

f : Xs → Sn be the blowing up at Sing(L) and denote by L̃ the strict transform of L. Then

we have

L̃2 > −4s− 2n(n− 1)2.

In the last part we study some line configurations on smooth complex cubics and

quartics in detail. Similar systematic studies on line configurations on the projective

plane were initiated in [10].

2. Bounded negativity viewed by Harbourne constants

We start with introducing the Harbourne constants [2].

Definition 2.1. Let X be a smooth projective surface and let P = {P1, . . . , Ps} be a set

of mutually distinct s ≥ 1 points in X. Then the local Harbourne constant of X at P is

defined as

(2.1) H(X;P) := inf
C

(f∗C −
∑s

i=1 multPi C · Ei)
2

s
,

where f : Y → X is the blow-up of X at the set P with exceptional divisors E1, . . . , Es

and the infimum is taken over all reduced curves C ⊂ X. Similarly, we define the s-tuple

Harbourne constant of X as

H(X; s) := inf
P

H(X;P),

where the infimum now is taken over all s-tuples of mutually distinct points in X. Finally,

we define the global Harbourne constant of X as

H(X) := inf
s≥1

H(X; s).
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The relation between Harbourne constants and the BNC can be expressed in the

following way. Suppose that H(X) is a finite real number. Then for any s ≥ 1 and any

reduced curve D on the blow-up of X at s points, we have

D2 ≥ sH(X).

Hence the BNC holds on all blow ups of X at s mutually distinct points with the constant

b(X) = sH(X). On the other hand, even if H(X) = −∞, the BNC might still be true.

It is very hard to compute Harbourne constants in general. Moreover, it is quite tricky

to find these numbers even for the simplest types of reduced curves on a well-understood

surface.

3. Proof of the main result

Given a configurations of lines on Sn we denote by tr the number of its r-ple points, at

which exactly r lines of the configuration meet. In the sequel we will repeatedly use two

elementary equalities, namely
∑

i multPi(C) =
∑

k≥2 ktk and
∑

k≥2 tk = s. In this section

we will study linear Harbourne constants HL. We define only the local linear Harbourne

constant for Sn containing a line configuration L since this is the only one difference

comparing to Definition 2.1.

Definition 3.1. Let Sn be a smooth hypersurface of degree n ≥ 2 in P3
C containing at

least one line and let P = {P1, . . . , Ps} be a set of mutually distinct s points in Sn. Then

the local linear Harbourne constant of Sn at P is defined as

(3.1) HL(Sn;P) := inf
L

L̃2

s
,

where L̃ is the strict transform of L with respect to the blow up f : Xs → Sn at P and

the infimum is taken over all reduced line configurations L ⊂ Sn.

Our proof is based on the following result due to Miyaoka [5, Section 2.4].

Theorem 3.2. Let Sn be a smooth hypersurface in P3
C of degree n ≥ 4 containing a

configuration of d lines. Then one has

nd− t2 +
∑
k≥3

(k − 4)tk ≤ 2n(n− 1)2.

Now we are ready to give a proof of the Main Theorem 1.4.

Proof of Main Theorem 1.4. Pick a number n ≥ 4. Recall that using the adjunction

formulae one can compute the self-intersection number of a line l on Sn, which is equal to

l2 = −2−KSn · l = −2−O(n− 4) · l = 2− n.
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Observe that the local linear Harbourne constant at Sing(L) has the following form

(3.2) HL(Sn; Sing(L)) =
(2− n)d + Id −

∑
k≥2 k

2tk∑
k≥2 tk

,

where Id = 2
∑

i<j lilj denotes the number of incidences of d lines l1, . . . , ld. It is easy to

see that we have the combinatorial equality

Id =
∑
k≥2

(k2 − k)tk,

hence we obtain

Id −
∑
k≥2

k2tk = −
∑
k≥2

ktk.

Applying this to (3.2) we get

HL(Sn; Sing(L)) =
(2− n)d−

∑
k≥2 ktk∑

k≥2 tk
.

Simple manipulations on the Miyaoka inequality lead to

nd + t2 − 4
∑
k≥2

tk − 2n(n− 1)2 ≤ −
∑
k≥2

ktk,

and finally we obtain

HL(Sn; Sing(L)) ≥ −4 +
2d + t2 − 2n(n− 1)2

s
,

which completes the proof.

It is an interesting question how the linear Harbourne constant behaves when degree

n of a hypersurface grows. We present two extreme examples.

Example 3.3. Let us consider the Fermat hypersurface of degree n ≥ 3 in P3
C, which is

given by the equation

Fn : xn + yn + zn + wn = 0.

It is a classical result that on Fn there exists the line configuration Ln consisting of 3n2

lines and delivers 3n3 double points and 6n points of multiplicity n. It is easy to check

that

lim
n→∞

HL(Fn; Sing(Ln)) = lim
n→∞

3n2 · (2− n) + 12n3 − 6n2 − 4 · 3n3 − n2 · 6n
3n3 + 6n

= −3.

On the other hand, the Main Theorem 1.4 gives

lim
n→∞

HL(Fn; Sing(Ln)) ≥ −4 + lim
n→∞

6n2 + 3n3 − 2n(n− 1)2

3n3 + 6n
= −3

2

3
,

which shows that the estimate given there is quite efficient.
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Example 3.4. This construction comes from [6]. Let us consider Rams hypersurface P3
C

of degree n ≥ 6 given by the equation

Rn : xn−1 · y + yn−1 · z + zn−1 · w + wn−1 · x = 0.

On Rn there exists a configuration Ln of n(n−2)+4 lines, which delivers exactly 2n2−4n+4

double points—this configuration is the grid of n(n−2)+2 vertical disjoint lines intersected

by two horizontal disjoint lines. The local linear Harbourne constant at Sing(Ln) is equal

to

HL(Rn; Sing(Ln)) =
(n2 − 2n + 4) · (2− n) + 4n2 − 8n + 8− 4 · (2n2 − 4n + 4)

2n2 − 4n + 4

=
−n3

2n2 − 4n + 4
.

Then limn→∞HL(Rn; Sing(Ln)) = −∞.

Example 3.4 presents a quite interesting phenomenon since we can obtain very low

linear Harbourne constants having singularities of minimal orders—the whole game is

made by the large number of (disjoint) lines.

4. Smooth cubics and quartics

We start with the case n = 3. As we mentioned in the first section every smooth cubic

surface contains 27 lines, and the configuration of these lines have only double and triple

points. These triple points are called Eckardt points. Now we find a lower bound for the

linear Harbourne constant for such hypersurfaces.

Proposition 4.1. Under the above notation one has

HL(S3; Sing(L)) ≥ −2
5

11
.

Proof. Recall that the combinatorial equality [11, Example II.20.] for cubic surfaces has

the form

135 = t2 + 3t3.

Moreover, another classical result asserts that the maximal number of Eckardt points is

equal to 18 and this number is obtained on Fermat cubic. In order to get a sharp lower

bound for HL we need to consider the case when the number of Eckardt points is the

largest. To see this we show that the linear Harbourne constant for t triple points is

greater then for t + 1 triple points. Simple computations show that

HL(S3; t) =
−297 + 3t

135− 2t
,

HL(S3; t + 1) =
−294 + 3t

133− 2t
,
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and HL(S3; t + 1) < HL(S3; t) iff (−297 + 3t) · (133 − 2t) − (−294 + 3t) · (135 − 2t) > 0

for all t ∈ {0, . . . , 18}, which is obvious to check. Having this information in hand we

can calculate that for 18 triple points and 81 double points the local linear Harbourne

constant at Sing(L) is equal to

HL(F3; Sing(L)) =
27 · (−1) + 270− 4 · 81− 9 · 18

99
= −2

5

11
,

which ends the proof.

Example 4.2. Now we consider the case n = 4 and we start with the configuration of

64 lines on Schur quartic Sch. It is well-known that every line from this configuration

intersects exactly 18 other lines—see for instance [7, Proposition 7.1]. One can check that

these 64 lines deliver 8 quadruple points, 64 triple points and 336 double points (in [11]

we can find that the number of double points is equal to 192, which is false). Then the

local linear Harbourne constant at Sing(L) is equal to

HL(Sch; Sing(L)) =
(−2) · 64 + 1152− 16 · 8− 9 · 64− 4 · 336

336 + 64 + 8
= −2.509.

Now we present an example of a line configuration on a smooth quartic which deliver

the most negative (according to our knowledge) local linear Harbourne constant for this

kind of surfaces.

Example 4.3 (Bauer configuration of lines). Let us consider Fermat quartic F4. It is

well-known that on F4 there exists the configuration of 48 lines. From this configuration

one can extract a subconfiguration of 16 lines which has only 8 quadruple points. Then

the local linear Harbourne constant at Sing(L) is equal to

HL(F4; Sing(L)) =
16 · (−2) + 16 · 6− 16 · 8

8
= −8.

Using Main Theorem 1.4 we get HL(F4; Sing(L)) ≥ −9, which also shows efficiency of

our result.
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