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Stability of Traveling Wave Fronts for Nonlocal Diffusion Equation with

Delayed Nonlocal Response

Hongmei Cheng* and Rong Yuan

Abstract. In this paper, we consider with the stability of traveling wave fronts for

the nonlocal diffusion equation with delay and global response. We first establish

the existence and comparison theorem of solutions for the nonlocal reaction-diffusion

equation by appealing to the theory of abstract functional differential equation. Then

we further show that the traveling wave fronts are asymptotical stability with phase

shift. Our main technique is the super and subsolution method coupled with the

comparison principle and squeezing method.

1. Introduction

The reaction diffusion equation

(1.1)
∂u(x, t)

∂t
= d

∂2u(x, t)

∂x2
+ u(x, t)(1− u(x, t)), x ∈ R, t > 0,

has been investigated by Fisher [16] to model the spatial spreading of a mutant in an

infinite one-dimensional habitat. Since then, the traveling waves for reaction-diffusion

systems have been widely studied in biology, chemistry, epidemiology and physics, see

[2, 4, 14, 15, 35]. There are many methods to deal with the existence and stability of

traveling waves, for example, the phase space analysis [33] or the Conley index [36] for

the proof of the existence, and spectral analysis and energy estimates [18,21,25,32,41] or

squeezing technique based on comparison principle as well as super and subsolution [7,34]

for the study of the stability.

As mentioned by Murray [26], since some biological processes are free and random, the

Laplacian operator as a local operator is not accurately describe the phenomenon of spatial

diffusion. To overcome these problems with the Laplacian operator, some researchers
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introduce an integral operator describing the spatial diffusion. A typical mathematical

model is the following form

(1.2)
∂u(x, t)

∂t
= d

(∫
R
J(x− y)u(y, t) dy − u(x, t)

)
+ f(u(x, t)), x ∈ R, t > 0.

Meanwhile, many researchers give more attention on the study of traveling waves of non-

local reaction diffusion equation (1.2). The existence, nonexistence, uniqueness, propaga-

tion speed and stability of traveling waves for (1.2) are widely studied, see [6, 9–12, 39]

and the references cited therein. Obviously, the model (1.2) is closely related to local

reaction-diffusion model. If we set the diffusion kernel J(x) = δ(x) + δ′′(x), where δ(·)
is the Dirac delta function, then (1.2) can be reduced to the local equation ∂u(x,t)

∂t =

d∂
2u(x,t)
∂x2

+ f(u(x, t)), (see Medlock [24]).

Due to the practical background, delays and nonlocal delays are incorporated into

reaction-diffusion equations, see [27, 28, 34, 38] and the references therein. For example,

authors in [29] showed the existence, symptotic behavior, uniqueness and stability of the

traveling wave fronts for (1.2) with f(u(x, t), u(x, t−τ)) = −du(x, t)+b(u(x, t−τ)), where

d > 0, b is a continuous function. In [37], Wang et al. considered the existence and stability

of traveling wave fronts in reaction-advection-diffusion with nonlocal delay and the effect

of the advection term for the wave speed.

Notice that the drift of some individuals depends on their present positions from all

possible positions at previous time, Britton in [5] first considered the model for the reaction

term with delayed nonlocal response to address this phenomena. For instance, the model

with local diffusion and nonlocal response is as follows

(1.3)
∂u(x, t)

∂t
= d

∂2u(x, t)

∂x2
+ f

(
u(x, t),

∫ ∞
−∞

k(y)u(x− y, t− τ) dy

)
, x ∈ R, t > 0,

where d > 0, τ > 0 and k is nonnegative kernel function. Since traveling waves play

an important role in understanding the dynamics of (1.3), the model (1.3) has attracted

significant attention. Under some monostable assumptions, Wang et al. [38] studied the

existence, uniqueness and global asymptotical stability of traveling wave fronts for (1.3).

In particular, equation (1.3) with f(u, v) = −au + b(1 − u)v is proposed by Ruan and

Xiao [31]. When f(u, v) = bv exp {−γτ}−δu2, and k(y) = 1
4πατ exp

{
−y2
4ατ

}
, equation (1.3)

is the age-structured reaction-diffusion model of a single species proposed by Al-Omari

and Gourley [1]. In recent years, Guo and Zimmer studied a spatially discrete version of

reaction-diffusion equations with delayed nonlocal response

∂u(x, t)

∂t
= d [u(x+ 1, t)− 2u(x, t) + u(x− 1, t)]

+ f

(
u(x, t),

∫ ∞
−∞

k(y)u(x− y, t− τ) dy

)
.

(1.4)
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They have studied the existence and uniqueness of traveling waves for (1.4) in [19] and

the stability of traveling waves for (1.4) in [20]. At the same time, Yu and Yuan in [40]

also incorporated the nonlocal delayed response into nonlocal diffusion model (1.2), that

is

∂u(x, t)

∂t
= d

(∫
R
J(x− y)u(y, t) dy − u(x, t)

)
+ f

(
u(x, t),

∫ ∞
−∞

k(y)u(x− y, t− τ) dy

)
,

(1.5)

where d > 0, τ > 0 and J , k are nonnegative kernel functions. They have investigated the

existence, asymptotic behavior and uniqueness of traveling wave fronts for equation (1.5).

Motivated by these, in this paper, we further study the stability of the traveling wave

fronts by using the squeezing technique based on comparison principle as well as super

and subsolution. Authors in [3, 8, 36] obtained the stability of traveling wave fronts for

several evolution equations by considering the long time behavior of corresponding Cauchy

type problem if its initial value is a spatial disturbance of a traveling wave front. Due

to these, our results can imply that the traveling wave fronts of nonlocal diffusion model

with delayed nonlocal response are useful to apprehend the long term dynamical behavior

of the corresponding initial value problem.

In this paper, for the functions J , k, f(u, v), we impose the following conditions.

(J) J(x) = J(−x) ≥ 0,

∫
R
J(x) dx = 1,

∫
R
J(x)e−λx dx <∞, ∀λ ≥ 0.

(K) k(x) = k(−x) ≥ 0,

∫
R
k(x) dx = 1,

∫
R
k(x)e−λx dx <∞, ∀λ ≥ 0.

(A1) f ∈ C1(R2,R), f(0, 0) = f(K,K) = 0, f(u, u) > 0 for u ∈ (0,K), and ∂2f(u, v) ≥ 0

for (u, v) ∈ [0,K]2, where K is a positive constant.

(A2) ∂1f(0, 0)u+ ∂2f(0, 0)v ≥ f(u, v) for any (u, v) ∈ [0,K]2.

(A3) There exist numbers L, κ > 0 and σ1, σ2 ∈ (0, 1] such that

|f(u, v)− ∂1f(0, 0)u− ∂2f(0, 0)v| ≤ L(u1+σ1 + v1+σ2)

for any (u, v) ∈ [0, κ]2.

(A4) There exists a constant δ > 0 such that

∂1f(u1, v1) ≥ ∂1f(u2, v1), ∂2f(u1, v1) > ∂2f(u2, v2)

for any (ui, vi) ∈ [0, (1 + 2δ)K]2 satisfying u1 < u2, v1 < v2, (i = 1, 2).
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We are interested in traveling waves that connect the two equilibria 0 and K. Without

loss of generality, throughout this paper, a traveling wave solution of (1.5) always refers

to a solution of special form of u(x, t) = φ(x + ct), x ∈ R, t > 0, with the speed c > 0.

Namely, the wave profile φ satisfies the following functional differential equation

(1.6) cφ′(ξ) = d

(∫
R
J(ξ − y)φ(y) dy − φ(ξ)

)
+ f

(
φ(ξ),

∫ ∞
−∞

k(y)φ(ξ − cτ − y) dy

)
and the asymptotic boundary conditions

(1.7) lim
ξ→∞

φ(ξ) = K, lim
ξ→−∞

φ(ξ) = 0,

where ξ = x + ct. We say that a traveling wave solution φ(x + ct) is called the traveling

wave front if φ is monotone, that is, φ(·) : R→ R is a strictly increasing function.

The rest of this paper is organized as follows. In Section 2, we show the existence

and uniqueness of the traveling wave fronts obtained in [40]. In Section 3, we consider

the corresponding initial value problem of (1.5) by appealing to the theory of abstract

functional differential equations and operator semigroup. For the Section 4, we get the

stability of traveling wave fronts by applying the squeezing technique. In the end, we show

the applications to another version of the classical logistic model and the Nicholoson’s

blowflies model with delayed nonlocal response.

2. Existence and uniqueness of traveling wave fronts

In this section, we will show the existence and uniqueness of traveling wave fronts of

equation (1.5).

Theorem 2.1. (Existence, [40, Theorem 1.1]) Assume that (J), (K) and (A1)–(A3) hold.

Then there exists a positive constant c∗ such that for each c ≥ c∗, the equation (1.5)

admits a nondecreasing positive traveling wave front u(x, t) = φ(x + ct) with φ(−∞) = 0

and φ(+∞) = K. Moreover, if c > c∗, then

(2.1) lim
ξ→−∞

φ(ξ)e−λ1ξ = 1, lim
ξ→−∞

φ′(ξ)e−λ1ξ = λ1,

where ξ = x+ ct, λ1 > 0 is the smallest root of the equation

(2.2) ∆(c, λ) = cλ−d
[∫

R
J(y)e−λy dy − 1

]
−∂1f(0, 0)−∂2f(0, 0)

∫
R
k(y)e−λ(y+cτ) dy = 0.

Theorem 2.2. (Uniqueness, [40, Theorem 1.3]) Assume that (J), (K) and (A1)–(A3)

hold. For c ≥ c∗, let φ, ψ be two traveling wave fronts of (1.5) with wave speed c. Then φ

is a translation of ψ; more precisely, there exists ξ ∈ R such that φ(ξ) = ψ(ξ + ξ).
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Here we give a pair of super and subsolutions which have been obtained in the proof

of the existence of the traveling wave fronts for (1.5) in [40].

Define continuous functions φ+(ξ) and φ−(ξ) as follows

(2.3) φ+(ξ) = min
{
eλ1ξ + qeηλ1ξ,K

}
, φ−(ξ) = max

{
eλ1ξ − qeηλ1ξ, 0

}
,

where η ∈
(

1,min
{

1 + σ1, 1 + σ2,
λ2
λ1

})
, q > 1, λ1, λ2 are the roots of the equation (2.2)

satisfying λ2 > λ1. It is clear that for sufficiently large q, we have that φ+(ξ) and φ−(ξ)

satisfy 0 ≤ φ−(ξ) ≤ φ+(ξ) ≤ K, supξ∈R φ
−(ξ) > 0 and infξ∈R φ

+(ξ) < K.

Under the assumption conditions (J), (K) and (A1)–(A3), it is easy to show that φ+(ξ)

and φ−(ξ) are a pair of super and subsolution of (1.6), respectively. We can find the proof

in [40]. Here we omit it.

3. Existence and comparison of solutions for the initial value problem

In this section, we consider the following initial value problem

(3.1)



∂u(x, t)

∂t
= d

∫
R
J(y)[u(x− y, t)− u(x, t)] dy

+f

(
u(x, t),

∫
R
k(y)u(x− y, t− τ) dy

)
,

u(x, s) = ϕ(x, s), x ∈ R, −τ ≤ s ≤ 0,

where ϕ(·, s) ∈ C([−τ, 0], X) and X is defined as follows

X = {u(x) | u(x) : R→ R is bounded and uniformly continuous} .

It is clearly to see that X is a Banach space with the usual supremum norm | · |. Define

X+ as X+ = {u ∈ X | u(x) ≥ 0, x ∈ R}. It is easy to see that X+ is a closed cone of

X with respect to the general partial ordering. Define Au(x) := d
∫
R J(y)[u(x − y) −

u(x)] dy− βu(x) be a bounded linear operator on X, where β is a given positive constant

satisfying β ≥ max(u,v)∈[0,K]2 |∂1f(u, v)|, we can obtain that T (t) = etA is a uniformly

continuous semigroup of A on X. Indeed, according to Corollary 1.4 in [30] and the

assumption (J), it is easy to show that T1(t) = etB is a strong positive semigroup in

the sense T1(t) : X+ → X+ and its operator norm is less than 1 for any t > 0, where

Bu(x) = d
∫
R J(y)u(x− y) dy is a bounded positive linear operator on X. In [30], we can

find more details of the operator semigroup.

Hence, by the first section in [13], it then follows to obtain that the unique mild solution

of the following initial value problem

(3.2)


∂u(x, t)

∂t
= d

∫
R
J(y)[u(x− y, t)− u(x, t)] dy − βu(x, t),

u(x, s) = ϕ(x) ∈ X,
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is given by u(x, t) = T (t)ϕ(x).

Let C = C([−τ, 0];X) be the Banach space of continuous functions from [−τ, 0] into

X with the supremum norm and C+ = {ϕ ∈ C | ϕ(s) ∈ X+, s ∈ [−τ, 0]}. Then C+ is

a positive cone of C. For any continuous function w(·) : [−τ, b) → X, b > 0, we define

wt ∈ C, t ∈ [0, b), by wt(s) = w(t + s), s ∈ [−τ, 0]. We can easily see that t → wt is a

continuous function from [0, b) to C.

For any ψ ∈ [0,K]C = {ψ ∈ C | ϕ(x, s) ∈ [0,K], x ∈ R, s ∈ [−τ, 0]}, we define

F (ψ)(x) = f

(
ψ(x, s),

∫
R
k(y)ψ(x− y, s− τ) dy

)
+ βψ(x, s), x ∈ R.

By the Lipschitz continuity of f(·, ·) on [0,K]2, we can obtain that F (ψ) ∈ X and

F : [0,K]C → X is Lipschitz continuous.

By the theory of abstract functional differential equations in [22,23] and the analyticity

of semigroup T (t) in [13,30], we can obtain the following results of solutions for the initial

value problem (3.1).

Theorem 3.1. Assume that (J), (K), and (A1)–(A3) hold. Then for any ϕ(·, s) ∈ [0,K]C ,

s ∈ [−τ, 0], (3.1) has a unique mild solution u(x, t) defined for all (x, t) ∈ R× (0,∞). The

form of the solution to (3.1) is as follows

(3.3) u(x, t) = T (t)ϕ(x, 0) +

∫ t

0
T (t− r)F (ur)(x) dr.

Proof. Under the theory of abstract functional differential equation, a mild solution of

(3.1) is a solution to its associated integral equation

u(x, t) = T (t)ϕ(x, 0) +

∫ t

0
T (t− r)F (ur)(x) dr, t > 0,

u(x, s) = ϕ(x, 0).

As we have mentioned, F : [0,K]C → X is Lipschitz continuous. We further claim that F

is quasi-monotone on [0,K]C in the sense that

(3.4) lim
h→0+

1

h
dist(ψ1(0)− ψ2(0) + h[F (ψ1)− F (ψ2)];X+) = 0,

for all ψ1, ψ2 ∈ [0,K]C with ψ1 ≥ ψ2. Indeed, it follows from the condition (A1) and the
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choice of β that

F (ψ1)(·)− F (ψ2)(·) = f

(
ψ1(·, 0),

∫
R
k(y)ψ1(· − y,−τ) dy

)
− f

(
ψ2(·, 0),

∫
R
k(y)ψ2(· − y,−τ) dy

)
+ β(ψ1(·, 0)− ψ2(·, 0))

≥ f
(
ψ1(·, 0),

∫
R
k(y)ψ2(· − y,−τ) dy

)
− f

(
ψ2(·, 0),

∫
R
k(y)ψ2(· − y,−τ) dy

)
+ β(ψ1(·, 0)− ψ2(·, 0))

≥ −(L1 − β)(ψ1(·, 0)− ψ2(·, 0))

≥ 0,

(3.5)

where L1 = max(u,v)∈[0,K]2 |∂1f(u, v)|. Hence, for any h > 0, we have

ψ1(0)− ψ2(0) + h[F (ψ1)− F (ψ2)] ≥ (1− (L1 − β)h)(ψ1(0)− ψ2(0)) ≥ 0.

Then the existence and uniqueness of u(x, t, ϕ) follows from the theory of abstract

functional differential equations in [22]. Moreover, by a semigroup theory argument given

in the proof of Theorem 1 in [22], it follows that u(x, t, ϕ) is a classical solution of (3.1)

for t ≥ −τ .

Definition 3.2. Assume that u(·, t) ∈ X for t ∈ [−τ, b), 0 < b ≤ ∞, and u(·, t) is

continuous in t ∈ [−τ, b), then u(x, t) is called a supersolution (subsolution) of (3.3) on

[0, b) if

(3.6) u(x, t) ≥ (≤)T (t− s)u(x, s) +

∫ t

s
T (t− r)F (ur)(x) dr

for all −τ ≤ s < t < b. If u is both a supersolution and a subsolution on [0, b), then it is

a mild solution of (3.3).

Remark 3.3. Assume that there is a function u(x, t) ∈ C(R× [−τ, b],R), b > 0 satisfying

the following inequalities

(3.7)



∂u(x, t)

∂t
≥ (≤)d

∫
R
J(y)[u(x− y, t)− u(x, t)] dy

+f

(
u(x, t),

∫
R
k(y)u(x− y, t− τ) dy

)
,

u(x, s) ≥ (≤)ϕ(x, s), x ∈ R, −τ ≤ s ≤ 0.

Then, by the positivity of the linear semigroup T (t), it easily follows that (3.6) holds.

Hence, u(x, t) is a supersolution (subsolution) of (3.1) on [0, b).
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Now we establish the following comparison theorem for (3.1).

Theorem 3.4. Assume that (J), (K), and (A1)–(A3) hold. Then for any pair of super-

solution u(x, t) and subsolution w(x, t) of (3.1) with 0 ≤ u(x, t), w(x, t) ≤ K, x ∈ R,

t ∈ [−τ,∞), and u(x, s) ≥ w(x, s), x ∈ R, s ∈ [−τ, 0], there holds u(x, t) ≥ w(x, t) for

x ∈ R, t ≥ 0, and

(3.8) u(x, t)− w(x, t) ≥ e−(L1−β)(t−t0)T (t− t0)(u(x, t0)− w(x, t0)), t > t0 ≥ 0.

Proof. Clearly, u+ = K and u− = 0 are an ordered pair of super and subsolution of

(3.1). For simplicity, let φ(x, s) = u(x, s), ϕ(x, s) = w(x, s), x ∈ R, s ∈ [−τ, 0]. Then

φ, ϕ ∈ [0,K]C with φ ≥ ϕ. By Corollary 5 in [22], we have that

(3.9) K ≥ u(x, t, φ) ≥ u(x, t, ϕ) ≥ 0, x ∈ R, t ≥ 0.

By Corollary 5 in [22] with u+(x, t) = K and u−(x, t) = w(x, t), u+(x, t) = u(x, t) and

u−(x, t) = 0, respectively, we get that

(3.10) w(x, t) ≤ u(x, t, ϕ) ≤ K, x ∈ R, t ≥ 0,

and

(3.11) 0 ≤ u(x, t, φ) ≤ u(x, t), x ∈ R, t ≥ 0.

Combining (3.9)–(3.11), we have that u(x, t) ≥ w(x, t) for all x ∈ R, t ≥ 0.

Next we prove the inequality (3.8) in the theorem. Let v(x, t) = u(x, t) − w(x, t),

then v(x, t) ≥ 0, x ∈ R, t ≥ 0. By Definition 3.2 and (3.5), it then follows that, for all

t ≥ t0 ≥ 0,

v(x, t) ≥ T (t− t0)v(x, t0) +

∫ t

t0

T (t− r)(F (ur)(x)− F (wr)(x)) dr

≥ T (t− t0)v(x, t0)− (L1 − β)

∫ t

t0

T (t− r)vr(x) dr.

(3.12)

Define z(t) = e−(L1−β)(t−t0)T (t− t0)v(t0), t ≥ 0, it is easy to show that z(t) satisfies

z(t) = T (t− t0)z(t0)− (L1 − β)

∫ t

t0

T (t− r)z(r) dr.

Then by Proposition 3 in [22], we have that v(x, t) ≥ z(t) = e−(L1−β)(t−t0)T (t − t0)v(t0)

for all t ≥ t0.

So we can obtain that

u(x, t)− w(x, t) ≥ e−(L1−β)(t−t0)T (t− t0)(u(x, t0)− w(x, t0)).

This completes the proof.
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Remark 3.5. By Theorem 3.4, it follows that if ϕ+(x, t) and ϕ−(x, t) are a pair of super-

solution and subsolution of (3.1) and ϕ+(x, 0) 6≡ ϕ−(x, 0), then for any t > 0,

ϕ+(x, t)− ϕ−(x, t) ≥ e−(L1−β)tT (t)(ϕ+(x, 0)− ϕ−(x, 0)) > 0.

In particular, if u(x, t, ϕ) is a solution of (3.1) with initial value ϕ ∈ [0,K]C and ϕ(x, 0)

( 6≡ constant) is nondecreasing one, then ∂
∂xu(x, t) > 0, for any t ≥ −τ , x ∈ R.

Lemma 3.6. Assume that assumptions (J), (K), and (A1)–(A3) hold. Let φ(x+ ct) be a

nondecreasing traveling wave solution of (1.5), then φ′(ξ) > 0 for ξ ∈ R.

4. Asymptotic stability of traveling wave fronts

In this section, for c > c∗, we will use the squeezing technique to get the stability of the

unique traveling wave front. First we construct a pair of super and subsolutions which

depend on the traveling wave front.

Lemma 4.1. Assume that (J), (K), and (A1)–(A4) hold and φ(x+ct) is a traveling wave

front of (1.5) given by Theorem 2.1. Then there exist three positive numbers β0 (which is

independent of φ), σ0 and δ ∈ (0, 1) such that for any ε ∈ (0, δ] and ξ± ∈ R, the following

continuous functions u± defined by

(4.1) u+(x, t) = min
{

(1 + εe−β0t)φ(x+ ct+ ξ+ − σ0εe
−β0t),K

}
,

and

(4.2) u−(x, t) = (1− εe−β0t)φ(x+ ct+ ξ− + σ0εe
−β0t),

are a pair of supersolution and subsolution of (1.5), respectively.

Proof. We only prove that u+(x, t) is a supersolution of (1.5) since the proof for u−(x, t)

is analogous. Fix δ ∈ (0, 1), by the assumption (A4), we can choose β0 > 0, κ > 0 small

enough such that δeβ0τ ≤ 2δ,

(4.3) ∂2f(0, µ)e−β0τ > ∂2f(φ(ξ), η),

and

K

{[
∂1f

(
γ,

∫
R
k(y)φ(ξ − y − cτ) dy

)
+ ∂2f(0, µ)− β0

− ∂1f

(
ζ,

∫
R
k(y)φ(ξ − y − cτ) dy

)]
e−β0τ − ∂2f(φ(ξ), η)

}
> κ

{[
∂1f

(
γ,

∫
R
k(y)φ(ξ − y − cτ) dy

)
+ ∂2f(0, µ)

− ∂1f

(
ζ,

∫
R
k(y)φ(ξ − y − cτ) dy

)]
e−β0τ − ∂2f(φ(ξ), η)

}
,

(4.4)
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where γ ∈ (0, φ(ξ)), µ ∈ (0,
∫
R k(y)φ(ξ − y − cτ) dy), ζ ∈ (φ(ξ), (1 + δ)φ(ξ)), and η ∈

(
∫
R k(y)φ(ξ − y − cτ) dy, (1 + δeβ0τ )

∫
R k(y)φ(ξ − y − cτ) dy).

According to limξ→∞ φ(ξ) = K, we can take M1 > 0 sufficiently large so that

(4.5) φ(ξ) ≥ K − κ

2
for ξ ≥M1.

By (2.1), we can take M2 > 0 sufficiently large such that

(4.6)
1

2
< φ(ξ)e−λ1ξ <

3

2
, φ′(ξ)e−λ1ξ >

1

2
λ1 for ξ ≤ −M2.

Denote ρ := min {φ′(ξ) : −M2 ≤ ξ ≤M1} > 0. Finally, choose σ0 > 0 sufficiently large so

that

σ0 > max

{
3eβ0τ

λ1β0

[(
β0 + max

(u,v)∈[0,K]2
∂1f(u, v)

)
e−β0τ + max

(u,v)∈[0,K]2
∂2f(u, v)

]
,

eβ0τK

ρβ0

[(
β0 + max

(u,v)∈[0,K]2
∂1f(u, v)

)
e−β0τ + max

(u,v)∈[0,K]2
∂2f(u, v)

]}
.

(4.7)

Define

B+ =
{

(x, t) | (1 + εe−β0t)φ(x+ ct+ ξ+ − σ0εe
−β0t) > K

}
and

B− =
{

(x, t) | (1 + εe−β0t)φ(x+ ct+ ξ+ − σ0εe
−β0t) ≤ K

}
.

When (x, t) ∈ B+, it is easy to show that u+(x, t) = K. By the assumption (A1), we can

get that

L[u+](x, t) :=
∂u+(x, t)

∂t
− d

∫
R
J(y)[u+(x− y, t)− u+(x, t)] dy

− f
(
u+(x, t),

∫
R
k(y)u+(x− y, t− τ) dy

)
≥ 0.

When (x, t) ∈ B−, u+(x, t) = (1 + εe−β0t)φ(x+ ct+ ξ+− σ0εe
−β0t). For any ε ∈ (0, δ] and

t ≥ 0, set ξ = x+ ct+ ξ+ − σ0εe
−β0t, by (1.6) and Lemma 3.6, we have

L[u+](x, t)

= −εβ0e
−β0tφ(ξ) + (c+ σ0εβ0e

−β0t)(1 + εe−β0t)φ′(ξ)

− d
∫
R
J(y)(1 + εe−β0t)(φ(ξ − y)− φ(ξ)) dy

− f
(

(1 + εe−β0t)φ(ξ), (1 + εe−β0(t−τ))

∫
R
k(y)φ

(
ξ − y − cτ − σ0εe

−β0t(eβ0τ − 1)
)
dy

)
≥ −εβ0e

−β0tφ(ξ) + σ0εβ0e
−β0tφ′(ξ) + (1 + εe−β0t)f

(
φ(ξ),

∫
R
k(y)φ(ξ − y − cτ) dy

)
− f

(
(1 + εe−β0t)φ(ξ), (1 + εe−β0(t−τ))

∫
R
k(y)φ(ξ − y − cτ) dy

)
.
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Since by the mean value theorem, it is easy to show that

f

(
φ(ξ),

∫
R
k(y)φ(ξ − y − cτ) dy

)
= f

(
φ(ξ),

∫
R
k(y)φ(ξ − y − cτ) dy

)
− f(0, 0)

= ∂1f

(
γ,

∫
R
k(y)φ(ξ − y − cτ) dy

)
φ(ξ)

+ ∂2f(0, µ)

∫
R
k(y)φ(ξ − y − cτ) dy,

and

f

(
φ(ξ),

∫
R
k(y)φ(ξ − y − cτ) dy

)
− f

(
(1 + εe−β0t)φ(ξ), (1 + εe−β0(t−τ))

∫
R
k(y)φ(ξ − y − cτ) dy

)
= −

{
∂1f

(
ζ,

∫
R
k(y)φ(ξ − y − cτ) dy

)
φ(ξ)εe−β0t

+ ∂2f((1 + εe−β0t)φ(ξ), η)

∫
R
k(y)φ(ξ − y − cτ) dyεe−β0(t−τ)

}
,

where γ ∈ (0, φ(ξ)), µ ∈ (0,
∫
R k(y)φ(ξ − y − cτ) dy), ζ ∈ (φ(ξ), (1 + εe−β0t)φ(ξ)), and

η ∈ (
∫
R k(y)φ(ξ − y − cτ) dy, (1 + εe−β0(t−τ))

∫
R k(y)φ(ξ − y − cτ) dy). Then we have that

ε−1eβ0(t−τ)L[u+](x, t)

≥ −β0e
−β0τφ(ξ) + σ0β0e

−β0τφ′(ξ)

+ e−β0τ
{
∂1f

(
γ,

∫
R
k(y)φ(ξ − y − cτ) dy

)
φ(ξ)

+ ∂2f(0, µ)

∫
R
k(y)φ(ξ − y − cτ) dy

− ∂1f

(
ζ,

∫
R
k(y)φ(ξ − y − cτ) dy

)
φ(ξ)

− ∂2f((1 + εe−β0t)φ(ξ), η)

∫
R
k(y)φ(ξ − y − cτ) dyeβ0τ

}
.

(4.8)

We need to distinguish the following three cases.

Case 1. When ξ ≥M1, it follows from (4.8), (4.3) and (4.4) that

ε−1eβ0(t−τ)L[u+](x, t)

≥ −β0e
−β0τK +

[
∂2f(0, µ)e−β0τ − ∂2f((1 + εe−β0t)φ(ξ), η)

] (
K − κ

2

)
+ e−β0τ

(
K − κ

2

)[
∂1f

(
γ,

∫
R
k(y)φ(ξ − y − cτ) dy

)
− ∂1f

(
ζ,

∫
R
k(y)φ(ξ − y − cτ) dy

)]
≥ 0.
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Case 2. When ξ ≤ −M2, by (4.8), (4.6) and (4.7), we can obtain that

ε−1eβ0(t−τ)e−λ1ξL[u+](x, t)

≥ −β0e
−β0τφ(ξ)e−λ1ξ + σ0β0e

−β0τφ′(ξ)e−λ1ξ − max
(u,v)∈[0,K]2

∂1f(u, v)φ(ξ)e−λ1ξe−β0τ

− max
(u,v)∈[0,K]2

∂2f(u, v)

∫
R
k(y)φ(ξ − y − cτ) dye−λ1ξ

≥ 1

2
λ1σ0β0e

−β0τ − 3

2

[
β0e
−β0τ + max

(u,v)∈[0,K]2
∂1f(u, v)e−β0τ + max

(u,v)∈[0,K]2
∂2f(u, v)

]
≥ 0.

Case 3. For ξ ∈ [−M2,M1], according to the chosen of σ0, it is easy to show that

ε−1eβ0(t−τ)L[u+](x, t) ≥ −β0e
−β0τK + σ0β0e

−β0τρ− max
(u,v)∈[0,K]2

∂1f(u, v)Ke−β0τ

− max
(u,v)∈[0,K]2

∂2f(u, v)K

≥ 0.

Combining these three cases, we can obtain that L[u+](x, t) ≥ 0 for all x ∈ R and t ≥ 0.

Therefore, u+(x, t) is a supersolution of (1.5).

This completes the proof.

Remark 4.2. By the proof of the supersolution, we can know that β0 and σ0 are uniform

in ε ∈ (0, δ], which will be very useful in the following.

Next, we give the main result of this paper.

Theorem 4.3. Assume that (J), (K), and (A1)–(A4) hold. Let c > c∗ and φ be the

traveling wave front as given in Theorem 2.1. Suppose that there exists a constant ρ0 > 0

such that the initial data ϕ ∈ [0,K]C of (3.1) satisfies lim infx→∞ ϕ(x, 0) > 0 and

(4.9) lim
x→−∞

max
s∈[−τ,0]

∣∣∣ϕ(x, s)e−λ1(x+cs) − ρ0

∣∣∣ = 0.

Then

lim
t→∞

sup
x∈R
|u(x, t)− φ(x+ ct+ ξ0)| = 0,

where ξ0 = 1
λ1

ln ρ0.

Before proving the theorem, we give some useful lemmas under the conditions of The-

orem 4.3. In the following, we set ξ = x+ ct.

Lemma 4.4. For any ε > 0, there exists ξ(ε) such that

(4.10) sup
t≥−τ

u(ξ − 2ε− ct, t) < φ(ξ + ξ0) < inf
t≥−τ

u(ξ + 2ε− ct, t),

for all ξ ≤ ξ(ε).
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Proof. Due to (4.9), we get that there exists x1(ε) < 0 such that

ϕ(x− ε, s) < eλ1(x+cs+ξ0) < ϕ(x+ ε, s) for all x ≤ x1(ε) and s ∈ [−τ, 0].

Let φ−(ξ) = max
{

0, eλ1(ξ+ξ0) − qeηλ1(ξ+ξ0)
}

, where η = 1
2

(
1 + min

{
1 + σ1, 1 + σ2,

λ2
λ1

})
,

q ≥ e−(η−1)λ1(x1(ε)+ξ0−cτ). By (2.3), it is easy to see that φ−(ξ) is a subsolution of (3.1).

As eλ1(x+ξ0+cs) − qeηλ1(x+ξ0+cs) < 0 for all x > x1(ε) and s ∈ [−τ, 0], we have that

ϕ(x + ε, s) ≥ max
{

0, eλ1(x+ξ0+cs) − qeηλ1(x+ξ0+cs)
}

for all x ∈ R and s ∈ [−τ, 0]. By the

comparison principle, we show that

u(x+ ε, t) ≥ eλ1(x+ξ0+ct) − qeηλ1(x+ξ0+ct) for all x ∈ R and t ≥ −τ .

As limξ→−∞ φ(ξ)e−λ1ξ = 1, there exists x2(ε) < 0 such that

eλ1(ξ+ξ0+ε) − qeηλ1(ξ+ξ0+ε) > φ(ξ + ξ0) for all ξ ≤ x2(ε).

Consequently, for all ξ ≤ min {x1(ε), x2(ε)}, we have

inf
t≥−τ

u(ξ + 2ε− ct, t) ≥ eλ1(ξ+ξ0+ε) − qeηλ1(ξ+ξ0+ε) > φ(ξ + ξ0).

Let φ+(ξ) = min
{
K, eλ1(ξ+ξ0) + qeηλ1(ξ+ξ0)

}
. Then by (2.3), φ+(ξ) is a supersolution of

(3.1). Since eλ1ξ + qeηλ1ξ > K for ξ > − 1
ηλ1

ln q
K , we can take q large enough so that

eλ1(x+ξ0+cs) + qeηλ1(x+ξ0+cs) > K for all x > x1(ε) and s ∈ [−τ, 0]. As ϕ(x − ε, s) <

eλ1(x+ξ0+cs) < eλ1(x+ξ0+cs) + qeηλ1(x+ξ0+cs) for all x ≤ x1(ε) and s ∈ [−τ, 0], we have

that ϕ(x − ε, s) ≤ min
{
K, eλ1(x+ξ0+cs) + qeηλ1(x+ξ0+cs)

}
for all x ∈ R and s ∈ [−τ, 0].

Therefore, the comparison principle gives

u(x− ε, t) ≤ min
{
K, eλ1(x+ξ0+ct) + qeηλ1(x+ξ0+ct)

}
for all x ∈ R and t ≥ −τ .

Since

lim
ξ→−∞

eλ1(ξ−ε) + qeηλ1(ξ−ε)

φ(ξ)
= lim

ξ→−∞

e−λ1ε + qe(η−1)λ1ξ−ηλ1ε

φ(ξ)e−λ1ξ
= e−λ1ε < 1,

there exists x3(ε) < 0 such that eλ1(ξ+ξ0−ε) + qeηλ1(ξ+ξ0−ε) < φ(ξ + ξ0) for all ξ ≤ x3(ε).

Hence, for all ξ ≤ min {x1(ε), x3(ε)}, we have

sup
t≥−τ

u(ξ − 2ε− ct, t) ≤ eλ1(ξ+ξ0−ε) + qeηλ1(ξ+ξ0−ε) < φ(ξ + ξ0).

Finally, we can choose ξ(ε) = min {x1(ε), x2(ε), x3(ε)}, such that for all ξ ≤ ξ(ε), the

assertion of the lemma follows.
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Lemma 4.5. For all ξ ∈ R and t ≥ 1 + τ , there exist constants δ ∈ (0, 1), β0 > 0, σ0 > 0

and z0 > 0 such that

(1− δe−β0(t−1−τ))φ(ξ + ξ0 − z0 + δσ0e
−β0(t−1−τ))

≤ u(ξ − ct, t)

≤ (1 + δe−β0t)φ(ξ + ξ0 + z0 − δσ0e
−β0t).

(4.11)

Proof. Since lim infx→+∞ ϕ(x, 0) > 0, there exist δ1 > 0 and x4 > 0 such that

ϕ(x, 0) > δ1 for all x > x4.

Choose a positive integer N such that N > 1
2(x4− [ξ(N)− c(1 + τ)]), where ξ(N) is given

in Lemma 4.4. If x ≥ ξ(N)− c(1 + τ), then x+ 2N > x4. Hence, by the strong positivity

of the semigroup T (t), we have that

u(x+ 2N, 1 + τ + s) ≥ ϕ(x+ 2N, 0) > δ1 ≥ (1− δ)K

for all x ≥ ξ(N)− c(1 + τ), s ∈ [−τ, 0] and some δ < 1.

In view of (4.10), u(ξ + 2N − c(1 + τ + s), 1 + τ + s) ≥ φ(ξ + ξ0) for all ξ ≤ ξ(N),

hence, u(x+ 2N, 1 + τ + s) ≥ φ(x+ c(1 + τ + s) + ξ0) for all x ≤ ξ(N)− c(1 + τ + s) and

s ∈ [−τ, 0].

Thus for all x ∈ R and s ∈ [−τ, 0], we have

u(x+ 2N, 1 + τ + s) ≥ (1− δ)φ(x+ c(1 + τ + s) + ξ0)

≥ (1− δe−β0s)φ(x+ c(1 + τ + s) + ξ0 − σ0δe
β0τ + σ0δe

−β0s).

Then by (4.2), it is easy to show that

u(x+ 2N, 1 + τ + t) ≥ (1− δe−β0t)φ(x+ c(1 + τ + t) + ξ0 − σ0δe
β0τ + σ0δe

−β0t),

hence,

(4.12) u(ξ − c(1 + τ + t), 1 + τ + t) ≥ (1− δe−β0t)φ(ξ − 2N + ξ0 − σ0δe
β0τ + σ0δe

−β0t).

Again, in view of (4.10), u(ξ − 2N − cs, s) < φ(ξ + ξ0) for all ξ ≤ ξ(N), and hence,

u(x − 2N, s) < φ(x + cs + ξ0) for all x ≤ ξ(N) − cs and s ∈ [−τ, 0]. For δ given in the

lower bound estimate, if we choose large x5 > 0 such that φ(ξ(N) + x5 + ξ0) ≥ K
1+δ , then

we can obtain that

u(x− 2N, s) ≤ K ≤ (1 + δ)φ(x+ cs+ x5 + ξ0)

for all x ≥ ξ(N)− cs and s ∈ [−τ, 0]. Thus, for all x ∈ R and s ∈ [−τ, 0],

u(x− 2N, s) ≤ (1 + δ)φ(x+ cs+ x5 + ξ0)

≤ (1 + δe−β0s)φ(x+ cs+ x5 + ξ0 + σ0δe
β0τ − σ0δe

−β0s),
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then, according to (4.1), we can obtain that

u(x− 2N, t) ≤ (1 + δe−β0t)φ(x+ ct+ x5 + ξ0 + σ0δe
β0τ − σ0δe

−β0t),

that is,

(4.13) u(ξ − ct, t) ≤ (1 + δe−β0t)φ(ξ + 2N + x5 + ξ0 + σ0δe
β0τ − σ0δe

−β0t).

Finally, by setting z0 = 2N + x5 + σ0δe
β0τ , we can get (4.11) from (4.12) and (4.13).

This completes the proof.

Lemma 4.6. There exists M0 > 0 such that

(1− ε)φ(ξ + 3εσ0e
β0τ ) ≤ φ(ξ) ≤ (1 + ε)φ(ξ − 3εσ0e

β0τ )

for all ε ∈ (0, δ) and ξ ≥M0 + ξ0.

Proof. In view of

d

dx

[
(1 + x)φ(ξ − 3xσ0e

β0τ )
]

= φ(ξ − 3xσ0e
β0τ )− 3σ0e

β0τ (1 + x)φ′(ξ − 3xσ0e
β0τ ),

if we choose M0 > 0 large enough, we can get that

d

dx

[
(1 + x)φ(ξ − 3xσ0e

β0τ )
]
> 0 for all x ∈ [−δ, δ] and ξ ≥M0 + ξ0.

Then the result of the lemma is clear. The proof is completed.

Lemma 4.7. Assume that z and M are fixed positive constants. Let u± be the solution

of (3.1) on R× (0,+∞) with the initial value

(4.14) u±(x, s) = φ(x+cs+ξ0±z)χ(x+cs+M)+φ(x+cs+ξ0±2z)[1−χ(x+cs+M)],

respectively, where x ∈ R and s ∈ [−τ, 0], χ(y) = min {max {0,−y} , 1} for all y ∈ R.

Then there exists a constant ε ∈ (0,min
{
δ, ze−β0τ/(3σ0)

}
) such that

(4.15) u+(ξ − c(1 + τ + s), 1 + τ + s) ≤ (1 + ε)φ(ξ + ξ0 + 2z − 3εσ0e
β0τ ),

and

(4.16) u−(ξ − c(1 + τ + s), 1 + τ + s) ≥ (1− ε)φ(ξ + ξ0 − 2z + 3εσ0e
β0τ )

for any ξ ∈ [−M,∞) and s ∈ [−τ, 0].
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Proof. By the definition of χ(y), we can get that

u+(·, s) ≤ φ(·+ cs+ ξ0 + 2z) on R,

and

u+(·, s) < φ(·+ cs+ ξ0 + 2z) on (−∞,−M − 1].

From the strong positivity of T (t), it is easy to show that

u+(ξ − c(1 + τ + s), 1 + τ + s) < φ(ξ + ξ0 + 2z) for all ξ ∈ R and s ∈ [−τ, 0].

Since u+(x, t) and φ(x+ct) are continuous, then there exists ε ∈ (0,min
{
δ, ze−β0τ/(3σ0)

}
)

such that

u+(ξ − c(1 + τ + s), 1 + τ + s) ≤ φ(ξ + ξ0 + 2z − 3εσ0e
β0τ )

for ξ ∈ [−M,M0 − 2z], where M0 is defined in Lemma 4.6.

By Lemma 4.6, it is clear that

u+(ξ − c(1 + τ + s), 1 + τ + s) < φ(ξ + ξ0 + 2z) ≤ (1 + ε)φ(ξ + ξ0 + 2z − 3εσ0e
β0τ )

for all ξ ∈ [M0 − 2z,+∞). Therefore, (4.15) holds.

Similarly, we can also show that (4.16) holds. This completes the proof.

Here we give the proof of Theorem 4.3.

Proof. We define constants z± as follows

z+ := inf
{
z | z ∈ A+

}
,

A+ :=

{
z ≥ 0

∣∣∣∣ lim sup
t→+∞

sup
ξ∈R

(u(ξ − ct, t)− φ(ξ + ξ0 + 2z)) ≤ 0

}
,

(4.17)

and

z− := inf
{
z | z ∈ A−

}
,

A− :=

{
z ≥ 0

∣∣∣∣ lim inf
t→+∞

sup
ξ∈R

(u(ξ − ct, t)− φ(ξ + ξ0 − 2z)) ≥ 0

}
.

(4.18)

In view of (4.11), we see that 1
2z0 ∈ A±. Hence, z± are well defined and z± ∈ [0, 1

2z0].

Thus, to complete the proof, we need only show that z± = 0.

First we prove z+ = 0 by a contradiction argument. Suppose z+ > 0. Let z = z+,

M = −ξ( z+2 ) and ε be given in Lemma 4.7. Follows that z+ ∈ A+, there exists T1 ≥ 0

such that

u(ξ − c(T1 + s), T1 + s)− φ(ξ + ξ0 + 2z+) ≤ ε̂ for all s ∈ [−τ, 0],
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where ε̂ = εφ(−M+ξ0−3εσ0e
β0τ )e(L1−β)(1+τ). From (4.14), u+(x, s) = φ(x+cs+ξ0+2z+)

on [−M − cs,+∞). Then, for any x ∈ [−M − cs,+∞),

u(x− cT1, T1 + s) ≤ φ(x+ cs+ ξ0 + 2z+) + ε̂ = u+(x, s) + ε̂.

For any x ∈ (−∞,−M − cs] = (−∞, ξ( z+2 )− cs], by (4.10) and (4.14), we have that

u(x− cT1, T1 + s) ≤ φ(x+ cs+ ξ0 + z+) ≤ u+(x, s).

Therefore, by (3.8), we have that

u(x− cT1, T1 + 1 + τ + s) ≤ u+(x, 1 + τ + s) + ε̂e−(L1−β)(1+τ)

= u+(x, 1 + τ + s) + εφ(−M + ξ0 − 3εσ0e
β0τ )

for all x ∈ R.

By Lemma 4.7, we obtain that for ξ ≥ −M ,

u(ξ − c(T1 + 1 + τ + s), T1 + 1 + τ + s)

≤ u+(ξ − c(1 + τ + s), 1 + τ + s) + εφ(−M + ξ0 − 3εσ0e
β0τ )

≤ (1 + ε)φ(ξ + ξ0 + 2z+ − 3εσ0e
β0τ ) + εφ(−M + ξ0 − 3εσ0e

β0τ )

≤ (1 + 2ε)φ(ξ + ξ0 + 2z+ − 3εσ0e
β0τ ).

For any ξ ≤ −M = ξ( z
+

2 ), by (4.10) and the chosen of ε in Lemma 4.7, we have

u(ξ − c(T1 + 1 + τ + s), T1 + 1 + τ + s) ≤ φ(ξ + ξ0 + z+) ≤ φ(ξ + ξ0 + 2z+ − 3εσ0e
β0τ ).

Thus, we have that

u(ξ − c(T1 + 1 + τ + s), T1 + 1 + τ + s)

≤ (1 + 2ε)φ(ξ + ξ0 + 2z+ − 3εσ0e
β0τ )

≤ (1 + 2εe−β0s)φ(ξ + ξ0 + 2z+ − εσ0e
β0τ − 2εσ0e

−β0s)

for any ξ ∈ R, s ∈ [−τ, 0].

By the comparison principle, we can get that

u(ξ − c(T1 + 1 + τ + t), T1 + 1 + τ + t)

≤ (1 + 2εe−β0t)φ(ξ + ξ0 + 2z+ − εσ0e
β0τ − 2εσ0e

−β0t)

for any ξ ∈ R, t ≥ 0. This implies that (z+−εσ0e
β0τ/2) ∈ A+, it contradicts the definition

of z+. So we obtain z+ = 0.

By the similar way, it is easy to get z− = 0. The proof is completed.
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5. An application

Example 5.1. For the typical nonlinearity f(u, v) = rv(1−u)v, since f : R2 → R satisfies

assumptions (A1)–(A4), where K = 1, we can obtain that under the assumptions (J) and

(K), Theorem 4.3 still holds for (1.5) with the classical logistic nonlinearity.

Next, we consider the Nicholson’s blowflies model.

Example 5.2. The following diffusive Nicholson’s blowflies equation

∂u(x, t)

∂t
= d

(∫
R
J(x− y)u(y, t) dy − u(x, t)

)
− ru

+ rp

∫
R
k(y)u(x− y, t− τ) dye−

∫
R k(y)u(x−y,t−τ) dy,

(5.1)

where r > 0, τ > 0 and 1 < p ≤ e.

If 1 < p ≤ e, f(u, v) = −ru + rpve−v satisfies assumptions (A1)–(A4). Therefore, we

can get the following result.

Theorem 5.3. Assume that (J) and (K) hold, let c > c∗ and φ be the traveling wave front

of (5.1) connecting 0 and ln p. Suppose that there exists a constant ρ0 > 0 such that the ini-

tial data ϕ ∈ [0, ln p]C of (3.1) with f(u, v) = −ru+rpve−v satisfies lim infx→∞ ϕ(x, 0) > 0

and (4.9), then limt→∞ supx∈R |u(x, t)− φ(x+ ct+ ξ0)| = 0, where ξ0 = 1
λ1

ln ρ0.
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