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b-coloring of Cartesian Product of Trees
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Abstract. A b-coloring of a graph G with k colors is a proper coloring of G using k

colors in which each color class contains a color dominating vertex, that is, a vertex

which has a neighbor in each of the other color classes. The largest positive inte-

ger k for which G has a b-coloring using k colors is the b-chromatic number b(G)

of G. The b-spectrum Sb(G) of a graph G is the set of positive integers k, χ(G) ≤
k ≤ b(G), for which G has a b-coloring using k colors. A graph G is b-continuous if

Sb(G) = {χ(G), . . . , b(G)}. It is known that for any two graphs G and H, b(G�H) ≥
max {b(G), b(H)}, where � stands for the Cartesian product. In this paper, we deter-

mine some families of graphs G and H for which b(G�H) ≥ b(G)+b(H)−1. Further if

Ti, i = 1, 2, . . . , n, are trees with b(Ti) ≥ 3, then b(T1� · · ·�Tn) ≥
∑n

i=1 b(Ti)−(n−1)

and Sb(T1� · · ·�Tn) ⊇ {2, . . . ,
∑n

i=1 b(Ti)− (n− 1)}. Also if b(Ti) = ∆(Ti) + 1 for

each i, then b(T1� · · ·�Tn) = ∆(T1� · · ·�Tn) + 1, and T1� · · ·�Tn is b-continuous.

1. Introduction

All graphs considered in this paper are finite, simple and undirected. A b-coloring of

a graph G is a proper coloring of G in which each color class has a color dominating

vertex (c.d.v.), that is, a vertex that has a neighbor in each of the other color classes.

The b-chromatic number b(G) of G is the largest k such that G has a b-coloring using

k colors. For a given b-coloring of a graph, a set of c.d.v.’s, one from each class, is

known as a color dominating system (c.d.s.) of that b-coloring. A k-stable dominating

system denotes a b-coloring using k colors containing a color dominating system which is

independent. Recently, there has been an increasing interest in the study of b-coloring. See,

for instance, [7,10–15]. The concept of b-coloring was introduced by Irving and Manlove [9]

in analogy to the achromatic number of a graph G (which gives the maximum number of

color classes in a complete coloring of G [8]). They have shown that the determination

of b(G) is NP-hard for general graphs, but polynomial for trees. From the very definition

of b(G), the chromatic number χ(G) of G is the least k for which G admits a b-coloring

using k colors. Thus χ(G) ≤ b(G) ≤ 1 + ∆(G), where ∆(G) is the maximum degree of G.
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While considering the hypercube Q3, it is easy to note that Q3 has a b-coloring using

2 colors and 4 colors but none with 3 colors. Thus a statement similar to the interpolation

theorem for complete coloring [8] is not true for b-coloring. Graphs G for which there

exists a b-coloring using k colors for every k ∈ {χ(G), . . . , b(G)} are known as b-continuous

graphs. From the time of its introduction, there had been several papers on b-continuity

of graphs [4–6]. Some of the known families of graphs which are b-continuous are chordal

graphs (which include trees), cographs and P4-sparse graphs [4, 5]. The b-spectrum of a

graph G, denoted by Sb(G), is defined by:

Sb(G) = {k : G has a b-coloring using k colors} .

Clearly Sb(G) ⊆ {χ(G), . . . , b(G)} and G is b-continuous iff Sb(G) = {χ(G), . . . , b(G)}.
The Cartesian product of two graphs G = (V1, E1) and H = (V2, E2), denoted by

G�H, has vertex set V1 × V2, and two vertices (x1, y1) and (x2, y2) are adjacent in G�H

iff either x1 = x2 and y1 is adjacent to y2 in H, or y1 = y2 and x1 is adjacent to x2 in G.

This paper deals with the b-chromatic number of Cartesian products of graphs. The

study of the b-chromatic number of Cartesian product of graphs was initiated by Kouider

and Mahéo in [13] wherein they have proved the following results.

Theorem 1.1. (M. Kouider and M. Mahéo [13]) For any two graphs G and H, b(G�H) ≥
max {b(G), b(H)}.

Theorem 1.2. (M. Kouider and M. Mahéo [13]) Let G and H be two graphs such that G

has a b(G)-stable dominating system, and H has a b(H)-stable dominating system. Then

b(G�H) ≥ b(G)+b(H)−1, and the graph G�H has a (b(G)+b(H)−1)-stable dominating

system.

The above result can be generalized as follows (with the same proof).

Observation 1.3. Let G and H be two graphs such that G has a k-stable dominating

system, and H has an `-stable dominating system. Then G�H has a (k + ` − 1)-stable

dominating system.

One of the main problems concerning b-colorings is to completely characterize those

graphs G and H for which b(G�H) = max {b(G), b(H)}. Equivalently, one has to charac-

terize those graphs G and H for which b(G�H) > max {b(G), b(H)}. Theorem 1.2 gives

one such family. In [1, 2], we found a few more classes of graphs G and H for which

b(G�H) ≥ b(G) + b(H)− 1. These include odd graphs. In particular, we have proved for

odd graphs Oki , 1 ≤ i ≤ n and ki ≥ 4 for each i, Ok1�Ok2� · · ·�Okn is b-continuous and

b(Ok1�Ok2� · · ·�Okn) = 1 +
∑n

i=1 ki.

In this paper, we prove that if Ti is a tree with b(Ti) ≥ 3, for 1 ≤ i ≤ n, then

b(T1� · · ·�Tn) ≥
∑n

i=1 b(Ti)−(n−1) and Sb(T1� · · ·�Tn) ⊇ {2, . . . ,
∑n

i=1 b(Ti)− (n− 1)}.



b-coloring of Cartesian Product of Trees 3

Also if b(Ti) = ∆(Ti) + 1 for each i, then b(T1� · · ·�Tn) = ∆(T1� · · ·�Tn) + 1, and

T1� · · ·�Tn is b-continuous.

2. b-coloring of Cartesian product of trees

We start with the following observation from [2].

Observation 2.1. (i) If G has a b-coloring using k colors and H has a b-coloring using `

colors with k ≤ `, then G�H has a b-coloring using ` colors (and hence b(G�H) ≥ `).

(ii) If G and H are b-continuous graphs, then

Sb(G�H) ⊇ {χ(G�H) = max {χ(G), χ(H)} , . . . ,max {b(G), b(H)}} .

In particular, if G and H are b-continuous and b(G�H) = max {b(G), b(H)}, then

G�H is b-continuous.

We now give a lower bound for the b-chromatic number of the Cartesian product of

trees. First we recall a lemma given by Kratochv́ıl, Tuza and Voigt [12] on connected

graphs G with b(G) = 2. Let G be a bipartite graph with bipartition X and Y . A vertex

x ∈ X (y ∈ Y ) is called a full vertex (or a charismatic vertex) of X (Y ) if it is adjacent to

all the vertices of Y (X).

Lemma 2.2. [12] Let G be a non-trivial connected graph. Then b(G) = 2 iff G is bipartite

and has a full vertex in each part of the bipartition.

Observation 2.3. For trees T with b(T ) ≥ 3, P5 is an induced subgraph. Any P5 can be

given a b-coloring using 3 colors in which the three middle vertices are c.d.v.’s of distinct

color classes. Moreover this b-coloring of P5 can be extended to a b-coloring of T using the

same three colors. Thus for trees with b(T ) ≥ 3, there exists a b-coloring using 3 colors

for which we have a c.d.s. forming a star.

We use this fact in the proof of the next theorem.

Theorem 2.4. Let T1 and T2 be any two trees with b(T1), b(T2) ≥ 3, then b(T1�T2) ≥
b(T1) + b(T2) − 1 and {2, . . . , b(T1) + b(T2)− 1} ⊆ Sb(T1�T2). In particular, if b(T1) =

1 + ∆(T1) and b(T2) = 1 + ∆(T2), then T1�T2 is b-continuous.

Proof. By Observation 2.1, T1�T2 has a b-coloring using s colors, for every s ∈ {2, . . . ,
max {b(T1), b(T2)}}. Hence all that remains is to show that T1�T2 has a b-coloring using s

colors for s ∈ {max {b(T1), b(T2)}+ 1, . . . , b(T1) + b(T2)− 1}, where max {b(T1), b(T2)} +

1 ≥ 4. As already mentioned in the introduction, trees are b-continuous and hence it

suffices to show that if T1 has a b-coloring using k colors and T2 has a b-coloring using `
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colors and if b(T1) ≥ k ≥ 2 and b(T2) ≥ ` ≥ 3, then T1�T2 has a b-coloring using k+ `− 1

colors.

Let g be a b-coloring of T1 using k colors with S = {x0, x1, . . . , xk−1} as a c.d.s. Also

let h be a b-coloring of T2 using ` colors with S∗ = {y0, y1, . . . , y`−1} as a c.d.s. Clearly,

〈S〉 and 〈S∗〉 are forests. Let Ui denote the color class of g containing xi, 0 ≤ i ≤ k − 1

and Vj denote the color class of h containing yj , 0 ≤ j ≤ ` − 1. Set X = V (T1) \ S and

Y = V (T2) \ S∗. Let us first consider k, ` ≥ 4.

If both S and S∗ are stable, then by Observation 1.3, T1�T2 has a b-coloring using

k + ` − 1 colors. If not, at least one of S or S∗ is not stable. Without loss of generality,

let S∗ be the set that is not stable. As 〈S〉 is a forest, there exists at least one vertex, say

x0, such that dS(x0) ≤ 1. In what follows, we assume that whenever dS(x0) = 1, then the

neighbor of x0 is x1 in 〈S〉. While considering S∗, we have the following two cases.

Case 1. 〈S∗〉 is a star with center at y0.

As T1 is a tree, it is a bipartite graph with bipartition, say, S0 and S1. Without loss of

generality, let x0 ∈ S0 and x1 ∈ S1. We shall construct a b-coloring, say, c of T1�T2 using

k + `− 1 colors by means of g and h as follows:

Figure 1: Coloring c in Case 1 of the proof of Theorem 2.4

(1) For x ∈ Ui, i = 0, 1, . . . , k − 1 (See box (1) of Figure 1), set

c(x, y0) = i.

(2) Consider the vertices in X × ((S∗ ∪ V0)− {y0}). (See box (2) of Figure 1).
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(i) For x ∈ U0 − {x0} and y ∈ ((S∗ ∪ V0)− {y0}), set

c(x, y) =


k + [(i+ j − 1) mod (`− 1)] if x ∈ (U0 ∩ Si)− {x0} , i = 0, 1 and

y = yj , 1 ≤ j ≤ `− 1,

0 if y ∈ V0 − {y0}.

(ii) For x ∈ X \ U0, y ∈ (S∗ ∪ V0)− {y0}, set

c(x, y) =

1 + [i mod (k − 1)] if x ∈ Ui, 1 ≤ i ≤ k − 1 and y ∈ S∗ − {y0},

c(x, y0) if y ∈ V0 − {y0}.

(3) Consider the vertices in V (T1) × (Y \ V0). (See box (3) of Figure 1). For x ∈ Si,
i = 0, 1, and y ∈ Vj − {yj}, 1 ≤ j ≤ `− 1, set

c(x, y) = k + [(i+ j − 1) mod (`− 1)].

(4) Finally we consider the vertices in S × (S∗ ∪ V0 − {y0}). (See box (4) of Figure 1),

set

c(x, y) =

k+[(i+j−1) mod (`− 1)] if x ∈ S ∩ Si, i = 0, 1, y = yj , 1 ≤ j ≤ `− 1

c(x, y0) if y ∈ V0 − {y0}.

Clearly, this coloring is proper. Consider the vertices in (S × {y0}) ∪ ({x0} × S∗). We

shall show that these vertices are c.d.v.’s of distinct color classes. It is quite evident that

the vertices in S × {y0} are c.d.v.’s of their corresponding color classes.

When dS(x0) = 0, the vertices in {x0}×S∗ are c.d.v.’s for c and hence c is a b-coloring

using k+`−1 colors. Recall that dS(x0) ≤ 1. Thus the only other possibility is dS(x0) = 1

and in this case as assumed earlier, let NS(x0) = x1. Here suppose x0 has a neighbor in

U1 \ {x1}, then again the vertices in {x0}×S∗ are c.d.v.’s for c and hence c is a b-coloring

using k + `− 1 colors, or else, x0 has no neighbor in U1 \ {x1} in which case the vertices

in {x0} × S∗ have no neighbors with color 2 in T1�T2.

In order to overcome this case we shall recolor some of the vertices in {x0} × Y by

using the fact that these colors are also present in box (4) of Figure 1. Recall that

S∗ is a star having center y0 and with y1, . . . , y`−1 forming an independent set in T2.

As the yj ’s are c.d.v.’s in T2 for 1 ≤ j ≤ ` − 1, each yj should have a neighbor in

Vs \ {ys}, for each s = 1, . . . , j − 1, j + 1, . . . , ` − 1. Call such a neighbor in Vs \ {ys}
as yjs . As x0 is adjacent to x1, the vertex (x0, yj) is adjacent to the vertices (x1, yj),

receiving the colors k+[j ( mod (`−1))]. Now recolor the vertex (x0, yjs) by color 2, where

s = 1 + [j(mod(` − 1))]. After this recoloring, it can be seen that the set of vertices
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{(x0, yj) : 1 ≤ j ≤ `− 1} forms c.d.v.’s of their corresponding color classes and hence in

this case also we have found a b-coloring using k + `− 1 colors.

Case 2. 〈S∗〉 is not a star.

If 〈S〉 is a star, then we can interchange T2 by T1 in Case 1 and get the result. Therefore

we assume that 〈S〉 also is not a star.

As T1 is a tree, it is a bipartite graph with bipartition, say, S0 and S1. Without loss

of generality, let x0 ∈ S0. As 〈S∗〉 is a forest but not stable, S∗ has at least one vertex y0

such that dS∗(y0) = 1. Let y1 ∈ S∗ be the neighbor of y0 in 〈S∗〉. As 〈S∗〉 is not a star,

there exists a vertex, say y2, in S∗ such that y1y2 /∈ E(T2).

As y1 is a c.d.v., y1 should have a neighbor in V2\{y2}, say, y12 (see Figure 2). Consider

the neighbors of y12 in S∗, say, S∗
1 . Note that y0 is not a neighbor of y12 (Otherwise, we get

a K3). Without loss of generality let S∗
1 = {y1, y3, y4, . . . , yr}, r ≤ `− 1. As (S∗ \S∗

1)∪ V0
is bipartite (because T2 is a tree), (S∗ \ S∗

1) ∪ V0 has a bipartition, say, S∗
0 , S

∗
2 , where S∗

0

contains y0. That is S∗ ∪ V0 = S∗
0 ∪ S∗

1 ∪ S∗
2 . Now we shall construct a b-coloring, say c,

using k + `− 1 colors by means of g and h as follows:

Figure 2: Coloring c in Case 2 of the proof of Theorem 2.4

(1) For x ∈ Ui, 0 ≤ i ≤ k − 1 (See box (1) of Figure 2), set

c(x, y0) = i.

(2) Now we color the vertices in V (T1) × Y \ V0 (See box (2) of Figure 2): For x ∈ Si,



b-coloring of Cartesian Product of Trees 7

0 ≤ i ≤ 1, and y ∈ Vj − {yj}, 1 ≤ j ≤ `− 1, set

c(x, y) = k + [(i+ j − 1) mod (`− 1)].

(3) For the vertices in U0 × (S∗ ∪ V0 − {y0}) (See boxes (3) and (4) of Figure 2), set

c(x, y) =


k + [(i+ j − 1) mod (`− 1)] if x ∈ U0 ∩ Si, 0 ≤ i ≤ 1 and

y = yj , 1 ≤ j ≤ `− 1,

0 if y ∈ V0 − {y0}.

(4) Finally, we consider the vertices in (V (T1) \ U0) × (
⋃2

j=0 S
∗
j \ {y0}) (See boxes (5)

and (6) of Figure 2). For x ∈ Ui, 1 ≤ i ≤ k − 1 and y ∈ S∗
j , 0 ≤ j ≤ 2, set

c(x, y) = 1 + [(i+ j − 1) mod (k − 1)].

In a routine way, one can check that c is a proper coloring using k + `− 1 colors. As

usual, we try to make ({x0} × S∗) ∪ (S × {y0}) as a c.d.s. for c. Obviously {x0} × S∗ are

c.d.v.’s for their respective colors.

As y0 is adjacent to y1, y0 may have no neighbors in V1 \ {y1}. So we recolor the

vertices in (S \ {x0})× {y1} by setting

c(x, y1) = c(x, y) = k + i, x ∈ (S ∩ Si) \ {x0} , i = 0, 1, and y ∈ V1 \ {y1} , 1 ≤ i ≤ k − 1

(see box (1) of Figure 3).

Clearly this recoloring does not disturb the proper coloring and this recoloring guar-

antees that the vertices in S × {y0} are c.d.v.’s of distinct color classes. But note that

there is a possibility for (x0, y1) to loss its color dominating property.

If dS(x0) = 0, then all vertices in {x0} × S∗ are c.d.v.’s of their corresponding color

classes and therefore this becomes a b-coloring using k+`−1 colors. Otherwise dS(x0) = 1.

Recall that x1 is adjacent to x0 in S. If x0 has a neighbor in U1 \ {x1}, then we are done.

If not, (x0, y1) has no neighbor in the color class 2 in T1�T2, so recolor the vertex (x0, y12)

by 2 (see box (2) of Figure 3).

This may lead to the vertices in {x0}×(S∗
1 \{y1}) having no neighbors with color k+1.

In order to overcome this problem we do the following recoloring in {x1} × (S∗
1 \ {y1}):

c(x1, y) = k + 1, y ∈ S∗
1 \ {y1}

(see box (3) of Figure 3). Thus, {x0} × S∗
1 are c.d.v.’s.

Note that the vertices in {x1}× (V1 \ {y1}) received color k+ 1 and these vertices may

have a neighbor in {x1} × (S∗
1 \ {y1}) and this might make c improper. We get over this
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Figure 3: Recoloring of c in Case 2 of the proof of Theorem 2.4

by recoloring the vertices in {x1} × (V1 \ {y1}) by 0 (see box (4) of Figure 3). Checking

this recolored c for G�H to be proper is routine. Thus c is a b-coloring of T1�T2 using

k + `− 1 colors, and hence {7, 8, . . . , b(T1) + b(T2)− 1} ⊆ Sb(T1�T2).
Next, we consider the case when k ≥ 3 and ` = 3. By Observation 2.3, we can always

find a b-coloring using 3 colors for T2 with a c.d.s. which is a star. Thus by using arguments

similar to those used in Case 1, we can show that there exists a b-coloring using k+ 3− 1

colors for T1�T2. When k = 3 and ` ≥ 3, we can find, in a similar way, a b-coloring using

`+ 3− 1 colors for T1�T2. This shows that {5, 6} ∈ Sb(T1�T2) when b(T1) = b(T2) = 3.

Figure 4: Coloring when k = 2 and ` = 3 in the proof of Theorem 2.4

The only case left out is when either k or ` is 2 and the other is 3. Without loss



b-coloring of Cartesian Product of Trees 9

of generality, assume that k = 2 and ` = 3. In this case, we can give a b-coloring

using 2 + 3 − 1 = 4 colors as shown in Figure 4. This proves that 4 ∈ Sb(T1�T2) when

b(T1) = b(T2) = 3.

Thus T1�T2 has a b-coloring using s colors, for each s ∈ {2, 3, . . . , b(T1) + b(T2)− 1}
and hence b(T1�T2) ≥ b(T1) + b(T2)− 1.

Corollary 2.5. Let Ti, i = 1, 2, . . . , n, be trees with b(Ti) ≥ 3. Then b(T1� · · ·�Tn) ≥∑n
i=1 b(Ti)−(n−1) and Sb(T1� · · ·�Tn) ⊇ {2, . . . ,

∑n
i=1 b(Ti)− (n− 1)}. In particular, if

b(Ti) = ∆(Ti) + 1 for each i, then b(T1� · · ·�Tn) = ∆(T1� · · ·�Tn) + 1, and T1� · · ·�Tn
is b-continuous.

Proof. First let us prove the first part. Proof is by induction on n. By Theorem 2.4,

the result is true for n = 2. So assume that the result is true for j ≤ n − 1. We shall

show that the result is true for n. Consider T1�T2� · · ·�Tn = (T1�T2� · · ·�Tn−1)�Tn.

By induction hypothesis b(T1�T2� · · ·�Tn−1) ≥
∑n−1

i=1 b(Ti) − (n − 2) and Sb(T1�T2�

· · ·�Tn−1) ⊇
{

2, 3, . . . ,
∑n−1

i=1 b(Ti)− (n− 2)
}

. Note that by applying the technique used

in Theorem 2.4 step by step to T1�T2� · · ·�Tn−1, we can find a b-coloring using k colors

(where 2 ≤ k ≤
∑n−1

i=1 b(Ti) − (n − 2)) for which there is a c.d.s. S of T1�T2� · · ·�Tn−1

which has a vertex of degree one in 〈S〉. We know that χ(T1�T2� · · ·�Tn−1) = 2. Thus

by using arguments similar to Theorem 2.4 to [T1�T2� · · ·�Tn−1]�Tn, we can prove that

b(T1� · · ·�Tn) ≥
∑n

i=1 b(Ti)−(n−1) and Sb(T1� · · ·�Tn) ⊇ {2, . . . ,
∑n

i=1 b(Ti)− (n− 1)}.
Next we prove the second part. Suppose b(Ti) = ∆(Ti) + 1, 1 ≤ i ≤ n, then

b(T1� · · ·�Tn) ≥
n∑

i=1

b(Ti)− (n− 1) =
n∑

i=1

(∆(Ti) + 1)− (n− 1)

=
n∑

i=1

∆(Ti) + 1 = ∆(T1� · · ·�Tn) + 1.

Since for any graph G, b(G) ≤ ∆(G) + 1, b(T1� · · ·�Tn) = ∆(T1� · · ·�Tn) + 1. Since

Sb(T1� · · ·�Tn) ⊇ {2, . . . ,
∑n

i=1 b(Ti)− (n− 1) = ∆(T1� · · ·�Tn) + 1}, T1� · · ·�Tn is b-

continuous.

One can observe that the technique used in Theorem 2.4 can be extended to a more

general setup as given below.

Theorem 2.6. Let G be a graph having a b-coloring using k colors with a c.d.s. S con-

taining a vertex x whose degree is at most one in 〈S〉. Let H be a bipartite graph having

a b-coloring using ` colors with a c.d.s. S∗ such that 〈S∗〉 is a forest other than a star.

If 4 ≤ k < ` and b(G) < b(H), then G�H has a b-coloring using k + ` − 1 colors and

b(G�H) ≥ b(G) + b(H)− 1.
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[13] M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of a graph,

Discrete Math. 256 (2002), no. 1-2, 267–277.

http://dx.doi.org/10.1016/s0012-365x(01)00469-1

[14] , The b-chromatic number of the Cartesian product of two graphs, Studia Sci.

Math. Hungar. 44 (2007), no. 1, 49–55.

http://dx.doi.org/10.1556/sscmath.44.2007.1.5

[15] M. Kouider and M. Zaker, Bounds for the b-chromatic number of some families of

graphs, Discrete Math. 306 (2006), no. 7, 617–623.

http://dx.doi.org/10.1016/j.disc.2006.01.012

R. Balakrishnan

Department of Mathematics, Bharathidasan University, Tiruchirappalli–620024, India

E-mail address: mathbala@sify.com

S. Francis Raj

Department of Mathematics, Pondicherry University, Pondicherry–605014, India

E-mail address: francisraj s@yahoo.com

T. Kavaskar

Department of Mathematics, Bharathidasan University, Tiruchirappalli–620024, India

E-mail address: t kavaskar@yahoo.com

http://dx.doi.org/10.1007/s00373-010-0898-9
http://dx.doi.org/10.1016/s0012-365x(01)00469-1
http://dx.doi.org/10.1556/sscmath.44.2007.1.5
http://dx.doi.org/10.1016/j.disc.2006.01.012

	Introduction
	b-coloring of Cartesian product of trees

