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Constructing Braided Hopf Algebras in Monoidal Hom-category

Miman You* and Shuanhong Wang

Abstract. In this paper, we first define the coquasitriangular monoidal Hom-Hopf
algebras. Secondly, we present a method to construct braided monoidal Hom-Hopf
algebras B and B in Yetter-Drinfeld category H (5 YDI) and H(y YD) respectively.
As applications, we study some special cases in both module and comodule form for
(H, £y ) being quasitriangular and for (H, £y ) being coquasitriangular respectively. Fi-
nally, we give some applications and examples of braided monoidal Hom-Hopf algebras

in this article.

1. Introduction

Hom-type algebras appeared first in physical contexts, in connection with twisted, dis-
cretized or deformed derivatives and corresponding generalizations, discretizations and
deformations of vector fields and differential calculus. The paradigmatic examples are g-
deformations of Witt and Virasoro algebras constructed in pioneering works (see [4,10414]).
In these examples, the authors used o-derivations which leaded to a twisted Jacobi iden-
tity (see [11,/12]). Motivated by these examples and their generalizations, Larsson and
Silvestrov in [13], introduced the notion of Hom-Lie algebras as a deforation of Lie alge-
bras in which the Jacobi identity is twisted by a homomorphism. Later, the concepts of
Hom-algebras, Hom-coalgebras, Hom-bialgebras, Hom-Hopf algebras and Hom-Lie alge-
bras were developed first in [19,[20].

The original definitions of Hom-bialgebra and Hom-Hopf algebra involve two different
linear maps « and [, with « twisting the associativity condition and 8 the coassociativity
condition. Afterwards, two directions of study were developed. One direction is to consider
the class of bialgebras for which § = «a. This class of bialgebras are also called Hom-
bialgebras and Hom-Hopf algebras (cf. [24,125]). The other one is called monoidal Hom-
bialgebras and monoidal Hom-Hopf algebras in monoidal Hom-category, initiated in [3],

where the map « is assumed to be invertible and f = a~!. Hom-Long dimodule category
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(see [9]), Yetter-Drinfeld module category (see [6,(15]) and generalized Yetter-Drinfeld
module (see [26]) have been studied for monoidal Hom-bialgebras and we will construct
braided monoidal Hom-Hopf algebras in these categories.

Braided Hopf algebras (braided groups) are Hopf algebras in the braided category of
Yetter-Drinfeld modules in [16H18|. Applications in physics include the spectrum generat-
ing quantum groups and the constructions of homogeneous quantum groups. Applications
in pure mathematics include the proof of Schur’s double centralizer theorems in [7,9], the
complete classification of all pointed Hopf algebras of dimension p? or p3 [1,2], and linearly
recursive sequences [21]. In [23] Wang presented a method to construct braided Hopf alge-
bras in Yetter-Drinfel’d category. There is a natural question arising: Can we use Wang’s
method to construct braided Hopf algebras in braided monoidal Hom-category?

We give an answer to this question in our paper, which is one motivation of this paper.
Another motivation is due to [1,2] and [8] in which the authors investigated braided Hopf
algebras of order p and the trace formulae respectively. Then it is natural to ask whether
there is an analogue of such properties for braided monoidal Hom-Hopf algebras, i.e.,
braided Hopf algebras in braided monoidal Hom-category.

This article is organized as follows. In Section [2, we will present the background
material, including the related definitions on monoidal Hom-Hopf algebras. In Section
we will define the notion of the coquasitriangular monoidal Hom-Hopf algebra.

In Section |4, we will consider two braided monoidal Hom-categories H (YD) and
7:2( g YD), and define one twisted algebra B for a bialgebra B which is both in 7:2(H ypi)
and H( g YDI). Then under suitable assumption, we show that B is a braided monoidal
Hom-Hopf algebra in 7:2( Hypgf ). Similarly, it is proved that there exists another braided
monoidal Hom-Hopf algebra B in H(z VD).

Section |5 is concerned with the conditions under which B and B above respectively
become braided monoidal Hom-Hopf algebras. At the end of the paper, we will give some

applications and examples of braided monoidal Hom-Hopf algebras.

2. Preliminaries

Throughout this paper, let k& be a fixed field. All vector spaces and tensor product are
over k unless otherwise specified. We refer the readers to the books of Sweedler [22] for
the related concepts on the general theory of Hopf algebras. Let (C,A) be a coalgebra.

We use the notation for A as follows:
Alc)=c1®co, VYecel.

Let My = (Mg, ®,k,a,l,r) denote the usual monoidal category of k-vector spaces

and linear maps between them. Recall from [3| that there is the monoidal Hom-category
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H(M}) = (H(M}),®, (k,id),a,1,7), a new monoidal category, associated with M, as

follows:

e The objects of H(My) are couples (M,&y), where M € My and &y € Auty (M

the set of all k-linear automomorphisms of M;

)7

e The morphism f: (M,&y) — (N,&n) in H(My) is the k-linear map f: M — N in

My, satisfying £y o f = f o &y, for any two objects (M, &yyr), (N, En) € H(My);

e The tensor product is given by
(M, &) ® (N,En) = (M ® N,{n ®@En)
for any (M, &), (N,En) € H(My);
e The tensor unit is given by (k,id);

e The associativity constraint a is given by the formula

AN =apnzo ((Ey@id)@¢ ) = (Ey @ (i[des™h)) camn.r,

for any objects (M, &), (N, En), (L,s) € H(My);

e The left and right unit constraint [ and 7 are given by

I =Exroly =l o (([d®Epy),  Far = Engora = rar o (Ear ®id)

for all (M, &) € H(Mp).

We now recall the following notions used later.

Definition 2.1. [3] A unital monoidal Hom-associative algebra is a vector space A to-

gether with an element 14 € A and linear maps
m: AR A— A; a®b— ab, &4 € Autg(A)

such that

£a(a)(be) = (ab)§a(c), Ealab) = Ea(a)éa(b),
aly =1aa =§a(a), &a(la) =14

for all a,b,c € A.

Remark 2.2. Let (A,€4) and (A, €4/) be two monoidal Hom-algebras. A monoidal Hom-
algebra map f: (A,£4) — (A’,€4/) is a linear map such that fo &y = a0 f, f(ab) =

f(a)f(b) and f(14) = 1a.
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Definition 2.3. 3] A counital monoidal Hom-coassociative coalgebra is an object (C,&¢)
in the category H (M) together with linear maps A: ¢ — C ® C, A(c) = ¢; ® ¢z and
e: C'— k such that

£t (e) @ Alea) = Aer) @ €5 M (e2),  Ale(e) = écler) ® Eo(ea),
cie(ea) = €51 (¢) = e(er)ea,  e(e(e)) = e(c)
for all c € C.
Remark 2.4. Let (C,&c) and (C',€cr) be two monoidal Hom-coalgebras. A monoidal

Hom-coalgebra map f: (C,&c) — (C’,&¢r) is a linear map such that f oo = &¢r o f,
Aof=(f®f)oAand e’ o f=ce.

Definition 2.5. [3] A monoidal Hom-bialgebra H = (H,&g, m,1p, A, ¢e) is a bialgebra
in the monoidal category ﬁ(/\/lk) This means that (H,&y, m,1y) is a monoidal Hom-
algebra and (H, &g, A, ¢) is a monoidal Hom-coalgebra such that A and e are morphisms
of algebras, that is, for all h,g € H,

A(hg) = A(h)A(g), A(lg) =1 ®1g, e(hg) =e(h)e(g), e(ly) =1.

Definition 2.6. [3] A monoidal Hom-bialgebra (H,&y) is called a monoidal Hom-Hopf
algebra if there exists a morphism (called antipode) S: H — H in H(My,) (ie., So &y =
&g o0 S), which is the convolution inverse of the identity morphism idg (i.e., S *id =
1y oe =idxS). Explicitly, for all h € H,

S(hl)hg = €(h)1H = hls(hz).

Remark 2.7. The antipode of monoidal Hom-Hopf algebras has almost all the properties
of antipode of Hopf algebras such as

S(hg) = S(9)S(h), S(lg) =1, A(S(h))=S(h2)® S(h1), e€o0S=¢

for all h,g € H. That is, S is a monoidal Hom-anti-(co)algebra homomorphism. Since g
is bijective and commutes with S, we can also have that the inverse 5191 commutes with
S, that is, S o 5;11 = 5;11 oS.

In the following, we recall the notions of actions on monoidal Hom-algebras and coac-

tions on monoidal Hom-coalgebras.

Definition 2.8. [3] Let (A,£4) be a monoidal Hom-algebra. A left (A, £4)-Hom-module
consists of an object (M,&yr) in ﬁ(Mk) together with a morphism ¢¥: A @ M — M,
¥(a ® m) = a-m such that

§ala) - (b-m) = (ab) - Epm(m), Em(a-m)=~Eala)-En(m), 1a-m=Eu(m)

for all a,b € A and m € M.
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Monoidal Hom-algebra (A,£4) can be considered as a Hom-module on itself by the
Hom-multiplication. Let (M, &) and (N, &n) be two left (A, {4)-Hom-modules. A mor-
phism f: M — N is called left (A, &4)-linear if f(a-m) =a- f(m), foly =&no f. We
denote the category of left (A, £4)-Hom modules by H(4Mp).

Definition 2.9. [3] Let (C,{¢) be a monoidal Hom-coalgebra. A right (C,¢{c)-Hom-
comodule is an object (M, &ys) in 7—~l(./\/lk) together with a k-linear map ppr: M — M QC,
pa(m) = my @ myp) such that

&1 (m)) ® Ac(mr)) = (moy0) ® my1)) ® 5" (m1)),
prr(Enr(m)) = Enr(mye)) ® Ec(m@y),  moye(m)) = & (m)
for all m € M.

(C,&c) is a Hom-comodule on itself via the Hom-comultiplication. Let (M, &) and
(N, €&n) be two right (C,&c)-Hom-comodules. A morphism ¢g: M — N is called right
(C,&c)-colinear if g o = v o g and g(m(o))~® my = g(m) ) ® g(m)a). The category of
right (C,~)-Hom-comodules is denoted by H(M®).

Definition 2.10. [6] Let (H,&x) be a monoidal Hom-bialgebra. A monoidal Hom-algebra
(B,&p) is called a left H-Hom-module algebra, if (B,{p) is a left H-Hom-module with

action - obeying the following axioms:
h-(ab) = (hi-a)(hy-b), h-1p=c¢c(h)lp
for all a,b € B, h € H.

Definition 2.11. [15] Let (H,{y) be a monoidal Hom-bialgebra. A monoidal Hom-
algebra (B,¢p) is called a right H-Hom-comodule algebra, if (B,&p) is a right H-Hom-

comodule with coaction p obeying the following axioms:
p(ab) = ayby ® amybay, p(lp) =1p® 1y
for all a,b € B, h € H.

Definition 2.12. [15] Let (H,&y) be a monoidal Hom-bialgebra. A monoidal Hom-
coalgebra (B,¢p) is called a left H-Hom-module coalgebra, if (B,£p) is a left H-Hom-

module with coaction - obeying the following axioms:
A(h-b):h1~b1®h2-b2, EB(h-b):€H<h)€B(b)

forall a,be B, h € H.
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Definition 2.13. [15] Let (H,{y) be a monoidal Hom-bialgebra. A monoidal Hom-
coalgebra (B,&p) is called a right H-Hom-comodule coalgebra, if (B,{p) is a right H-
Hom-comodule with coaction p obeying the following axioms:

b1(0) ® ba(o) @ bi(1yba(1) = by @ boy2 @ b1y,  €B(b))bay = ep(b)ln
for all a,b € B, h € H.

Definition 2.14. [6,/15] Let (H,m,A,{y) be a monoidal Hom-bialgebra. A left-right
Yetter-Drinfeld Hom-module over (H,&p) is the object (M, -, p,&y) which is both in
H(gM) and H(MH) obeying the compatibility condition:

(2.1) hi - moy ® hamry = (a1 (h2) - m) o) ® (€5 (S (h2) - m) 1)) 1.

Remark 2.15. (1) The category of all left-right Yetter-Drinfeld Hom-modules is denoted
by H(z YD) with understanding morphism.

(2) If (H,&m) is a monoidal Hom-Hopf algebra with a bijective antipode S, then the

above equality is equivalent to

p(h-m) = & (har) - moy ® (hoobf' (m1)))S ™" (h)

for all h € H and m € M.

There exist two prebraided monoidal structures on (g YD) as follows. Let (V,&y),
(W, &w) € H(gYDM). Forvow e V@ W and h € (H,£g), one structure is defined by

the following structure:

(2.2) h— (v®@w)=hy -v®h;-w,
(2.3) S(vow) =02 @w® @My,
(2.4) (v @ w) = v &t (w) @ v (),

and 7:2( aYDH) denotes the category 7:2( gYDH) which is equipped with the above pre-
braided monoidal structure. Then (V @ W, —, 8) is in H(z VD).

The other one is given by the following structure:

(2.5) h— (v®@w)="h-v® hy - w,
(2.6) S(vew)= V(0) ® W(g) ® W(1)V(1),
(2.7) Vaw (v ® w) = &w (w)) @ way - &' (v),

and H (VDY) denotes the category H (g YD) with the above prebraided monoidal struc-
ture. Then (V ® W, —, p) is in H(zYDL).
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Definition 2.16. [5] Let (A,£4) and (H, &) be two monoidal Hom-Hopf algebras. A
generalized Long dimodule is a quadruple (M, &y, —, p), where (M, &y, —) is a left H-

module, (M, &y, p) is a right H-comodule such that the following compatibility condition
holds:

(2.8) S(h = b) = &5t (h) — O @ €4 (b))

for all h € H and b € M. The category of H-Hom-bimodules over (H, {) will be denoted
by 7—7( g L£A) with morphisms being H-linear and H-colinear. Especially, when A = H we
get a Long dimodule category ﬁ( g L),

Definition 2.17. A quasitriangular monoidal Hom-Hopf algebra is a triple (H, &g, R),
where (H,&p) is a monoidal Hom-Hopf algebra over k and R = RY) @ R® ¢ H® H is

invertible such that the following conditions are satisfied (r = R):

(QT1) A(RW) ® R® = RW @ r) @ RA)r(),

(QT2) RM @ A(R®) = ROy @ +(2) @ RG),

(QT3) A®P(R) = RA(h)R™,

(QT4) (n ®&n)o R =R,

where A®P(h) = ho @ hy for all h € H. If R~ = R® @ R, then (H, &y, R) is called

triangular.
3. Coquasitriangular monoidal Hom-Hopf algebras

Definition 3.1. A coquasitriangular monoidal Hom-Hopf algebra is a triple (H, &g, (- | -))
where (H, £py) is a monoidal Hom-Hopf algebra over k and (- | -) : H®H — k is a k-bilinear
form which is convolution invertible such that the following conditions hold:

(CQT1L) (h | gl) = (k1 | 1) (h2 | g),

(CQT2) (hg | 1) = (k| 1) (g | l2),

(CQT3) (h1 | g1) haga = g1h1 (h2 | g2),

(CQT4) (- [)o(la®@&n) = |),

If (h1 | g1) (g2 | h2) = e(g)e(h) then (H,Ep, (- | -)) is called cotriangular.

Example 3.2. Recall from Example 2.5 in [26] that (Hy = k{1, 9,2z, 92 = —xg = y},&, A,

g,S5) is a monoidal Hom-Hopf algebra, where the algebraic structure is given as follows:

ol 1 g Ty

1] 1 g cr ¢y
gl g 1 cy cx
zlcx —cy 0 O
ylecy —cx 0 O
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5(1) = L f(g) =9, f(l’) = CT, 5(3/) =y,
Alg)=g®yg, A@)=c'zol)+c'(gez), Al)=cyeg) +c'(1oy),
e(g)=1, e(x)=¢e(y)=0, S(g =g, Sk)=-y, Sy ==

for all 0 # ¢ € k. Then (Hy, &, 0,) has a uniquely coquasitriangular structure, where oy,

is given by
oo |1 g r oy
111 1 0 0
g |1l -1 0 0
z [0 O a o
y 10 0 —a «

for a € k and % = 1.

Definition 3.3. A monoidal Hom-Hopf pairing (B, H) means a triple (B, H,T), where
(B,¢p) and (H,&p) are monoidal Hom-Hopf algebras and 7: B x H — k is a convolution

invertible bilinear form satisfying;:
(DP1) 7(ab, h) = 7(a, h1)7(b, ha),
(DP2) 7(a,hl) = 7(a1, h)7(asz,l),

(DP3) 70 (€n ® &n) =,
(DP4)
(DP5)

\]

DP4) 7(1p,h) = e(h)1,
DP5) 7(a,1y) = e(a)l,

for any a,b € B, h € H.
It is easy to see that (DP1) and (DP2) yield

(DP1)" 7= Y(ab, h) = 7= (a, ha)7~1(b, h1),
(DP2) 7(a, hl) = 7(a1,l)7(az, h),

for a,b € B, h,l € H.

Definition 3.4. Let (B,¢p) and (H,{y) be two monoidal Hom-bialgebras. A bilinear
form 7: B® H — k is called a skew pairing if

(SP1) 7(be, h) = 7(b, h1)7(c, ha),
(SP2) 7(b, gh) = 7(b1, h)7 (b2, g),
(SP3) 7(b, h) = r(€(b), £n (1)),
(SP4) 7(1p,h) = e(h), 7(b, 1) = e(b)
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for all b,c € B and g,h € H.

Let (C, &¢) be a monoidal Hom-coalgebra. The opposite coalgebra (C°P,&¢) is (C,&¢)
as a k-module with comultiplication given by A“P(¢) = ¢3 ® ¢ for ¢ € C. Suppose that
(H,&p) is a monoidal Hom-Hopf algebra with bijective antipode S (this holds if H is
quasitriangular or coquasitriangular). Then H°P and HP are both monoidal Hom-Hopf

algebras with antipode S~!.

Example 3.5. Let (B,H,7) be a skew-pairing monoidal Hom-Hopf algebras. Then
(B®P H,7) and (B, H°?, 1) are monoidal Hom-Hopf pairings.

Example 3.6. Let (H,{y,(-|-)) be a coquasitriangular monoidal Hom-Hopf algebra.
Then (H*P, H,(-|-)) and (H, H°P, (- | -)) are monoidal Hom-Hopf pairings.

Example 3.7. Let (H,&y) be a finite-dimensional monoidal Hom-Hopf algebra. Then
(H*,H, (- | -)) is a monoidal Hom-Hopf pairing, where H* is the dual monoidal Hom-Hopf

algebra and (- | -) is the evaluation map.
Dually, we define a dual R-Hom-Hopf algebra.

Definition 3.8. A dual R-Hom-Hopf algebra is a triple (B, H, R), where (B,&{p) and
(H, &) are two monoidal Hom-Hopf algebras and R = R®M @ R?) € B® H is an invertible
element such that the following identities hold (r = R):

(QT1) A(RW) @ R® = RM g r1) g ROp®),
(QT2) RV @ A(R®@) = ROy g @ g R

for all h € H. It is not hard to check that
R @ R® = §y(RM) @ Sy (R?) = 54 (RYW) @ R® = RM @ 5%(R?)

and

R =Sy(RWy o R® = RW @ Sy (RP).

Example 3.9. Let (B, H, R) be an R-Hom-Hopf algebras. Then (B, H®P, R) and (B°P,
H, R) are dual R-Hom-Hopf algebras.

Example 3.10. Let (H,R) be a quasitriangular monoidal Hom-Hopf algebra. Then
(H°?, H,R) and (H, HP  R) are dual R-Hom-Hopf algebras.

Example 3.11. Let (H,{y) be a finite-dimensional monoidal Hom-Hopf algebra. Let
{h;} and {h}} be dual bases of (H,&p). Then (H, H*, R) is a dual R-Hom-Hopf algebra,
where R =" | h; ® h.
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4. Braided monoidal Hom-bialgebras in ﬁ( nYDH)

Let (H,&p) be a monoidal Hom-Hopf algebra and (A, €4, -, d4) a monoidal Hom-algebra in
ﬁ( aYDI) where - and §4 is a left H-module structure and a right H-comodule structure
on A respectively. We define (A°,4) = (A4,£4) as linear space, with a twisted multipli-

cation given by

aob= "€ (a)ead”).
Proposition 4.1. (A°,£4,©) is an associative monoidal Hom-algebra.

Proof. Tt is easy to see that 14 is a unit of A°. As to associativity of *, one has

(aob)ofale) = (Eu(c™)-((€5' OM) - 3% ()b )5 ()

(o (00) - €51 (@) (€M) - 8O ()
S (V- €320) VM) - 31 (@) (€ (Va) - b)) )R ()
= (M- ﬁA < NP (@) - a)(Ea((eh - €1 (9) DA (OO
(M1 0)Ea@)D - a)eal(( eV - €31 (1)€a()) )
= &ala)o (V&5 (0)a(c))
= &la)o(boo).

This concludes the proof. O

Remark 4.2. That (A, €4, -,64) is a monoidal Hom-algebra in 7 (5 YD) is not a necessary
condition for (A® £4,¢) to be an associative Hom-algebra. This can be seen by (4.10) and
the proof of Theorem

Similarly, for any (A,&a,-,p) € ﬁ(HyDg) we define (A*,€4) = (A, &4) as linear space
with a twisted multiplication defined by

axb==Ea(a))(aq) €4 (D)),
and we have the following proposition.
Proposition 4.3. (A% {4, %) is an associative monoidal Hom-algebra.

Proof. Similar to that of Theorem O

Let (B, ¢, —, 8) be a monoidal Hom-algebra in H (g YDI) and (B, £, —, p) a monoidal
Hom-algebra in H (g YD) such that (B,&g,—, p) and (B, &g, —,8) are in H(gLH).

Now we assume that the following Conditions (A) are satisfied:
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Conditions (A):

(4.1) — (= b)=¢u(l) — (&4' () = 1),
(4.2) (h1 — b1) ® (ha = b2) = e(h)&p(b1) ® Ep(be),

(4.3) A(h —b) = (€5 (h) — b1) ® Ep(ba),
(4.4) A(h—b) = ¢p(b1) ® <5—1< ) — b2),
(4.5) () @ &5 (b)) ® bV = (00 gy @50 1)) @ 51 (M),
(4.6) (bi(0) ® b2') @ ba Wby 1) = (€5 <b1>®53 (b2)) © La,
(4.7) <b°>1®b<°>> ® & (01) = (00 @ £51 (b2)) @ b1V,
(4.8) 5" (b1) ® (bago) ® ba(1)) = (bioy1 @ beoy2) ® £ (bry),

for any b € (B,¢p) and h,l € (H,&x).
Then we define

(4.9) h—b=_E(h) — (ha — 5 (b)),
(4.10) axb= (bW - 51 (a)Ep(d?),
(4.11) x5(b) = €5(b0)?) ® & (b))boy ™,

for any h € H and a,b € B.

It is not hard to verify that (B,&p,—) is a left H-Hom-module, that (B,{p,xB)
is a right H-Hom-comodule, and that (B,{p,—, xp) is an object in ﬁ(HyDH). But
(B, &5, mp, —) is not a monoidal Hom-algebra in H (5 YDY). In fact, we have

h— (ab) En(hn) = ((hat — €5 () (has — €5 (1))

E) (@ (o) = Enlhis) — €51 (@) (Enlhn) = (has — €51 (1))
= (€ (h12) — a) (€ (hi1) — (haa — €5 (D))

7& (hl — a)(hg — b),

and this proves that (B,&p,—,0p) is not an H-Hom-module algebra. Thus we cannot
apply Proposition to (B,&p, mp,—). However, one can calculate:

¢p(a) x (bxc)

(D = €51 O)Ven (D)) = a)Ep((D — &5 (0) )RV )
((Er(cW2) = €510 ))(l)fH( W) = )(5 (€M) = 51 (0))ep(c?))
(((

@10) @3)

=
izl

& (cM1a) = (Wa — €52(0)) Ve (M) = a)(€a((€x(cM12)
= (Mg — &52(0) s D))
&1

(En(En(cP i) (e — 520)M) — a)(Ep(En (M)
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= (g — 52 (1))gp ()
((Er(cMi2) (Vg — 52 (0) V) — €5 () (R (W 11)
— &((c (1)2 — E52 (1) )))eR ()

(

<(<§H( "2)E 00) = G5t @) (ER () = (V2 — g5 (0)))ER ()
(M i) = (€ i) — (€5200) = GH@D)ER ()
- (e 2%31( MEB(E)

|
—~
Iy
m [\
—~
o

-~

—

~
=
DN
~
/\

en(cWar) — (€2 0W) — €53(a)))) (€% (V1)
— (Eu(cWag) — €51 0)))ER ()

DO
D!

(2-2)(2.5)

= (€ () = Eu(Ma) = (€7 0M) = 52 (@)&5" 0)))ER ()
S (eu (V) = (5 00) = €52(a)9))eB (D)
B xn) xeple),

and this proves that (B,{p,*) is an associative monoidal Hom-algebra with the unit 15.

Theorem 4.4. Let (H,&y) be a monoidal Hom-Hopf algebra and (B,£{p) a monoidal
Hom-bialgebra. Assume that (B, &g, —,0) is a monoidal Hom-algebra in H(g YD) and
(B, &g, —, p) is a monoidal Hom-algebra in H(z YD) such that both objects are in H(g L™).
If Conditions (A) hold, then (B,£p) is a bialgebra in H(g YD), where B = B is a linear
space and the coalgebra structure of (B,£g) coincides with that of (B,&g) and the multi-
plication is given by . The module and comodule structures are given by and
@11).

Proof. We show that (B, {p, —, ) is a left H-Hom-module algebra in H( rYDE) as follows.

h — (a*b)
CIED e (hy) = ((har — (65" 01) = €52(0))) (haz — b))
EAED (ep(hon) — iz — (65 (0D) = 657(@)(Er(ha2) — (hay — b))
S (lha) — (o = (01 = (61 (0D2) — €53(@)))) (Errhan)
— (h11 = b))
= (€r(har) — (€' (ha2)pOW — (51 0W) — €52(a)))) (Emr(haz)
— €p(€g (har) — b0 >>)
S (eulhan) — (65 (e = b)Y Dhny) = (65" 0W) — €52(a)))) (En (ha2)
— &p((hig — b(o))(ﬂ)))
1!

(((Em(haz) = B W hyy) = ((haéy' (0W)) — €5 () (he
— €5((Em(haz1) — b))
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= (a((Enlhum) = &' ) @) Vi) = (€5 (Erlhuz) = &5 (0)D)hia)
— €51 (a)))(h2 — €p(Ep((En(h2z) — €51(5)O)))

= ((Er((har — €5 1) PN h11) = (((har — €51 (1) V26, (h12)) — €51 (a)))
(€ (ha2) — Ep((har — €51 (0))@))

(((har = €5 B) Ve (1)) — @) €n(haz) — En((har — €5 () @))

S (hae — &5 (har = G5 ) Ve () = a)
€3 ((has — €5 (har — €5 (1))

= (= (6 () — 52 0) Vg () = )
€ ((har — (&5 (haz) — &57(0)© )

(€5 (h2) = €5 0) Ve (hn)) = a)R((Et (ha) — €5 (B))@)

(EI0)

(hl — a) * (h2 — b),

as required.
Then we check that (B,&p,*, xp) is a right H-Hom-module algebra in ﬁ(HyDg)
according to the equation (2.6)). In fact, one has

x5(a)xs(b) = (£(a)?) * (b)) @ (&5 (b1))bo) M) (€' (aq))a@y ™)
= (€a b)) = a0) ) (b)) ® (€5 (bay)ér (boy M) (ER" (a))aw)™),

on the other hand,

xB(a*b)
EIED (00 = 651 @)es ) 0) ) @ € (B0 = €51 (@)€s(BD)) 1))
(6D = £51(@)En(0)) )"
ERED e (6D f;(a))(m“)sza(b(“)( D) @ &M (€n (6 1) 6D = €51 (@) )
(6 = 651 (@) 0 es 0
) epenp® > <b<1>w£B @) €50
RE (En (0@ 1)) (€ (0 1) = (b1, _’§B (@) ))
(En(bVy) — <b<1>2 — &%) ) enb (0)(0)(1)))
&.3) 1) _ (pD) (0) ©) 0, (p1) —2
= (O = W2 — £5%(a))0) V€0V gy ) @ (0O 1y (02 — €5%(a)) 1))
(60 = (6 — £5%(2)) ) Ven (000 "))
1i

£8((&n (b)) = (€n (b)) — €5%(0) ) V€8 (b0 "))
@ (' (bm)(f (bo)™,) = €52(@) 1)) (€ (boy™ ) = (€n by,
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— €52(a)) () Vem by OM))
= (&4 by ) = (SH( 0",) = £5%(@))0) Vb))
®(€Bl(b(1 )(ﬁH(b(O) ,) = &57(a) )
(&3 (bo) M ) = (€ (b ))—f5]52(@))(0))(1)5%1(5(0)(1)11))
e £B<<5H<b<0)“>11> ~ (&b, — 2@ b))
® (&' (b)) Enboy",) — €52 (@) 1))
e (bioyV ) b0y V) — €5%(@)) 0 (”>
= sB«fH <b D) = €n W) — 57(@)0) "0 o))
& (0@ 1) (€5 ((€H(b(1)22)ﬁ53())(1))b( Jo1)
§H<(§H(b< 22) = E52(@) o))
2 e < 1>4<<l>2ﬁ5 (@)0) )5 )
®€H( ) ) (0W 22652 (@) (1)) Em (b1 21—/53()(0))(1)))
B (0™ = (6 0D12) — €52 N0 o)
@€ (bO ><<s;f< 12)E a)ao D)
<b<>ﬁa<><0>>53<b<°>(o>> (b0 1p D) (€57 (0 ay V)
1D

as required.

It is easy

(&r(boy M| = a@))Es(b0) ) @ (&' (b))€r ()™M )) (xR (aqy)ay ™),

to see that (B,&g, Ap,—) is a Hom-module coalgebra in # (g YD) by the

conditions (4.2)), (4.3) and (4.4). And by the formulae (4.6)—(4.8), (

left H-Hom-comodule coalgebra in H(yYDL).

Finally, using the braiding 7" in H(zYD4) (see (2.7)), we have a braided tensor
B:(a®b)(c®d) = aép(c)) @ (cay — ¢5*(b))d for any a,b,c,d € B. We

product B ®

will show tha

t Ap: B — B ® B is an algebra map. We compute:

Aplaxb) = (00 = 51 @)1 ) ® OV = €5 ()2t (002)
= (W1 = &5 M) ) ® (0My — €51 (a2))E(00)2)
= (m0On) = (0D — 2(@))Es(0® 1) © (Ex (D)
— (MW — €5%(a2)))Es(0",)
=00~ (€n Do) - féz(al)))ﬁB(b(O)l) ® (Er(bMan)
— (€ (6Wa12) = €5%(a2)))Ep(01Y2)
lb

(W1 = €5Ma)Ep(001) ® (62 — €51 (a2))Ep(6)2).

B,¢g,AB,XxB) is a

(W1 = e (6W21)€5" (a1)ep (1) © € (bW 2) — €5 (a2))Ep(02)



Constructing Braided Hopf Algebras in Monoidal Hom-category 1217

and
a1 *£5(Ep(b10)?)) ® (€5 (b11))broy™Y) = €5 (a2)) * be
= (E5(bioy )W — €5(a1))EB(EL(b10) ™) D) @ (b)) — €51 (€5 (dr11))bri)™)
— &5 (a2)))Ep(02?)
= (E5(b10) VM) = €51 (a1)E (b10) V) @ (&7 02V b11))br o))
— &5 (a2))€p(027)
S (0 O0) 5 G5 (@))EL 10190 ) @ (657 (021 OO 1)) (01 D))
— €5 (a2))€p(02)
= (3(tiM1) = €51 (@) 01 (0) @ (2 0a")ER (019 (1)1 y)
— &5 (a2))€p(02'7)
S (@001 = €M) — 52@))ER B0 0) © (€5 62D )b 1)1)
e (01W21)) = (€52 (1M (01 1)2))b1 D 2>ﬁs;2< 2))En (52 ®)
= (G0 ) = €M) — 2 a))ER 01O o) @ (b V1r(B:1@ 1))
— (b1 M) = (62002010 >>5H<< 2)) — €5°(a2))€n(02”)
B (@M y) = b )12) = €52(a1)))EB (51 (0) ® (2™ 1€ (51 1)1))
= (€2 M) e (019 (1)2))b1 WMag) — (b1 Mgy = €53(a2))))Ep(b2?)
= (M) = (& <bl<l>m>ﬁ§B( DRI ) @ (b2 1€ (01 1)1))
= (€57 1M )" (019 1)2))01 Wa2) — (£a (b1 Ma12) = €5°(a2))))€m(02)
&2 (Ea(01M1) = €5 (a))EB (019 ) @ ((b2M1€m (51 (11))
= (€2 M) (01D ) (1M 2)) — €5%(a2)))En(2)
060, = a0 10) ® (€x @2 )ErBO10))
— (€7 0" e 6112 (0V2)) — 657 (a2))eR (6O
= ) = G )00 ) © <5H<b<%”b<°>1<1>>14<<b<0>2‘”b<>1<1>>2
— (€72 0W2) — €5%(a))ER 02"
60~ G a)E 010 ® (6050, )
= (G (0M) — &5 <a2>>>53< ')
lb

(01 = €51 ()€ (0V1) @ (B2 — €5 (a2))p (02).
Hence (B,¢{p, A, ) is a monoidal Hom-bialgebra in 7—~[( g YD), concluding the proof. [

Similarly, we can make another definition as follows:

(4.12) h=b=¢Ep(h) — (hy = &5 (D)),
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(4.13) a*b=Eplag))(am) = &5 (b)),
(4.14) () = (b)) ® by ez (bry)-

In what follows, we replace (4.2) and (4.6]) in Conditions (A) by the following relations

(4.15) (hg — b1) ® (h1 — ba) = e(h)Ep(b1) @ EB(b2),
(4.16) bio) @ b2 @ by1yha™ = €51 (1) @ €5 (b2) ® 1.

Theorem 4.5. Let (H,&x) be a monoidal Hom-Hopf algebra and (B,{p) a monoidal
Hom-bialgebra. Assume that (B,{p,—,0) is a monoidal Hom-algebra in ﬁ(HyD{{) and
(B, &g, —, p) is a monoidal Hom-algebra in H( YD) such that both objects are in H (i L™).
If the conditions ,f, , , , hold, then (B,{p) is a bial-
gebra in ﬁ(HyD{{), where B = B is a linear space, the coalgebra structure coincides
with that of (B,&p) and the multiplication is given by . The module and comodule
structures are defined by (4.12) and (4.14).

Proof. Similar to that of Theorem O

Remark 4.6. The left Yetter-Drinfeld modules constitute the braided category ﬁ(gyp),
see |15]. Similarly, the right Yetter-Drinfeld modules constitute ﬁ(ypg) We have natural

identification of braided categories
H(zYDY') = H(ijen YD), H(aYD3') = H(YDifen).

Replace H by H°P, and identify H°»P with H via S: H =5 [opcop, Thus, if M
is an object in H(gor YD) with structures (h°,m) — h°Pm, H® @ M — M and
m— m©®@mM), M — M® H, then it becomes an object in ﬁ(g)ﬂ)) with the structures
given by

hm = S(h)°Pm, A(m) = S~{mM)y@m® e H® M.

Theorem [£.4] is translated as follows.

Let (B,{p) be a monoidal Hom-bialgebra. Suppose further that (B,£p) is an algebra
object in ﬁ(gyp) and also in H(YDH). Suppose that each pair of structures indicated
by

uBy, YBY. ,BY Hp,

commutes with each other, i.e., (B,{p) is an H-Hom-bimodule, H-Hom-bicomodule,
(B,¢p) € H(gLH), (B,ép) € H(P Ly). Denote the left and the right H-Hom-comodule
structures on (B, ¢p) by

AB) =D @b®, pb) =6 @b, (Vbe B),
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respectively, and suppose further that

&t (Wb ® Ep(be) = Ep(b1) @ bali (h), €5 (b1) ® A(b2) = p(b1) ® &5 (b)),
A(hb) = hb1 ® bo, A(bh) = b1 ® byh,
D) @ ADD) = A(br) ® Ep(ba), €5 (b) @ p(bg) = ABY) @ b,

where b € B, h € H. Then the coalgebra B becomes a bialgebra in ﬁ(ypg), the new

structures given as follows:

b h=(Sy' (h)E5" (0)Em (),
axb = (E5(a) « Sp(0V)es(0?)
= (En (O ) (Su (B (BOD)),
b— p(000) © Sy 0w OM ) B - Be H,

where a,b € B, h€ H.

Similarly, Theorem (.5 can be reformulated in a symmetric form, which will give a
construction of bialgebra in ﬁ(g)ﬂ?) These reformulated statements look simpler than

the original, although here one has to assume that the antipode S of H is bijective.

5. Braided monoidal Hom-Hopf algebras

Let (H,&y) be a monoidal Hom-Hopf algebra with a bijective antipode Sy, and (B,&p)
a monoidal Hom-Hopf algebra with a bijective antipode Sp. In this section we give a
sufficient condition for the braided monoidal Hom-bialgebras defined in Section [4] to be a
braided monoidal Hom-Hopf algebra. At first, we assume that the following Conditions (B)

are satisfied:
Conditions (B):

) Sp(h —b) = h — Sp(b),

) Sp(h —b) = 5% (h) = Sp(b),
) (Sp0) @ (Sp(d)™ = Sp(be) ® S5 (b)),
) (S1)) ) ® (SB1) 1) = Sp(1®) @ b,

Proposition 5.1. In the situation of Theorem . Assume that Conditions (B) hold.
Then (B, &5) has antipode in the category 7:2( aYDE) given by

g(b) = b(l) — SB(b(o))
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Proof. We need to prove that S is a morphism in H (g YD5). For this, we have

SAED e ((hy — 65" 0)) 1) = Sl — (ha — €5 (1)) o))

ERED ey (€ (ham) €5 (b)) (S5 € (o)1)
= (((n(ho22)€5r (b1y))2 (S €rr(har) )2)
B(gH (hl) ( 221 —/fB ( )))
H(h2221)&57" (b(1)1)) Sy € (hoi2)
— (((€n(ho222)€ 5 (b(1)2)) Sy € (h211))
— (&' (h1) — ( H2£H (hao1) = SBER (b))
= ((€a(ha21)bay) Sy €a(han))
— (a2t (b(1)2))<51:[1§;11(h12)§;11(hll)))
— (S5 (ha12) = SBES (bo))))
((€rr(h21)bay1) S (P1)) = ((€m(ha22)b(1)2)
— (SH gH (ha1) = SB&B (b(0)))
((h21by1) (Sy'€5" (h11)S5E " (h2))) — ((hazby2) — SB (b))
h — S(b),

)
)
1) E-2) en(e )
)

= N
Nzl 1=

and this proves that S is H-module map.

Also, one has

xB o S(b)
= ¢5((bay — Sebw))0)”) @ &' ((bay = Srb©)) 1)) (bay — S b)) 0"

BAED e ((en ) — (an — Spe5" Bo))o'") ® &7 (Enbay)
— (bt — Sa€s (o)) En Be) — Gy — 565 b))
D 5 (& (byem) — (€7 bay) = (55651 (b)) 0) )
@((b(1y222(SBER” (b)) (1)) S (b1y21)) (€Fr(bayzar) — (€57 (bay)
— (S&5" b))V
EAEs) E(En(bay221) — (5;11(5 1) — Spég! (b(o) ©))©)

®

¢
((b1y2226 77 by ™)) St (b(1)21))§B((§H( 1) = SBEG (bo) @)D
EAED 2 (b11om1) — (€ (bayinn) — Sp(b) ™))
2 (b€ (bio) ) S5 (b)) (bu22S72€5 (b0 @) S5 (b))
( )

= f b 221) (b(1)12ASB(b(0)( (0)))
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(& (b1)222)€ 5" (b)) (S (b1y212)b1)o11)
(S (00 1) 55"t (b))

00 0) — €O a2) = S50 0 0) © (Er O 112262 (6M))
(S;f(l»“( )8 5H<b< )
= €5 1y919) — (€5 (b 211) — SpEE (0 0)) ® (€m (6 (1)22)E57 (b))
(S §H( ) 111) S5 §H( )12))
= 4 (b )12) = (En (0 (1)11)—\5353( b 0)))®(§H(b(0)(1)2)§;11(b(1)))
Fouorst

completing the S is a morphism in ﬁ(H YD),
Using (4.6)), relation S(b1) * by = £(b)15 holds. We also have
by * S(ba) = ((ba1) = SB(bao))) ™ — €51 (51))EB((ba1) — SB(ba)) )

=" (€p((boyyy — SBER (ba))) — bl)fB(bz(nz
— (baqay1 = Sp&g" (b)) )

R ((fH(bz(1)22)5_2§1§1(52(0)(1)))571(52(1)1) — b1)(€m(ba1)2)

— (1 (bayiz) = SBER' (b2(0)(0))

= (€3 (bag)212) (S5 (bag1y11) S (ba(1y12)) — b1) (€77 (ba(1)22)
— (& (bory211) — 53531(52(0 )

= (Eh(bayz) — (Enlbaanz) = &' (01))) (R (baay22)
- (€H(b2(1)11) - SBfB (bz(o))))

EIEIED b1y = (b0)158(b(0)2))
= e(b)lp
This completes the proof. O

Similarly, we postulate the following
Conditions (C):

(5.5) Sp(h — b) = AsBa))

(5.6) Sp(h = b) = S;°¢5" (h) — Sp(b),
(5.7) (Sp(1) @ @ (Sp(b)) = Sp <b<o>>®b(1>,
(5.8) (SB(D))0) ® (SB() 1) = Se(0®) @ S;2(0W),

where S;IQ means (Sﬁl)z. Thus we have the following result similar to Proposition
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Proposition 5.2. In the situation of Theorem . Assume that Conditions (C) hold. If
(B,£p) has an antipode then (B, &p) has an antipode in the category H(z YD) given by

S(b) = b = Sp(b)).

Proof. The proof is similar to that of Proposition O

6. Applications and examples

In this section we give some braided Hopf algebras in the category ?-Nl( gM) for a quasi-
triangular monoidal Hom-Hopf algebra (H, ) and in the category 7-[(MH ) for a coqua-
sitriangular monoidal Hom-Hopf algebra (H,&y).

When (H,&y, R) is quasitriangular, the category H(gM) of left H-modules is a

braided monoidal category endowed with the following structures:

' (m®@n) =y (RP) - &5 (n) @ €y (RW) - &5 (m),
h-(m®n)=h-m®hy-n

for all objects (M, &), (N, EN) € ﬁ(H./\/l), and m € M, n € N, h € H. Moreover define
p: M — M ® H by
p(m) = R 7 (m) © €a (RD).
It is easy to see that M becomes an object in H(gYDL). Thus H(z YD) contains
H(zM) as its subcategory. Now we denote H(gMs) = H(gM).
Similarly, we have a braided monoidal subcategory H(yMi) = H(gM) with the

structures:
T(m@n) = Ea(RY) - ¢3! (n) @ & (RP)) - &3/} (m),
h-(m@n) = (hy-m)® (hy-n).

Moreover ﬁ( g M) is a subcategory of ﬁ( g YDI) under the coaction

p(m) = R - &2 (m) @ £y (RW).

When (H,&m, (- | -)) is a coquasitriangular monoidal Hom-Hopf algebra, the category
H(z VDY) contains this braided monoidal subcategory 77[(./\/151 ) which is endowed with

the following structure:
he-m = (&' (h) | mqy) Emr(m)),
™ m@n e (ngy | may) ney ® m),

p(m @n) =mg) @ng) @ nayma)
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for any m € (M, &) € ﬁ(Mg) and n € (N,&nN) € ﬁ(/\/lf)
Similarly, we have a braided monoidal subcategory 7—7(./\/1{] ) armed with the following

structure:
heom = (g5 (h) | m®) ear(m®),
T men— <m(1) | n(1)> N0y ® M),

p(m@n) =m® @n® gm®nl

for any m € (M, &y) € H(MIT) and n € (N, ¢y) € H(ME).

In what follows, we construct two classes of braided monoidal Hom-Hopf algebra in
the categories H(zM,), H(gMa), and H(MI), H(MI).

Let (H,&m,R) be quasitriangular monoidal Hom-Hopf algebra and (B, H,T) be a
monoidal Hom-Hopf pairing. We define

h—b=1(S(b1), &5 (h)E%(ba),
h— b=7(ba, &5 (1))ER (br)

for all b € (B,&p), h € (H,&x). In H(ME), it is natural that §(b) = (R® — ¢52(b)) ®
£r(RW) €50 @60 and p(b) = (R®) — €52(0) ® €1(RY) < bgy ® by

It is easy to verify that (B,{p,—,d) is an algebra in ﬁ(HyD{I) and (B,&p,—,p) is
an algebra in ﬁ(Hny) Obviously, (B,¢p,—,p) and (B,{p,—,d) are objects in Long

dimodule category H(zLH).

Thus by (4.9)—(4.10) and Proposition we obtain

(6.1) h—b=¢&p(hy) = (ha — £51 (b)) = T(SEp(b11)ba, h)ER (b12),
axb= 0 = ¢5'(a)ép(0®)

= 7(S(a11)€5" (az), En (RM))Eh (a12)€(b2) T(SEZ (1), RP),
(6.3) S(b) = b — Sp(b)) = (b2, RP)(RY — Sp(by))

(6.2)

for all a,b € (B,¢p) and h € (H,{y).

We now have the following:

Theorem 6.1. Let (H,&p, R) be quasitriangular. With the notations above, there exists
a braided monoidal Hom-Hopf algebra (B,¢p) in H(gMs), where B = B is a linear
space with a module structure given by . The coalgebra structure and unit of (B, &g)
coincide with that of (B,£p). The multiplication is given by and the antipode is given

by .

Proof. First, in order to apply Theorem [4.4] we need to verify Conditions (B) hold. A
routine computation shows that the conditions (4.1)—(4.4) are satisfied. Then by definition
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and (4.1)), we have

(b)) @ &5 (M) @ &5 (b))
— (R(2) _ 5152([,))(0) 2 RY (R(Q) 552(1)))(1)
=) < <R<2>> 5@ RV e er(rV)  (by (QT4) and (EI))
= &' (RP)) — 2 (r® (b))®R” rit)
= &5 (RP )_’fH(b e R e W)
:(b(o)(0)®b( (1))®5H ( )7

and the formula (4.5)) is proved.

The following computation

bi(o) ® 5,0 ® b2(1)bl(1) — (T(Z) _ §]§2(b1)) ® (R(z) _ §§2(b2)) ®§H(R(1)r(1))
= (R®) — &2(b1)) ® (R®y — £52(by)) ® £y (RD)
= en(R)e5 (01) @ 5" (b2) @ €u(RY)
=5 () @ &5 (be) ® 1,

shows the equation (4.6]).
Then, using (4.3]), we can obtain:

b1 2 b0y @ et (bV) = <R<2>453<>> ® (R® = &5°(b)2 @ RV
= (5" (R®) = £52(b)) ® &5 (b2) ® R

<R<2> —&5%(0) ® &5 (b2) @ € (RM)
b

0 & ¢35 (be) @ by D,

and this proves (4.7), and similarly, one has ([£.8)). It is easy to get that S(b) =

Sg(boy) = T(£5" (b2), R?)(€a(RW) — Sp&y' (b))
Finally, it is not hard to check that Conditions (B) hold, concluding the proof.

Let (H,&m) be quasitriangular and (B, H, 7) a monoidal Hom-Hopf pairing. Similarly,
we can define h — b = 771(by, &5 (1))E3(b2) and h — b = 771(S(b2), &5 (R))E%(by) for
all b € (B, 53) € (H,&y). In H(gMyi), it is natural that we have §(b) = R® —

€57 (b) @ €g(RM) = b ®b<” and §(b) = R® — ¢52(b) @ €1 (RW) = b(o) @ by
Thus, by (4.12] -f and Proposition we have

(6.4) h=b=¢&y(hy) — (ha = €51 (0)) = 771 (b1SB(ba), h)Ep(bar),

axb=&p(ap)(aq) = £5'(0))

6.9
( ) = Tﬁl(SB(ag), R(2))a1b21771(b153(b22),§H(R(1))),
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(6.6) S(b) = bV = Sp0@) = 771(by, RP)(RW = Spezt(by))

for all a,b € (B,{p) and h € (H,&x).

We now have the following:

Theorem 6.2. Let (H,{y) be quasitriangular. With the notations f above, there
exists a braided monoidal Hom-Hopf algebra (B, ¢p) in H(g M), where B = B is a linear
space with module structure given by . The coalgebra structure and unit in (B,{p)
coincide with that of (B,&p). The multiplication is given by and the antipode is given

by .

Proof. Similar to Theorem [6.1] O

Let (H,&m,(-|+)) be coquasitriangular and (B,{p) a monoidal Hom-Hopf algebra.
Assume that f: B — H is a monoidal Hom-Hopf algebra map. Define 6(b) = by ®
St (1) €O @ b0 and p(b) = by @ f(b2) & by ® by for b € (B,&p). Then we have
b= b= (65 () | S5 F(b1)) €3(b2) and b — b= (€5 (B) | F(b2)) €(00) for h € (H.Em).
b € (B,&g). Tt is easy to check that (BP,¢p,—,6) is an algebra in H (YD), and
(B, ¢{p,—,p) an algebra in ﬁ(Hypgf) such that (B°P,{p,—,p) is in ﬁ(HﬁH), and
(B, ¢g,—,0) is in H(gLT).

Then by 1) and Proposition one has
(67 x() = &b ) @ &5 (0a)bo)) = Ep(b12) @ F€5" (b2) Sy f(b1),
axb= (" = &5 (a)ep(b?)

= (Sy' f(br) | f€5" (a2) Sy fan)) € (a12)€m(b2),
(6.9) S(b) = by = SB(be)) = (f(b2) | fSB(b11) fEn(br122)) SBER (b121)

(6.8)

for all a,b € (B,{p) and h € (H,&x). Tt is easy to show that Conditions (A) and (B) are
satisfied, and so by Theorem [£.4] and Proposition we have:

Theorem 6.3. Let (H,&g, (- | -)) be coquasitriangular and (B,&p) a monoiodal Hom-Hopf
algebra. Let f: B — H be a monoidal Hom-Hopf algebra map. Then there is a braided
monoidal Hom-Hopf algebra (B,¢g) in H(MY), where B = B is a linear space with H-
comodule structure given by . The coalgebra structure and counit in (B,&R) coincide
with that of (B,&p). The multiplication is given by and the antipode is given by
69).

Let (B,&g) be any monoidal Hom-bialgebra and f: H — B be a monoidal Hom-
bialgebra map. If f is a convolution invertible map with an inverse f~', then f~': H — B
is an anti-Hom-bialgebra map, i.e., f~1(hl) = f~H(1)f~(h) and Apf~(h) = f~1(h) ®
fH(h).
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Example 6.4. If (H, £y) is a monoidal Hom-Hopf algebra, then f~! = fSp is convolution

invertible.

Similarly, let (H,&g, (- | -)) be coquasitriangular and (B,{p) a monoidal Hom-Hopf
algebra. Let f: B — H be a monoidal Hom-Hopf algebra map. Define 6(b) = by ®
Sufbr) E 00 @D and p(b) = by @ f(bs) X by ® by for b € (B,¢p). Naturally,
we get: h — b = (€51 (h) | Suf(b))E4(be) and h — b = (&' (h) | f(b2)) % (b1) for
h € (H,&g), b € (B,&g). It is easy to check that (B, ¢, —,08) € H(gYDY) is a
monoidal Hom-algebra and (B, g, —, p) € H(zYD4) is a monoidal Hom-algebra such
that (B°P,&p,—, p) is in H(z L) and (B, &, —,8) is in H(gLH).

Thus by (4.13), (4.14) and Proposition one has

(6.10) (B(b) = €p(b) ") ® by Veg" (b)) = Ep(bi2) © Sif (bin) fép(ba),
oay =Sl - G10)

= (f(a2) | 5Hf§B Y(b1) f(b22)) €p(a1)éR(bal),
(6.12) S(b) = b = Sp(b) = (Suf(br) | FE51 (ba2) £ Sp (a1 )) SEER (b212)

for all a,b € (B,¢p) and h € (H,&x).

Finally, it is not hard to see that (4.1), (4.3)-(4.5), (4.7), (4.8), (4.15), (4.16) and

Conditions (C) are satisfied. By Theorem and Proposition we have

Theorem 6.5. Let (H, &y, (- | -)) be coquasitriangular and (B,&p) a monoidal Hom-Hopf
algebra. Let f: B — H be a monoidal Hom-Hopf algebra map. Then there is a braided
monoidal Hom-Hopf algebra (B,&R) in 7:2(./\/1{[), where B = B s a linear space with H-
comodule structure given by . The coalgebra structure coincides with that of B. The
multiplication is given by and the antipode is given by .

By Theorem we give an example explicitly as follows.

Remark 6.6. If (H,&x, R) is a quasitriangular monoidal Hom-Hopf algebra, so is (HP, {f)
with the quasitriangular structure R = R® @ R, The braided category H(zM,) is
identified with (zreor M3), and hence with (M gbops), the second kind braided category
of right modules over HP := (H°P)°P, In addition, if 7: B ® H — k is a monoidal
Hom-Hopf pairing, so is 77!: B® HPP — k, as shown by (DP1)’ and (DP2)’. Therefore,
it is not hard to check that Theorem [6.2] follows from a variation of Theorem [6.1] which

gives a construction of monoidal Hom-Hopf algebras in 7?[(/\/1 H2)-

Example 6.7. In Example when ¢? = 1, (Hy,§) is also a quasitriangular monoidal
Hom-Hopf algebra with

1 «
Ra:5(1®1+1®g+g®1—g®g)+§(x®x—x®y+y®x+y®y).
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Then two actions (Hy, &) on (HP,€) are respectively defined by

- 11 g z Y — 11 g x Y
111 ¢ cT cy 111 g cx cy
gll —g cx —cy and gll —g —cx cy
z |0 O ag al z |0 O al —ag
y |0 0 —ag al y |0 O al ag

Thus, by the formula (6.1]), (H;°",€) is a left Hy-module where the Hy-module struc-

ture is given by

— 11 g T Y
111 ¢ cT cy
gll g —cx —cy

z |0 0 a(l+cg) ofl+cg)
y |0 0 a(l+cg) a(l+cg)

By the equation (6.2]), the multiplication on (H;?, ) is obtained by the following table

* |1 g T Y
111 g cT cy
glg 1 (0 x
vz ey —-ad(ct+g) oP(1+clg)
y|ly —cx —ad(ctl4+g) a3(1+clg)

Therefore, by Theorem (6.1} (Hy, &, A%, %) is a braided monoidal Hom-Hopf algebra
in H (g, Mz). Its antipode is defined by

S)=1, Sg =g Sk)=y S ==
Similarly, applying Theorem we have

Example 6.8. Let (Hy, &) be the Sweedler’s 4-dimensional monoidal Hom-Hopf algebra.
Then (Hyg, &, A%Y,%) is a braided monoidal Hom-Hopf algebra in H (g, M1). Its antipode
is defined by

S =1, S(g =g S@)=-c"'1+y), S =-c'=z

The Hj-module structure and the multiplication on (H;’) is given respectively by the

following tables
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11 g x Y

111 ¢ clz c 1 +y)

g|1l g —clz —c 1 +y)

|0 0 cla(l+yg) —ayg

y |0 0 —cla(l+yg) ag
— |1 g x Y
1|1 g clz cl(1+y)
9|9 —y —(c g+ )
r|x —cly cltad(l4+g9) —-a*(1+yg)
y |y —cx clad(l4+g) —-a3(1+g)

Remark 6.9. In Example our two Hy-module structures associated to the Hy-module

structures > are given by respectively

-1 g =z Y — |1 g x Y
111 g ccx cy 111 g cx oy
g |l —g cx —cy and g |l —g —cx cy
z |0 0 ag —oal z |0 O al  ag
y |0 0 ag al y |0 0 —al ag
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