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Solutions for a p(x)-Kirchhoff Type Problem with a Non-smooth Potential

in RN

Ziqing Yuan, Lihong Huang* and Chunyi Zeng

Abstract. This paper is concerned with a class of p(x)-Kirchhoff type problem in RN .

By the theories of nonsmooth critical point and variable exponent Sobolev spaces, we

establish the existence and multiplicity of solutions to the p(x)-Kirchhoff type problem

under weaker hypotheses on the nonsmooth potential at zero (at infinity, respectively).

Some recent results in the literature are generalized and improved.

1. Introduction

In this paper, we investigate the existence and multiplicity of solutions to a class of p(x)-

Kirchhoff type problem with a nonsmooth potential

(1.1)

−M(t)
(
div(|∇u|p(x)−2∇u)− V (x)|u|p(x)−2u

)
∈ ∂F (x, u) in RN ,

u ∈W 1,p(x)(RN ).

Here, W 1,p(x)(RN ) is the variable exponent Sobolev space, N ≥ 1, M(t) is a continuous

function with t :=
∫
RN

1
p(x)(|∇u|p(x) +V (x)|u|p(x)) dx, F : RN×R→ R is a locally Lipshitz

not necessarily smooth potential function. We denote ∂F (x, u) the partial generalized

gradient of F (x, ·) at the point u. p(x) and V (x) satisfy the following assumptions:

(H1) The function p : RN → R is Lipschitz continuous and

1 < p− = inf
x∈RN

p(x) ≤ sup
x∈RN

p(x) = p+ < N ;

(H2) V (x) ∈ C(RN ), V − = infx∈RN V (x) > 0, µ(V −1(−∞,M1]) < +∞ for all M1 ∈ R.
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Here µ is the Lebesgue measure on RN . Note that if V ∈ C(RN , (0,+∞)) is coercive,

namely

lim
|x|→∞

V (x) = +∞,

then (H2) is satisfied.

The operator −div(|∇u|p(x)−2∇u) is called to be p(x)-Laplacian, which becomes p-

Laplacian when p(x) ≡ p (a constant). The p(x)-Laplacian possesses more complicated

nonlinearities than the p-Laplacian, for example, it is inhomogeneous and in general it

does not have the first eigenvalue. The study of various mathematical problems with

variable exponent growth condition has caused great interest in recent years, and raised

many difficult mathematical problems. Problems with variable exponent growth condi-

tions appear in electrorheological fluids [37,40], stationary thermorheological viscous flows

of non-Newtonian fluids [2, 3] and image processing [7, 22] and so on. The more details

can be found in [24,38,41].

The problem (1.1) is a variant type of a class of Dirichlet problem of Kirchhoff type.

Indeed, if the right-hand side function F is continuously differentiable with respect to the

real variable u, V (x) = 0, p(x) = 2 and M(t) = a+ bt in bounded domain, then problem

(1.1) reduces to the following Dirichlet problem:

(1.2)

−
(
a+ b

∫
Ω |∇u|

2 dx
)

∆u = f(x, u) in Ω,

u|∂Ω = 0,

which is related to the stationary analogue of the following equation

(1.3)

utt −
(
a+ b

∫
Ω |∇u|

2 dx
)

∆u = f(x, u) in Ω,

u|∂Ω = 0.

Such problems are viewed as being nonlocal because of the presence of the term (
∫

Ω |∇u|
2

dx)∆u, which means that the problems (1.2) and (1.3) are no longer a pointwise identity

and are very different from classical elliptic equations. We know that such problems are

proposed by Kirchhoff in [25] as an existence of the classical D’Alembert’s wave equations

for free vibration of elastic strings. Kirchhoff’s model takes into account the changes

in length of the string produced by transverse vibrations. Problem (1.2) caused much

attention only after lions [30] proposed an abstract framework to the problem. Some

interesting and important results can be found in [6,17,29,31,34,35] and references therein.

Especially, Dai and Hao [11] studied the following p(x)-Kirchhoff-type problem

(1.4)

−M
(∫

Ω
1

p(x) |∇u|
p(x) dx

)
div(|∇u|p(x)−2∇u) = f(x, u) in Ω,

u|∂Ω = 0,
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where f is a continuous function. By means of a direct variational approach and the

theory of the variable exponent Sobolev spaces, they established conditions ensuring the

existence and multiplicity of solutions for problem (1.4).

As is well known, many free boundary problems and obstacle problems may be reduced

to partial differential equations with nonsmooth potentials. The area of nonsmooth anal-

ysis is closely related with the development of a critical point theory for nondifferentiable

functions, in particular, for locally Lipschitz continuous functions based on Clarke’s gen-

eralized gradient [8]. It provides an appropriate mathematical framework to extend the

classic critical point theory for C1-functionals in a natural way, and to meet specific needs

in applications, such as in nonsmooth mechanics and engineering. For a comprehensive un-

derstanding, we refer to the monographs of [19,32,33] and References [13,18,21,23,28,39].

More precisely, if M(t) = 1, there exist several existence results for the following problem

(1.5)

−div(|∇u|p(x)−2∇u) + V (x)|u|p(x)−2u ∈ ∂F (x, u) in Ω,

u|∂Ω = 0.

Qian and Shen [36] established conditions ensuring the existence and multiplicity of solu-

tions for problem (1.5) with V (x) = 0 via the theory of nonsmooth critical point theory

and the properties of W
1,p(x)
0 (Ω). Dai and Liu [12] obtained the existence of at least three

solutions for problem (1.5) with ∂F (x, u) replaced by λ∂F (x, u) and V (x) = 0 via a ver-

sion of the nonsmooth three critical points theorem. Ge et al. [20], using a variational

method combined with suitable truncation techniques, proved the existence of at least

five solutions under the suitable conditions for problem (1.5) with V (x) = 0. For the case

of unbounded domain, there exist few results for problem (1.5) on RN . Dai [9] derived

the existence of infinitely many radially symmetric solutions for the problem (1.5) on RN

under suitable hypotheses by applying a nonsmooth variational principle with V (x) = 1.

Besides, if p(x) ≡ p (a constant), Kristály [27] studied the following differential inclusion

problem

(1.6)

−∆pu+ |u|p−2u ∈ α(x)∂F (u) in RN ,

u ∈W 1,p(RN ),

where 2 ≤ N < p < +∞, α ∈ L1(RN ) ∩ L∞(RN ) is radially symmetric. Under suitable

oscillatory assumptions on the potential F at zero or at infinity, they showed the existence

of infinitely many, radially symmetric solutions of (1.6).

Being influenced by the reading of the above cited papers, we will study the existence

and multiplicity of solutions for problem (1.1), where V (x) satisfies the assumption (H2).

For the functions M and F , we assume that

(M1) M(t) : [0,+∞)→ (m0,+∞) is a continuous and increasing function with m0 > 0;
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(M2) ∃0 < µ < 1 such that

M̂(t) ≥ (1− µ)M(t)t,

where M̂(t) =
∫ t

0 M(τ) dτ ;

(F1) F (·, u) is measurable for all u ∈ R;

(F2) F (x, ·) is locally Lipshitz for a.a. x ∈ RN ;

(F3) For all ω ∈ ∂F (x, u), a.a. x ∈ RN

lim
|u|→+∞

ω

|u|q(x)−1
= 0, and lim

|u|→0

ω

|u|p(x)−1
= 0,

where p+ ≤ q � p∗;

(F4) F (x, u) ≥ 0 and F (x, u) > 0 for all u 6= 0;

(F5) ∃θ > p+

1−µ such that

θF (x, u) + F ◦(x, u;−u) ≤ 0

for all u ∈ R and a.a. x ∈ RN (F ◦ is introduced in Definition 2.2);

(F6) F (x,−u) = F (x, u) for a.a. x ∈ RN and all u ∈ R.

Remark 1.1. From hypotheses (F4) and (F5) it is easy to see that F (x, 0) = 0.

Our main results are as follows:

Theorem 1.2. If hypotheses (H1), (H2), (M1), (M2) and (F1)-(F5) hold, then prob-

lem (1.1) has at least one nontrivial solution.

Theorem 1.3. If hypotheses (H1), (H2), (M1), (M2) and (F1)-(F6) hold, then prob-

lem (1.1) has a sequence of weak solutions {±uk} such that I(±uk)→ +∞ as k → +∞.

To the best of our knowledge, it seems that Theorems 1.2 and 1.3 are the first existence

and multiplicity results for problem (1.1) with a nonsmooth potential function. In the

present paper, we extend the main results of [11] to a class of non-differentiable functionals

in unbounded domain. Compared with the previous works, the main difficulties lie in the

appearance of the nonlocal term, non-differentiable functional and the lack of compactness

due to the unboundedness of the domain. To deal with the difficulty caused by the non-

compactness we will employ the Bartsch-Wang condition established in [4] to recover the

compact embedding. Furthermore, the lack of differentiability of the nonlinearity causes

several technical difficulties. This implies that the variational methods for C1 functions

are not suitable in our case. Therefore we will use a variational approach based on the
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nonsmooth critical point theory due to Clarke [8] and Chang [5] to obtain the existence

and multiplicity of solutions for problem (1.1) under certain conditions.

This paper is organized as follows. In Section 2, we present some necessary preliminary

knowledge. In Section 3, we prove our main results. In Section 4, we deal with a special

p(x)-Kirchhoff type problem and obtain some corollaries.

2. Preliminaries

We firstly give some basic notations.

• ⇀ means weak convergence and → strong convergence.

• ci (i = 1, 2, . . .) denote the estimated constants (the exact value may be different).

• (X, ‖·‖) denotes a (real) Banach space and (X∗, ‖·‖∗) its topological dual.

• if infx∈RN (h1(x)− h2(x)) > 0, we denote by h2(·)� h1(·).

• h− = infx∈RN h(x) and h+ = infx∈RN h(x).

We recall some results on variable exponent Lebesgue-Sobolev spaces and list some

properties of that spaces. For more details the reader is referred to [14–16, 26] and the

references therein.

Let p ∈ L∞(RN ) and p− > 1. The variable exponent Lebesgue space Lp(x)(RN ) is

defined by

Lp(x)(RN ) =

{
u : RN → R

∣∣∣∣ u is measurable and

∫
RN
|u|p(x) dx <∞

}
endowed with the norm

‖u‖p(x) = inf

{
λ > 0 :

∫
RN

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Then, we define the variable exponent Sobolev space

W 1,p(x)(RN ) =
{
u ∈ Lp(x)(RN ) : |∇u| ∈ Lp(x)(RN )

}
with the norm

‖u‖ = ‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x) ,

or equivalently

‖u‖ = ‖u‖1,p(x) = inf

{
λ > 0 :

∫
Ω

(∣∣∣∣u(x)

λ

∣∣∣∣p(x)

+

∣∣∣∣∇u(x)

λ

∣∣∣∣p(x)
)

dx ≤ 1

}



454 Ziqing Yuan, Lihong Huang and Chunyi Zeng

for all u ∈ W 1,p(x)(RN ). From the Proposition 2.1 of [14] we obtain that Lp(x)(RN ) and

W 1,p(x)(RN ) are separable and reflexive Banach spaces.

Next, we consider the following linear subspace

E =

{
u ∈W 1,p(x)(RN )

∣∣∣∣ ∫
RN
|∇u|p(x) + V (x)|u|p(x) dx <∞

}
with the norm

‖u‖E = inf

{
λ > 0

∣∣∣∣ ∫
RN

∣∣∣∣∇uλ
∣∣∣∣p(x)

+ V (x)
∣∣∣u
λ

∣∣∣p(x)
dx ≤ 1

}
.

Then, (E, ‖·‖E) is continuously embedded into W 1,p(x)(RN ) as a closed subspace. There-

fore, (E, ‖·‖E) is also a separable reflexive Banach space.

Definition 2.1. A function I : X → R is locally Lipschitz if for every u ∈ X there exist

a neighborhood U of u and L > 0 such that for every ν, η ∈ U

|I(ν)− I(η)| ≤ L ‖ν − η‖ .

Definition 2.2. Let I : X → R be a locally Lipschitz function. The generalized derivative

of I in u along the direction ν is defined by

I0(u; ν) = lim sup
η→u,τ→0+

I(η + τν)− I(η)

τ
,

where u, ν ∈ X.

It is easy to see that the function ν 7→ I0(u; ν) is sublinear, continuous and so is the

support function of a nonempty, convex and w∗-compact set ∂I(u) ⊂ X∗, defined by

∂I(u) =
{
u∗ ∈ X∗ : 〈u∗, ν〉X ≤ I

0(u; ν) for all v ∈ X
}
.

If I ∈ C1(X), then

∂I(u) =
{
I ′(u)

}
.

Clearly, these definitions extend those of the Gâteaux directional derivative and gradient.

Definition 2.3. We say that I satisfies the nonsmooth (PS)c if any sequence {un} ⊂ X

such that

I(un)→ c and mI(un)→ 0 as n→ +∞,

has a strongly convergent subsequence, where mI(un) = infu∗n∈∂I(x,un) ‖u∗n‖X∗ .

For p ∈ L∞(RN ) with p− > 1, let p′(x) : RN → R be such that 1
p(x) + 1

p′(x) = 1,

a.e. x ∈ RN . We have the following generalized Hölder’s inequalities.
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Proposition 2.4. [14] (i) For any u ∈ Lp(x)(RN ) and v ∈ Lp′(x)(RN ) we have∣∣∣∣∫
RN

uv dx

∣∣∣∣ ≤ 2 ‖u‖p(x) ‖v‖p′(x) ;

(ii) If 1
p(x) + 1

q(x) + 1
r(x) = 1, then for any u ∈ Lp(x)(RN ), v ∈ Lq(x)(RN ) and w ∈

Lr(x)(RN ) ∫
RN
|uvw|dx ≤

(
1

p−
+

1

q−
+

1

r−

)
‖u‖p(x) ‖v‖q(x) ‖w‖r(x)

≤ 3 ‖u‖p(x) ‖v‖q(x) ‖w‖r(x) .

Proposition 2.5. The function ρ : W 1,p(x)(RN )→ R defined by

ρ(u) =

∫
RN

(
|∇u|p(x) + |u|p(x)

)
dx,

has the following properties:

(i) If ‖u‖ ≥ 1, then ‖u‖p
−
≤ ρ(u) ≤ ‖u‖p

+

;

(ii) If ‖u‖ ≤ 1, then ‖u‖p
+

≤ ρ(u) ≤ ‖u‖p
−

.

In particular, if ‖u‖ = 1 then ρ(u) = 1. Moreover, ‖un‖ → 0 if and only if ρ(un)→ 0.

Remark 2.6. It is easy to see that with the norm ‖·‖E , Proposition 2.5 remains valid.

Proposition 2.7. [8] (i) (−h)◦(u; z) = h◦(u;−z) for all u, z ∈ X;

(ii) h◦(u; z) = max {〈u∗, z〉X : u∗ ∈ ∂h(u)} for all u, z ∈ X;

(iii) Let j : X → R be a continuously differentiable function. Then ∂j(u) = {j′(u)},
j◦(u; z) coincides with 〈j′(u), z〉X and (h + j)◦(u; z) = h◦(u; z) + 〈j′(u), z〉X for all

u, z ∈ X;

(iv) (Lebourg’s mean value theorem) Let u and v be two points in X. Then there exists

a point ξ in the open segment between u and v, and a u∗ξ ∈ ∂h(ω) such that

h(u)− h(v) =
〈
u∗ξ , u− v

〉
X

;

(v) (Second chain rule) Let Y be a Banach space and j : Y → X a continuously differ-

entiable function. Then h ◦ j is locally Lipschitz and

∂(h ◦ j)(y) ⊆ ∂h(j(y)) ◦ j′(y) for all y ∈ Y ;

(vi) If h1, h2 : X → R are locally Lipschitz, then

∂(h1 + h2)(u) ⊆ ∂h1(u) + ∂h2(u).
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From Lemma 2.6 in [1], we have the following theorem.

Theorem 2.8. If V (x) satisfies (H2), then

(i) we have a compact embedding E ↪→ Lp(x)(RN );

(ii) for any measurable function q : RN → R with p < q � p∗ = Np(x)
N−p(x) , we have a

compact embedding E ↪→ Lq(x)(RN ).

The next theorem is the nonsmooth version of the classic Mountain Theorem, which

comes from Theorem 2.1.3 in [19].

Theorem 2.9. Let X be a Banach space, and h : X → R be a locally Lipschitz function

with h(0) = 0. Suppose that there exist a point e ∈ X and constants ρ, η > 0 such that

(i) h(u) ≥ η for all u ∈ X with ‖u‖ = ρ;

(ii) ‖e‖ > ρ and h(e) ≤ 0;

(iii) h satisfies (PS)c with

c = inf
γ∈Γ

max
t∈[0,1]

h(γ(t)),

where

Γ = {γ ∈ C([0, 1]) : γ(0) = 0, γ(1) = e} .

Then c ≥ η and c ∈ R is a critical value of h.

3. Existence and multiplicity of solutions

In this section, we prove our main results. We firstly give some notions. Consider the

following function I defined on W 1,p(x)(RN )

I(u) = M̂

(∫
RN

1

p(x)
(|∇u|p(x) + V (x)|u|p(x)) dx

)
−
∫
RN

F (x, u) dx

= Φ(u)−Ψ(u),

(3.1)

where Φ(u) = M̂
(∫

RN
1

p(x)(|∇u|p(x) + V (x)|u|p(x)) dx
)

and Ψ(u) =
∫
RN F (x, u) dx.

Definition 3.1. We say that u ∈ W 1,p(x)(RN ) is a weak solution of problem (1.1), if for

all v ∈W 1,p(x)(RN )

M

(∫
RN

1

p(x)
(|∇u|p(x) + V (x)|u|p(x)) dx

)∫
RN

(
|∇u|p(x)−2∇u∇v + V (x)|u|p(x)−2uv

)
dx

=

∫
RN

ωv dx

where ω ∈ ∂F (x, u). Then, the critical points of I are weak solutions of problem (1.1).
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The following three lemmas play an important role in our proofs.

Lemma 3.2. Assume that (H1), (H2), (M1), (M2) and (F1)-(F4) hold. If {un} ⊂ E is a

bounded sequence with mI(un)→ 0, then {un} ⊂ E has a convergent sequence.

Proof. Since {un} ⊂ E is bounded and the embedding

E ↪→ Lr(RN )

is compact for all p(x) ≤ r � p∗(x), passing to a subsequence, we assume

(3.2) un ⇀ u in E

and

(3.3) un → u in Lr(RN ).

For u∗n ∈ ∂I(un), u∗ ∈ ∂I(u), ωn ∈ ∂F (x, un) and ω ∈ ∂F (x, u) we have

〈u∗n − u∗, un − u〉 = 〈Φ(un)− Φ(u), un − u〉 − 〈ωn − ω, un − u〉

= M

(∫
RN

1

p(x)

(
|∇un|p(x) + V (x)|un|p(x)

)
dx

)
×
∫
RN

(
|∇un|p(x)−2∇un · ∇(un − u) + V (x)|un|p(x)−2un(un − u)

)
dx

−M
(∫

RN

1

p(x)

(
|∇u|p(x) + V (x)|u|p(x)

)
dx

)
×
∫
RN

(
|∇u|p(x)−2∇u · ∇(un − u) + V (x)|u|p(x)−2u(un − u)

)
dx

− 〈ωn − ω, un − u〉

= M

(∫
RN

1

p(x)

(
|∇un|p(x) + V (x)|un|p(x)

)
dx

)
×
(∫

RN

〈
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u,∇(un − u)

〉
dx

+

∫
RN

〈
V (x)

(
|un|p(x)−2un − |u|p(x)−2u

)
, (un − u)

〉
dx

)
+

[
M

(∫
RN

1

p(x)

(
|∇un|p(x) + V (x)|un|p(x)

)
dx

)
− M

(∫
RN

1

p(x)

(
|∇u|p(x) + V (x)|u|p(x)

)
dx

)]
×
∫
RN

(
|∇u|p(x)−2∇u · ∇(un − u) + V (x)|u|p(x)−2u(un − u)

)
dx

− 〈ωn − ω, un − u〉 .
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Recall the elementary inequalities

〈
|x|p−2x− |y|p−2y, x− y

〉
≥ cp ×


|x− y|p, if p ≥ 2,

|x− y|2

(1 + |x|+ |y|)2−p , if 1 < p < 2,

where cp > 0 is a constant, and x, y ∈ RN . Then,

〈u∗n − u∗, un − u〉 ≥ cpM
(∫

RN

1

p(x)

(
|∇un|p(x) + V (x)|un|p(x)

)
dx

)
×
∫
RN

(
|∇(un − u)|p(x) + V (x)|un − u|p(x)

)
dx

+

[
M

(∫
RN

1

p(x)

(
|∇un|p(x) + V (x)|un|p(x)

)
dx

)
− M

(∫
RN

1

p(x)

(
|∇u|p(x) + V (x)|u|p(x)

)
dx

)]
×
∫
RN

(
|∇u|p(x)−2∇u · ∇(un − u) + V (x)|u|p(x)−2u(un − u)

)
dx

− 〈ωn − ω, un − u〉

≥ m0cp

∫
RN

(
|∇(un − u)|p(x) + V (x)|un − u|p(x)

)
dx

+

[
M

(∫
RN

1

p(x)

(
|∇un|p(x) + V (x)|un|p(x)

)
dx

)
− M

(∫
RN

1

p(x)

(
|∇u|p(x) + V (x)|u|p(x)

)
dx

)]
×
∫
RN

(
|∇u|p(x)−2∇u · ∇(un − u) + V (x)|u|p(x)−2u(un − u)

)
dx

− 〈ωn − ω, un − u〉 .

One has

m0cp

∫
RN

(
|∇(un − u)|p(x) + V (x)|un − u|p(x)

)
dx

≤ 〈u∗n − u∗, un − u〉+

∫
RN

(ωn − ω)(un − u) dx

−
[
M

(∫
RN

1

p(x)

(
|∇un|p(x) + V (x)|un|p(x)

)
dx

)
− M

(∫
RN

1

p(x)

(
|∇u|p(x) + V (x)|u|p(x)

)
dx

)]
×
∫
RN

(
|∇u|p(x)−2∇u · ∇(un − u) + V (x)|u|p(x)−2u(un − u)

)
dx.

Set

Ê =
{
u ∈ Lp(x)(RN ) : ∇u ∈ Lp(x)(RN )

}
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with the norm

‖u‖
Ê

= ‖∇u‖p(x) .

Since the embedding E ↪→ Ê is continuous, we also have

un ⇀ u in Ê

from (3.2). So, from the boundedness of {un} in E, and the continuity of M(t), we have[
M

(∫
RN

1

p(x)

(
|∇un|p(x) + V (x)|un|p(x)

)
dx

)
− M

(∫
RN

1

p(x)

(
|∇u|p(x) + V (x)|u|p(x)

)
dx

)]
×
∫
RN

(
|∇u|p(x)−2∇u · ∇(un − u) + V (x)|u|p(x)−2u(un − u)

)
dx→ 0

(3.4)

as n→ +∞. Moreover, for any ε > 0, from hypotheses (F3) and (F4) there exists a cε > 0

such that

(3.5) |ω| ≤ ε|u|p(x)−1 + cε|u|q(x)−1

for all ω ∈ ∂F (x, u). Then, from (3.3) and (3.5) one has∫
RN

(ωn − ω)(un − u) dx

≤
∫
RN
|ωn − ω||un − u| dx

≤
∫
RN

(
ε|un|p(x)−1 + cε|un|q(x)−1 + ε|u|p(x)−1 + cε|u|q(x)−1

)
|un − u| dx

≤ ε
(
‖un‖p

+−1
p(x) + ‖un‖p

−−1
p(x) + ‖u‖p

+−1
p(x) + ‖u‖p

−−1
p(x)

)
‖un − u‖p(x)

+ cε

(
‖un‖q

+−1
q(x) + ‖un‖q

−−1
q(x) + ‖u‖q

+−1
q(x) + ‖u‖q

−−1
q(x)

)
‖un − u‖q(x) → 0

(3.6)

as n→ +∞.

Consequently, by mI(un) = ‖u∗n‖E∗ → 0, we obtain∫
RN

(
|∇(un − u)|p(x) + V (x)|un − u|p(x)

)
dx→ 0

from (3.5) and (3.6), i.e., ‖un − u‖E → 0. This completes the proof.

Lemma 3.3. Suppose that F satisfies (F1)-(F3). Then, Ψ: W 1,p(x)(RN )→ R defined by

Ψ(u) =

∫
RN

F (x, u) dx

is locally Lipschitz. Moreover

Ψ◦(u; v) ≤
∫
RN

F ◦(x, u; v) dx

for all u, v ∈ E.
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Proof. Let u1, u2 ∈ E be fixed elements. Applying Lebourg’s mean value theorem, there

exists a ωξ ∈ ∂F (x, ξ) such that

F (x, u1)− F (x, u2) = ωξ(u1 − u2),

where ξ is between u1 and u2. From (3.5) and the above equation, we have that

|Ψ(u1)−Ψ(u2)| ≤
∫
RN
|ωξ||u1 − u2| dx

≤
∫
RN

(
ε|u1|p(x)−1 + cε|u1|q(x)−1 + ε|u2|p(x)−1 + cε|u2|q(x)−1

)
|u1 − u2| dx

≤ ε
(
‖u1‖p

+−1
p(x) + ‖u1‖p

−−1
p(x) + ‖u2‖p

+−1
p(x) + ‖u2‖p

−−1
p(x)

)
‖u1 − u2‖p(x)

+ cε

(
‖u1‖q

+−1
q(x) + ‖u1‖q

−−1
q(x) + ‖u2‖q

+−1
q(x) + ‖u2‖q

−−1
q(x)

)
‖u1 − u2‖q(x)

≤ εc3

(
‖u1‖p

+−1
E + ‖u1‖p

−−1
E + ‖u2‖p

+−1
E + ‖u2‖p

−−1
E

)
‖u1 − u2‖E

+ cεc4

(
‖u1‖q

+−1
E + ‖u1‖q

−−1
E + ‖u2‖q

+−1
E + ‖u2‖q

−−1
E

)
‖u1 − u2‖E .

From this relation, it follows that Ψ(u) is a locally Lipschitz function on E.

Now, we fix u, v ∈ E. Since F is continuous, F ◦(x, u(x); v(x)) can be expressed as the

upper limit of
F (x, z + tv(x))− F (x, z)

t
,

where t → 0+ and z → u. Since E is a Banach space, there exist functions zn ∈ E and

numbers tn → 0+ such that

zn → u in E

and

Ψ◦(u; v) = lim
n→∞

Ψ(zn + tnv)−Ψ(zn)

tn
.

Without loss of generality, we suppose zn(x) → u(x) for a.a. x ∈ RN , as n → ∞. From

(3.5), we have

(3.7) |ω(x, u)| ≤ ε|u|p(x)−1 + cε|u|q(x)−1

for all ω(x, u) ∈ ∂F (x, u). We define gn : RN → R ∪ {+∞} by

gn(x) = −F (x, zn + tnv)− F (x, zn)

tn

+ |v|
[
ε
(
|zn|p(x)−1 + |zn + tnv|p(x)−1

)
+ cε

(
|zn|q(x)−1 + |zn + tnv|q(x)−1

)]
.

According to (3.7) it is easy to see that gn(x) is measurable and non-negative. From

Fatou’s lemma, we have

A =

∫
RN

lim sup
n→∞

[−gn(x)] dx ≥ lim sup
n→∞

∫
RN

[−gn(x)] dx = B.
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Set gn = −Cn +Dn, where

Cn =
F (x, zn + tnv)− F (x, zn)

tn
and

Dn = |v|
[
ε
(
|zn|p(x)−1 + |zn + tnv|p(x)−1

)
+ cε

(
|zn|q(x)−1 + |zn + tnv|q(x)−1

)]
.

Let dn =
∫
RN Dn dx. Then, B = lim supn→∞

(∫
RCn dx− dn

)
. From Hölder’s inequality,

we have the following estimation∣∣∣∣dn − 2

∫
R
|v|
(
ε|u|p(x)−1 + cε|u|q(x)−1

)
dx

∣∣∣∣
≤ 3ε(p+ − 1)2p

+−2 ‖v‖p(x)
{[
‖zn − u‖p(x)

(
‖zn‖p

−−2
p(x) + ‖zn‖p

+−2
p(x) + ‖u‖p

+−2
p(x) + ‖u‖p

−−2
p(x)

)]
+
(
‖zn − u‖p(x) + tn ‖v‖p(x)

)
×
[(
‖zn‖p(x) + tn ‖v‖p(x)

)p+−2

+
(
‖zn‖p(x) + tn ‖v‖p(x)

)p−−2

+ ‖u‖p
+−2

p(x) + ‖u‖p
−−2

p(x)

]}
+ 3cε(q

+ − 1)2p
+−2 ‖v‖q(x)

×
{[
‖zn − u‖q(x)

(
‖zn‖q

−−2
q(x) + ‖zn‖q

+−2
q(x) + ‖u‖q

+−2
q(x) + ‖u‖q

−−2
q(x)

)]
+
(
‖zn − u‖q(x) + tn ‖v‖q(x)

)
×
[(
‖zn‖q(x) + tn ‖v‖q(x)

)q+−2

+
(
‖zn‖q(x) + tn ‖v‖q(x)

)q−−2

+ ‖u‖q
+−2

q(x) + ‖u‖q
−−2

q(x)

]}
.

From Theorem 2.8, ‖zn − u‖p(x) → 0 and tn → 0+, we infer that the sequence {dn} is

convergent, with its limit being

lim
n→∞

dn = 2

∫
RN
|v|
(
ε|u|p(x)−1 + cε|u|q(x)−1

)
dx.

Then, we derive

B = lim sup
n→∞

∫
RN

[−gn(x)] dx = lim sup
n→∞

Ψ(zn + tnv)−Ψ(zn)

tn
− lim
n→∞

dn

= Ψ◦(u; v)− lim
n→∞

dn.

Furthermore, A ≤ A1 −A2, where

A1 =

∫
RN

lim sup
n→∞

Cn(x) dx, A2 =

∫
RN

lim inf
n→∞

Dn(x) dx = lim
n→∞

dn.

Then

A1 =

∫
RN

lim sup
n→∞

F (x, zn + tnv)− F (x, zn)

tn
dx

≤
∫
RN

lim sup
z→u,t→0+

F (x, z + tv)− F (x, z)

t
dx

=

∫
RN

F ◦(x, u; v) dx.

Thus, we complete the proof of Lemma 3.3.
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Lemma 3.4. If hypotheses (H1), (H2), (M1), (M2) and (F1)-(F5) hold, then I satisfies

the nonsmooth (PS)c.

Proof. Suppose that {un} ⊂ E be a sequence from E such that

(3.8) |I(un)| ≤ c5

and

(3.9) mI(un)→ 0

as n→ +∞. Assume ‖u‖E > 1 for convenience. From Lemma 3.2, we only need to show

that {un} is bounded in E. For every n ∈ N there exists u∗n ∈ ∂I(un) such that

mI(un) = ‖u∗n‖E∗ .

Clearly, (3.9) implies that

I◦(un;un) ≥ 〈u∗n, un〉E ≥ −‖u
∗
n‖E∗ ‖un‖E ≥ −θ ‖un‖E

for n large enough. From Lemma 3.3, (3.8), (M1), (M2) and (F5), for n large enough, we

have

c1 + 1 + ‖un‖E ≥ I(un)− 1

θ
I◦(un;un)

= M̂

(∫
RN

1

p(x)

(
|∇un|p(x) + V (x)|un|p(x)

)
dx

)
−
∫
RN

F (x, un) dx

− 1

θ
M

(∫
RN

1

p(x)

(
|∇un|p(x) + V (x)|un|p(x)

)
dx

)
×
∫
RN

(
|∇un|p(x) + V (x)|un|p(x)

)
dx− 1

θ
Ψ◦(un;−un)

≥
(

1− µ
p+

− 1

θ

)
M

(∫
RN

1

p(x)

(
|∇un|p(x) + V (x)|un|p(x)

)
dx

)
×
∫
RN

(
|∇un|p(x) + V (x)|un|p(x)

)
dx

−
∫
RN

(
F (x, un) +

1

θ
F ◦(x, un;−un)

)
dx

≥
(

1− µ
p+

− 1

θ

)
m0 ‖u‖p

−

E ,

where u∗n ∈ ∂I(un) and ωn ∈ ∂F (x, un). Noting that p− > 1, we conclude that {‖un‖E}
is bounded. The proof is completed.

Proof of Theorem 1.2. From Lemma 3.3 and noting that Φ(u) is continuous, we obtain

that the function I(u) is locally Lipschitz on E.
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Claim. There exist η > 0, ρ > 0 and e ∈ E such that

(3.10) I(u) ≥ η for all ‖u‖E = ρ

and

(3.11) ‖e‖E > ρ, I(e) < 0.

Firstly, it is easy to obtain

(3.12)

∫
RN

(
|∇u|p(x) +

(
V (x)− V −

2

)
|u|p(x)

)
dx ≥ 1

2

∫
RN

(
|∇u|p(x) + V (x)|u|p(x)

)
dx.

Set ε = m0V −

2 in (3.5). Then, there exists c6 > 0 such that

(3.13) |F (x, u)| ≤ m0V
−

2p+
|u|p(x) + c6|u|q(x)

for a.a. x ∈ RN and all u ∈ R. By virtue of (3.12), (3.13) and (M1), if ‖u‖E ≤ 1 we have

I(u) ≥ m0

p+

∫
RN

(
|∇u|p(x) + V (x)|u|p(x)

)
dx− m0V

−

2p+

∫
RN
|u|p(x) dx− c6

∫
RN
|u|q(x) dx

=
m0

p+

∫
RN

(
|∇u|p(x) +

(
V (x)− V −

2

)
|u|p(x)

)
dx− c6

∫
RN
|u|q(x) dx

≥ m0

2p+

∫
RN

(
|∇u|p(x) + V (x)|u|p(x)

)
dx− c6

∫
RN
|u|q(x) dx

≥ m0

2p+
‖u‖p

+

E − c7 ‖u‖q
−

E .

Since p+ � q, there exist η > 0 and ρ > 0 such that (3.10) holds.

In order to prove (3.11), we firstly prove

(3.14) tθF (x, u) ≤ F (x, tu) for all t > 1 and all u ∈ R.

Fix any arbitrarily u ∈ R. By virtue of the second chain rule, it follows that

∂tF (x, tu) ⊆ ∂F (x, tu)u

for all t > 0.

Since t 7→ t−θF (x, tu) (t > 0) is locally Lipschitz, we have

∂t(t
−θF (x, tu)) = −θt−θ−1F (x, tu) + t−θ∂tF (x, tu)

for all t > 0. Therefore,

(3.15) ∂t(t
−θF (x, tu)) ⊆ t−θ−1 [−θF (x, tu) + t∂F (x, tu)u]
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for all t > 0.

Next, set t > 1. From Lebourg’s mean value theorem and (3.15), there exists a

τ ∈ (1, t), such that

t−θF (x, tu)− F (x, u) ∈ ∂t(τ−θF (x, τu))(t− 1)

⊆ τ−θ−1 [−θF (x, τu) + τ∂F (x, τu)u] (t− 1).

Thus, there exists ξτ ∈ ∂F (x, τu) such that

t−θF (x, tu)− F (x, u) = −τ−θ−1 [θF (x, τu) + ξτ (−τu)] (t− 1).

Employing (F5), we have

t−θF (x, tu)− F (x, u) ≥ −τ−θ−1 [θF (x, τu) + F ◦(x, τu;−τu)] (t− 1)

≥ 0,

which deduces (3.14). When t > t0 > 0, by (M2) we can easily obtain

(3.16) M̂(t) ≤ M̂(t0)

t
1

1−µ
0

t
1

1−µ ,

where t0 is an arbitrary positive constant. For v ∈ E \ {0}, choosing t > 1, by virtue of

(3.14) and (3.16), one has

I(tv) = M̂

(∫
RN

1

p(x)

(
|t∇v|p(x) + V (x)|tv|p(x)

)
dx

)
−
∫
RN

F (x, tv) dx

≤ M̂
(∫

RN

1

p(x)

(
|t∇v|p(x) + V (x)|tv|p(x)

)
dx

)
− tθ

∫
RN

F (x, v) dx

≤ c8

(p−)
1

1−µ
t
p+

1−µ

(∫
RN

(
|∇v|p(x) + V (x)|v|p(x)

)
dx

) 1
1−µ
− tθ

∫
RN

F (x, v) dx

→ −∞

as t → +∞ (since θ > p+

1−µ). Note that I(0) = 0. So from the nonsmooth mountain pass

theorem, I possesses at least one nontrivial solution.

We will use the following nonsmooth fountain theorem to prove Theorem 1.3.

Since E is a reflexive and separable Banach space, there exist {ej} ⊂ E and
{
e∗j

}
⊂ E∗

such that

E = span {ej : j = 1, 2, . . .}, E∗ = span
{
e∗j : j = 1, 2, . . .

}
,

and 〈
ei, e

∗
j

〉
=

1, if i = j,

0, if i 6= j.

For convenience, we write Ej = span {ej}, Yk =
⊕k

j=1Ej and Zk =
⊕∞

j=k Ej .
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Definition 3.5. Assume that the compact group G acts diagonally on V k

g(v1, . . . , vk) = (gv1, . . . , gvk),

where V is a finite dimensional space. The action of G is admissible if every continuous

equivariant map ∂U → V k−1, where U is an open bounded invariant neighborhood of 0

in V k, k ≥ 2, has a zero.

Example 3.6. The antipodal action G = Z on V = R is admissible.

We consider the following situation:

(A1) The compact group G acts isometrically on the Banach space X =
⊕

m∈NXm, the

space Xm are invariant and there exists a finite dimensional space V such that, for

every m ∈ N, Xm ' V and the action of G on V is admissible.

The following lemma is very important when we use the fountain theorem to prove

infinite solutions for problem (1.1).

Lemma 3.7. If p(x) ≤ r(x)� p∗(x), then we have that

βk = sup
u∈Zk,‖u‖E=1

|u|r(x) → 0, k →∞.

Proof. It is obvious that 0 < βk+1 ≤ βk. So there exists β ≥ 0 such that β → β as k →∞.

We need to show β = 0. From the definition of βk, for every k ≥ 0 there exists uk ∈ Zk
such that ‖uk‖E = 1, 0 ≤ β − |uk|r(x) <

1
k . Then, there exists a subsequence of {uk},

which still denote by uk, such that

uk ⇀ u in E, and
〈
e∗j , u

〉
= lim

k→∞

〈
e∗j , uk

〉
= 0, j = 1, 2, . . . ,

which means that u = 0 and uk ⇀ 0 in E. Since the Sobolev embedding E ↪→ Lr(x)(RN )

is compact then uk → 0 in Lr(x)(RN ). Thus we obtain β = 0.

The following lemma comes from Theorem 3.1 in [10].

Lemma 3.8. Under assumption (A1), let I : X → R be an invariant locally Lipschitz

functional. If for every k ∈ N, there exist ρk > rk > 0 such that

(A2) ak = maxu∈Yk,‖u‖=ρk I(u) ≤ 0;

(A3) bk = infu∈Zk,‖u‖=rk I(u)→∞, k →∞;

(A4) I satisfies the nonsmooth (PS)c condition for every c > 0,

then I has an unbounded sequence of critical values.
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Proof of Theorem 1.3. From the Claim in the proof of Theorem 1.2, we have known that

I is a locally Lipschitz function on E. Considering of (F6), we can use the nonsmooth

fountain theorem with the antipodal action of Z2 to prove Theorem 1.3. Furthermore, by

Lemma 3.4, we already known that I satisfies the nonsmooth (PS)c. So we only need to

check the conditions of (A2) and (A3).

Verification of (A2). From Lemma 3.7, for u ∈ Zk with ‖u‖E ≥ 1, we have

(3.17)

∫
RN
|u|q(x) dx ≤ βk ‖u‖q

+

E .

Choose a constant c11 > 0 satisfying (3.13). Then, we consider the real functionH(r) : R→
R,

H(r) =
m0

2p+
rp
− − c11βkr

q+ .

By elementary calculus, it is easy to see that H attains its maximum value at

rk =

(
2c11p

+q+βk
m0p−

) 1
p−−q+

.

The maximum value

H(rk) =
m0

2p+

(2c11p
+q+βk

m0p−

) p−

p−−q+

− 2p+

m0
c11βk

(
2c11p

+q+βk
m0p−

) q+

p−−q+


=

m0

2p+

(
2c11p

+βk
m0

) p−

p−−q+

(q+

p−

) p−

p−−q+

−
(
q+

p−

) q+

p−−q+


=

m0

2p+

(
2c11p

+βk
m0

) p−

p−−q+
(
q+

p−

) p−

p−−q+
(

1− p−

q+

)
.

Since p− < q+ and βk → 0, we infer that

(3.18) H(rk)→ +∞ as k → +∞.

We also have rk → +∞. For u ∈ Zk, ‖u‖E = rk, employing (3.12), (3.13) and (3.17) we

have

I(u) ≥ m0

p+

∫
RN

(
|∇u|p(x) + V (x)|u|p(x)

)
dx− m0V

−

2p+

∫
RN
|u|p(x) dx− c11

∫
RN
|u|q(x) dx

≥ m0

2p+

∫
RN

(
|∇u|p(x) + V (x)|u|p(x)

)
dx− c11

∫
RN
|u|q(x) dx

≥ m0

2p+
‖u‖p

−

E − c11βk ‖u‖q
+

E

= H(rk).
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It follows from (3.18) that

bk = inf
u∈Zk,‖u‖E=rk

I(u)→ +∞

as k → +∞.

Verification of (A3). From (3.14), we have

F (x, tu) ≥ tθF (x, u)

for all t > 1. Therefore for any v ∈ Yk with ‖v‖E = 1 and 1 < t = ρk, from (3.16) we have

I(tv) = M̂

(∫
RN

1

p(x)

(
|t∇v|p(x) + V (x)|tv|p(x)

)
dx

)
−
∫
RN

F (x, tv) dx

≤ c12

(p−)
1

1−µ

(∫
RN

(
|t∇v|p(x) + V (x)|tv|p(x)

)
dx

) 1
1−µ
− tθ

∫
RN

F (x, v) dx

≤ c12

(p−)
1

1−µ
ρ
p+

1−µ
k

(∫
RN

(
|∇v|p(x) + V (x)|v|p(x)

)
dx

) 1
1−µ
− ρθk

∫
RN

F (x, v) dx+ c13.

Since θ > p+

1−µ and dimYk = k, setting u = tv, it is easy to see that I(u) → −∞ as

‖u‖ → +∞ for u ∈ Yk. Then, the results of Theorem 1.3 are obtained by the nonsmooth

fountain theorem.

4. Corollaries for a special problem

In this section we will give some typical consequences of Theorems 1.2 and 1.3. We discuss

the following special problem:

(4.1)


−
(
a+ b

∫
Ω

1
p(x)

(
|∇u|p(x) + V (x)|u|p(x)

)
dx
)

×div
(
|∇u|p(x)−2∇u− V (x)|u|p(x)−2

)
∈ ∂F (x, u) in RN ,

u ∈W 1,p(x)(RN ),

where a > 0 and b ≥ 0. Set M(t) = a + bt, t =
∫

Ω
1

p(x)

(
|∇u|p(x) + V (x)|u|p(x)

)
dx. It is

obvious that

M(t) ≥ a > 0.

Taking µ = 1
2 , we have

M̂(t) =

∫ t

0
M(s) ds = at+

1

2
bt2 ≥ 1

2
(a+ bt)t = (1− µ)M(t)t.

So the hypotheses (M1) and (M2) are satisfied. Therefore, corresponding to Theorems 1.2

and 1.3, we obtain the following corollaries.
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Corollary 4.1. If hypotheses (H1), (H2) and (F1)-(F5) hold, then problem (4.1) has at

least one nontrivial solution.

Corollary 4.2. If hypotheses (H1), (H2) and (F1)-(F6) hold, then problem (4.1) has a

sequence of weak solutions {±uk}∞k=1 such that I(±uk)→ +∞ as k → +∞.

Acknowledgments

The authors would like to thank the Editor-in-Chief, the associate editor and the anony-

mous reviewer for their valuable comments and constructive suggestions, which help to

improve the presentation of this paper.

References

[1] C. O. Alves and S. Liu, On superlinear p(x)-Laplacian equations in RN , Nonlinear

Anal. 73 (2010), no. 8, 2566–2579. http://dx.doi.org/10.1016/j.na.2010.06.033

[2] S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows,

Ann. Univ. Ferrara Sez. VII. Sci. Mat. 52 (2006), no. 1, 19–36.

http://dx.doi.org/10.1007/s11565-006-0002-9

[3] S. N. Antontsev and S. I. Shmarev, A model porous medium equation with variable

exponent of nonlinearity: existence, uniqueness and localization properties of solu-

tions, Nonlinear Anal. 60 (2005), no. 3, 515–545.

http://dx.doi.org/10.1016/j.na.2004.09.026

[4] T. Bartsch, A. Pankov and Z.-Q. Wang, Nonlinear Schrödinger equations with steep

potential well, Commun. Contemp. Math. 3 (2001), no. 4, 549–569.

http://dx.doi.org/10.1142/S0219199701000494

[5] K.-C. Chang, Variational methods for non-differentiable functionals and their applica-

tions to partial differential equalities, J. Math. Anal. Appl. 80 (1981), no. 1, 102–129.

http://dx.doi.org/10.1016/0022-247x(81)90095-0

[6] J. Chen, Multiple positive solutions to a class of Kirchhoff equation on R3 with indef-

inite nonlinearity, Nonlinear Anal. 96 (2014), 134–145.

http://dx.doi.org/10.1016/j.na.2013.11.012

[7] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image

restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383–1406.

http://dx.doi.org/10.1137/050624522

http://dx.doi.org/10.1016/j.na.2010.06.033
http://dx.doi.org/10.1007/s11565-006-0002-9
http://dx.doi.org/10.1016/j.na.2004.09.026
http://dx.doi.org/10.1142/S0219199701000494
http://dx.doi.org/10.1016/0022-247x(81)90095-0
http://dx.doi.org/10.1016/j.na.2013.11.012
http://dx.doi.org/10.1137/050624522


Solutions for a p(x)-Kirchhoff Type Problem with a Non-smooth Potential in RN 469

[8] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York,

1983. http://dx.doi.org/10.1137/1.9781611971309

[9] G. Dai, Infinitely many solutions for a differential inclusion problem in RN involving

the p(x)-Laplacian, Nonlinear Anal. 71 (2009), no. 3-4, 1116–1123.

http://dx.doi.org/10.1016/j.na.2008.11.024

[10] , Nonsmooth version of Fountain theorem and its application to a Dirichlet-

type differential inclusion problem, Nonlinear Anal. 72 (2010), no. 3-4, 1454–1461.

http://dx.doi.org/10.1016/j.na.2009.08.029

[11] G. Dai and R. Hao, Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math.

Anal. Appl. 359 (2009), no. 1, 275–284.

http://dx.doi.org/10.1016/j.jmaa.2009.05.031

[12] G. Dai and W. Liu, Three solutions for a differential inclusion problem involving the

p(x)-Laplacian, Nonlinear Anal. 71 (2009), no. 11, 5318–5326.

http://dx.doi.org/10.1016/j.na.2009.04.019
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