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0-PRIMITIVE NEAR-RINGS, MINIMAL IDEALS
AND SIMPLE NEAR-RINGS

Gerhard Wendt

Abstract. We study the structure of 0-primitive near-rings and are able to answer
an open question in the theory of minimal ideals in near-rings to the negative,
namely if the heart of a zero symmetric subdirectly irreducible near-ring is subdi-
rectly irreducible again. Also, we will be able to classify when a simple near-ring
with an identity and containing a minimal left ideal is a Jacobson radical near-
ring. Such near-rings are known to exist but have unusual properties. Along the
way we prove results on minimal ideals and left ideals in near-rings which so far
were known to hold or have been established in the DCCN case, only.

1. INTRODUCTION AND BASIC DEFINITIONS

In what follows, we consider right near-rings, this means the right distributive law
holds, but not necessarily the left distributive law. The notation is that of [14].

Primitive near-rings play the same role in the structure theory of near-rings as
primitive rings do in ring theory. However, in the case of near-rings there are several
types of primitivity which are interesting to consider. The most general type is the
primitivity of type 0. A primitive near-ring is necessarily 0-primitive. While satisfactory
results describing so called 2-primitive near-rings with identity exist, a 2-primitive near-
ring with identity is either a primitive ring or dense in a so called centralizer near-ring,
studying the algebraic structure of 0-primitive near-rings, apart from special cases (see
for example [9]), has remained widely untouched. We will address this question and
can prove results which still do not completely classify 0-primitive near-rings but we
will reach a point where well known structure results for primitive near-rings follow as
a corollary. It then turns out that our tools for studying 0-primitive near-rings will help
to study minimal ideals. Minimal ideals in near-rings have been studied by various
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authors (see Section 3 for references) but a question has remained open so far: It is
well known in ring theory that a minimal ideal of a ring either has zero multiplication
or is a simple ring. While it is known that this is not the case for minimal ideals in
near-rings it remained an open question if a minimal ideal in a zero symmetric near-ring
is subdirectly irreducible or not. We will give an example of a zero symmetric and 0-
primitive near-ring which contains a minimal ideal which is not subdirectly irreducible.
Also, our methods will allow to address the question how to describe simple near-rings.
Zero symmetric and simple near-rings containing a minimalN -subgroup and an identity
element are known to be 2-primitive and therefore can be classified using centralizer
near-rings. We can extend this result to zero symmetric simple near-rings with identity
containing a minimal left ideal in so far, as we can give a precise condition in terms of
the algebraic structure of the minimal left ideal when the near-ring is 2-primitive or else
J2-radical. Generally, we will be concerned with near-rings which do not satisfy the
DCCN, the descending chain condition on N -subgroups contained in N . Thus, well
known results on minimal ideals in near-rings with DCCN will follow as a corollary
of our considerations and thus should also prove interesting in its own right. We need
to give the most fundamental notation in the following, whenever necessary we will
introduce further notation.

Let N be a zero symmetric near-ring, this means that n ∗ 0 = 0 for all n ∈ N
where ∗ is the near-ring multiplication. Let Γ be an N -group of the near-ring N . An
N -ideal I of Γ is a normal subgroup of the group (Γ,+) such that ∀n ∈ N ∀γ ∈
Γ ∀δ ∈ I : n(γ + δ) − nγ ∈ I . A left ideal L of a near-ring N is an N -ideal of the
natural N -group N and in case N is zero symmetric, a left ideal is also an N -group.
The left ideal L is an ideal, if LN ⊆ L. A non-zero N -group Γ of the near-ring N is
of type 0 if there is an element γ ∈ Γ such that Nγ = Γ, γ is then called a generator
of the N -group, and there are no non-trivial N -ideals in Γ. A non-zero N -group Γ is
of type 1 if it is of type 0 and N acts strongly monogenic on Γ. N acting strongly
monogenic on Γ means that Nγ = Γ or Nγ = {0} for all γ ∈ Γ.

Let U be a subgroup of the N -group Γ. U is called an N -subgroup of Γ if
NU ⊆ U . The N -group Γ is called N -group of type 2 if NΓ �= {0} and there are
no non-trivial N -subgroups in Γ. In case N has an identity element an N -group is of
type 1 if and only if it is of type 2 (see [14, Proposition 3.7 and Proposition 3.4]).

Given an N -group Γ and a non-empty subset S ⊆ Γ then (0 : S) = {n ∈ N |∀γ ∈
S : nγ = 0} will be called the annihilator of S. Such annihilators always are left
ideals of the near-ring N . Γ will be called faithful if (0 : Γ) = {0}. Annihilators of
N -groups are always ideals of a near-ring N . In particular, let v ∈ {0, 1, 2}. Then, the
intersection of the annihilators of all N -groups of type v of a near-ring N is an ideal
and called the Jacobson radical of type v, Jv(N ). A near-ring is called v-primitive if
it acts on a faithful N -group Γ of type v.

The paper is organised as follows: In Section 2 we will see that minimal left
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ideals which do not have zero multiplication and have a special type of (a mild) chain
condition are N -groups of type 0 and give rise to certain non-zero ideals in a near-ring.
In Section 3 we will study minimal ideals in a near-ringN , N not necessarily satisfying
any chain condition and use the results of Section 2 to prove some decomposition
theorems for minimal ideals which generalise well known standard results in near-ring
theory. Examples will guarantee the existence of such minimal ideals, also in case
the near-ring does not satisfy the DCCI, the descending chain condition on ideals.
In Section 5 we use these results and are able to prove a structure theorem for 0-
primitive near-rings with DCCL, the descending chain condition on left ideals of N,
from which the well known structure results for 1-primitive near-rings with DCCL
follow immediately. Then, in Section 6, we use the theory developped in Section 5 to
give an example of a zero symmetric and subdirectly irreducible near-ring with heart
H which is not subdirectly irreducible. In Section 7, we can classify when a zero
symmetric and simple near-ring with identity and a minimal left ideal is 2-primitive
and when it is J2-radical. Examples will illustrate the theory. Finally, we will address
some open problems which arise during our discussion.

2. MINIMAL LEFT IDEALS

We would like to point out that the minimal structures we consider, like minimal
left ideals or minimal ideals are always understood to be non-zero. When we have a
minimal left ideal L of a zero symmetric near-ringN , then it is not true that this minimal
left ideal L has to be also minimal as an N -subgroup. This is a big difference to ring
theory, for if the near-ring N happens to be a ring, then left ideals and N -subgroups of
the near-ring coincide. Instead of giving a single example we discuss more generally
when the situation that a minimal left ideal is not minimal as N -subgroup happens. Let
N be a zero symmetric near-ring with DCCN which is 0-primitive but not 1-primitive
on the N -group Γ with generator γ . Consider the annihilator (0 : γ) and suppose there
would be an ideal I of N contained in (0 : γ). Then, {0} = Iγ ⊇ (IN )γ = IΓ, which
contradicts the faithfulness of Γ. According to [14, Theorem 3.53] a minimal ideal
of N is a direct sum of minimal left ideals. Consequently, there must be a minimal
left ideal L of N such that L �⊆ (0 : γ). Thus, by [14, Proposition 3.10], L ∼=N Γ.
The symbol ∼=N means being N -isomorphic as N -subgroups. This notation will be
frequently used. If Γ is of type 0 but not of type 1, then Γ must properly contain an N -
subgroup and consequently, by N -isomorphism L does, as well. The structure of zero
symmetric 0-primitive near-rings with DCCN can be quite completely described and we
will do so in Theorem 5.3 and Corollary 5.8. Hence, it is easy to find 0-primitive near-
rings which are not 1-primitive. For example, let Γ be a finite group which contains
a non-trivial subgroup S. Then the near-ring N := {f ∈ M0(Γ)|f(S) ⊆ S} is finite
and 0-primitive on Γ but not 1-primitive on Γ. Here, M0(Γ) is the near-ring of zero
preserving functions mapping from Γ to Γ where near-ring addition is the pointwise
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addition of functions and multiplication is function composition. Clearly, N is faithful
on Γ and every element in Γ \ S is a generator of the N -group Γ. Let s ∈ S \ {0}.
Then {0} �= Ns ⊆ S. Thus, N does not act strongly monogenic on Γ and hence, N
cannot act 1-primitively on Γ. But N acts 0-primitively on Γ. Let s ∈ S \ {0} and
γ ∈ Γ \ S. Let f ∈ M0(Γ) such that f(γ + s) = δ �∈ S and f(γ1) = 0 for every
γ1 ∈ Γ\{γ+s}. Then, f ∈ N and f(γ+s)−f(γ) �∈ S. So, S is not an N -ideal. We
will meet other examples of 0-primitive near-rings which are not 1-primitive near-rings,
not necessarily of the type just presented, in several places in this paper.

Note that it is also very easy to construct minimal left ideals which are notN -groups
of type 0. Take (N,+) to be a simple group and define the zero multiplication on N .
Then, obviously N is a near-ring where N is minimal as a left ideal but certainly not
an N -group of type 0. In case a minimal left ideal does not have zero multiplication
the situation is much different as we will see in Lemma 2.2.

Our focus will be on minimal left ideals L which do not properly contain N -
subgroups which are N -isomorphic to L. The next proposition shows that such a
situation naturally occurs when studying near-rings with descending chain condition on
near-ring subgroups. To fix a notation we will keep throughout the paper, the symbol
⊃ means a proper subset. Also, let M be a subnear-ring of a near-ring N . We say that
M satisfies the DCC on N -subgroups contained in M if there is no properly decreasing
chain of N -subgroups of N contained in M . Similary, we say that M satisfies the
DCC on left ideals contained in M if there is no properly decreasing chain of left ideals
of N contained in M .

Proposition 2.1. Let N be a zero symmetric near-ring. Let L be a minimal left
ideal such that L satisfies the DCC on N -subgroups contained in L. Suppose M ⊆ L

is an N -subgroup such that M �= L. Then, L and M cannot be N -isomorphic.

Proof. Suppose to the contrary that M and L are N -isomorphic. Then, due
to N -isomorphism also M contains a proper subgroup M1 which is N -isomorphic to
M . Then also M1 does, and so on. From that we get an infinite decreasing chain of
N -isomorphic N -subgroups L ⊃M ⊃M1 ⊃ . . ..

In particular, Proposition 2.1 applies to zero symmetric near-rings with DCCN.
The condition that a minimal left ideal L of a zero symmetric near-ring N does not
properly contain N -subgroups which are N -isomorphic to L is much weaker than the
usual DCCN. It will be used frequently in this paper and plays a key role in proving
some of our main results. For example, it will be precisely this condition which makes
a simple near-ring containing a minimal left ideal and an identity element a 2-primitive
near-ring, see Section 7.

Natural examples of zero symmetric near-rings N containing a minimal left ideal
L where the minimal left ideal does have an infinite decreasing chain of N -subgroups
but does not have proper N -subgroups which are N -isomorphic to L exist, see the



0-Primitive Near-rings, Minimal Ideals and Simple Near-rings 879

class of examples in Section 4.
We continue with a key lemma of this paper, which shows us where to getN -groups

of type 0 once we have given a zero symmetric near-ring.

Lemma 2.2. Let N be a zero symmetric near-ring and let L be a minimal left
ideal such that L2 �= {0}. Suppose that L does not contain N -subgroups properly
contained in L and being N -isomorphic to L. Then L contains a multiplicative right
identity e when considered as subnear-ring of N . Furthermore, L is an N -group of
type 0.

Proof. We first show that L has a generator. Since we have L2 �= {0}, there
is an element l ∈ L such that Ll �= {0}. By minimality of L as a left ideal, this
implies L ∩ (0 : l) = {0}. Consequently, the map ψl : L → Ll, j �→ jl is injective.
Certainly, ψl is a surjective N -homomorphism and thus L and Ll are N -isomorphic.
By assumption this implies L = Ll. So, we see that L has the generator l.

What is more, L contains an idempotent e which is a right identity in L. To see
this, let e ∈ L such that el = l. Such an e exists since Ll = L. Thus, e2l = el and
consequently, (e2 − e)l = 0. So, e2 − e ∈ L ∩ (0 : l) = {0} and we see that e = e2.
Let j ∈ L. Then, je = je2, so (j − je)e = 0. Hence, j − je ∈ L ∩ (0 : e). Since
e ∈ Le by idempotence of e we see that Le �= {0} and so, by minimality of L we have
that L ∩ (0 : e) = {0}. Hence, j = je and e is a multiplicative right identity in L.

Consequently, we have a Peirce decomposition of N as N = (0 : e)+̇Ne = (0 :
e)+̇L. Suppose that I ⊆ L is an N -ideal contained in L. Consequently, (I,+) is a
normal subgroup of (L,+). Let n ∈ N . Then n = n1 + n2 with n1 ∈ (0 : e) and
n2 ∈ L. Let i ∈ I . Then, n + i− n = n1 + n2 + i − n2 − n1. Since I is normal in
L, n2 + i− n2 ∈ I , so n+ i− n = n1 + i1 − n1 for some element i1 ∈ I ⊆ L. Since
(N,+) is the direct sum of the normal subgroups (L,+) and ((0 : e),+) of (N,+)
we have that n1 + i1 = i1 + n1. Consequently,

n + i− n = n1 + i1 − n1 = i1 ∈ I

and this proves that (I,+) is normal in (N,+). Let n,m ∈ N . So, there is an element
l ∈ L and a ∈ (0 : e) such that m = a+ l. Let i ∈ I . Then,

n(m+ i)− nm = n((a+ l) + i) − n(a+ l).

By [14, Proposition 2.29] the sum N = (0 : e)+̇L is distributive, so

n((a+ l) + i) = n(a+ (l+ i))

n(a+ (l+ i)) = na + n(l + i)

and
n(a+ l) = na+ nl.
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Consequently,
n(m+ i)− nm = na + n(l + i) − nl − na.

By assumption, n(l+ i)−nl ∈ I and since (I,+) is a normal subgroup of (N,+) we
have that

na + n(l + i) − nl − na ∈ I.

This shows that I ⊆ L is a left ideal of N . By minimality of L as a left ideal we either
have I = {0} or I = L. Thus, L contains no non-trivial N -ideals and this proves that
L is an N -group of type 0.

The author does not know an example of a minimal left ideal without zero multi-
plication which is not an N -group of type 0. Proposition 2.1 and Lemma 2.2 show that
one has to look at near-rings without DCCN to be in a position to find such examples
at all.

The next result tells us something about N -subgroups which are contained in a
minimal left ideal of a near-ring N . A minimal left ideal of a near-ring N does not
have to be minimal as an N -subgroup of the near-ring, as we have already seen.

Lemma 2.3. Let N be a zero symmetric near-ring and L a minimal left ideal.
Suppose that L does not contain N -subgroups properly contained in L and being
N -isomorphic to L. Let M ⊆ L be an N -subgroup of N , M �= L. Then LM = {0}.

Proof. Let m ∈ M . Then (0 : m) ∩ L is a left ideal contained in L and so, by
minimality of L either (0 : m)∩L = L which gives Lm = {0} or (0 : m)∩L = {0}.
Suppose that Lm �= {0} and hence, (0 : m) ∩ L = {0}. Then, the map ψm : L →
Lm, l �→ lm is injective. ψm clearly is a surjective N -homomorphism and so we have
that L and Lm are N -isomorphic. Since Lm ⊆ L it follows from our assumption that
L = Lm. Consequently, L = Lm ⊆M , which contradicts the fact that M is properly
contained in L. Thus, for all m ∈M , Lm = {0}.

The next lemma guarantees the existence of certain non-zero ideals provided we
have non-nilpotent minimal left ideals which do not have zero multiplication in a zero
symmetric near-ring N . Before, we introduce a notation we will keep throughout the
paper.

Definition 2.4. Let N be a zero symmetric near-ring and L be a left ideal. Then,
θL
0 := {l ∈ L|Nl �= L} and θL

1 := {l ∈ L|Nl = L}.

Note that the zero 0 of N is always contained in θL
0 . For certain left ideals L, θL

1

may be the empty set. However, we will meet only situations where the left ideals do
have generators as an N -group.
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Lemma 2.5. Let N be a zero symmetric near-ring and let L be a minimal left
ideal such that L2 �= {0}. Suppose that L does not contain N -subgroups properly
contained in L and being N -isomorphic to L. Then, L ⊆ (0 : θL

0 ) and (0 : θL
0 ) is a

non-zero ideal of N .

Proof. Let l ∈ θL
0 . If Nl = {0} then certainly Ll = {0} as well. Suppose that

Nl �= {0}. Thus, Nl is a non-trivial N -subgroup properly contained in L. By Lemma
2.3, we get LNl = {0}. By Lemma 2.2, L contains a multiplicative right identity e
and therefore, LNl = {0} implies Lel = Ll = {0}. So we have shown that for l ∈ θL

0 ,
Ll = {0}.

As an annihilator, (0 : θL
0 ) is a left ideal of N . Let l ∈ θL

0 and n ∈ N . Then
N (nl) ⊆ Nl �= L, so nl ∈ θL

0 . Let a ∈ (0 : θL
0 ), n ∈ N and l ∈ θL

0 . Then
(an)l = a(nl) = 0 because nl ∈ θL

0 . So, we have shown that (0 : θL
0 ) is an ideal of

N , containing L and thus being non-zero.

If we have a minimal left ideal L with L2 �= {0} in a zero symmetric near-ring N
where L properly contains N -subgroups which are N -isomorphic to L, then the result
of Lemma 2.5 may not be longer true as the Example 7.4 in the Section 7 shows.

3. STRUCTURE OF MINIMAL IDEALS

Minimal ideals in near-rings have been the subject of several papers. Unlike the
situation in rings where a minimal ideal of a ring either has zero multiplication or is a
simple ring (see [1] for references) the situation in near-rings is much more complicated.
When the near-ring has DCCN, then S. Scott proved the following theorem (see [14,
Theorem 3.54 and Corollary 3.55]):

Theorem 3.1. (S. Scott, [15]). Let N be a zero symmetric near-ring with DCCN
and I a minimal ideal. Then I is isomorphic to a finite direct sum of minimal left
ideals of the near-ring N , all of the summands being N -isomorphic. I contains a
minimal left ideal L such that L2 �= {0} precisely when I2 �= {0}.

Note that the result of Theorem 3.1 also applies to minimal ideals all of whose
minimal left ideals have zero multiplication. On the other hand, the DCCN of the
near-ring N is needed. In [6] minimal ideals of a zero symmetric near-ring N which
satisfy the descending chain condition on N -subgroups contained in I are described
using a method which the author calls “Polin near-rings”. In [1] a minimal ideal I
of a near-ring N where N/(0 : I) satisfies the DCCL is shown to be a 2-primitive
near-ring or else J2(I) = I . We do not restrict ourselves to near-rings satisfying the
DCCN or (more generally) to near-ring ideals satisfying the descending chain condition
on N -subgroups contained in the ideal. Also, we have to be able to deal with situations
where J2(I) = I , I a minimal ideal of a zero symmetric near-ring. In Proposition 3.4
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and Theorem 3.7 we partially generalize the requirements in Theorem 3.1. We can
re-prove the result of Theorem 3.1 in a more general setting as long as the minimal
ideal contains a non-nilpotent minimal left ideal. From that point of view, the results
of this section should be interesting in their own right. We start with an easy to prove,
yet fundamental lemma.

Lemma 3.2. Let N be a zero symmetric near-ring and let I be an ideal of N . Let
Γ be an N -group of type 0 such that I ∩ (0 : Γ) = {0}. Let γ ∈ Γ such that Nγ = Γ.
Then, Iγ = Γ.

Proof. Let γ ∈ Γ such that Nγ = Γ. Suppose that Iγ = {0}. Then IΓ =
INγ ⊆ Iγ = {0} contradicting the fact that I ∩ (0 : Γ) = {0}. Since Γ = Nγ we
have that Iγ is an N -ideal in Γ. By assumption, Γ is an N -group of type 0 implying
that Iγ = Γ.

The notation of the next definition will be kept throughout the remainder of the
paper.

Definition 3.3. Let N be a zero symmetric near-ring and Γ an N -group. Let
θ1 := {γ ∈ Γ|Nγ = Γ} and θ0 := {γ ∈ Γ|Nγ �= Γ}.

Note that if Γ is an N -group of type 0 in Definition 3.3, then θ1 is not empty. We
are now in a position to study certain types of ideals in a zero symmetric near-ring which
turn out to be minimal ideals. To recall a notation, the intersection of all 0-modular left
ideals of a near-ring N is called J 1

2
(N ) and is the greatest quasi-regular left ideal in a

near-ring N (see [14, Theorem 5.37]). Also, an ideal I of a zero symmetric near-ring
is also an N -group of the near-ring N . When we consider I as an N -group, then we
will use the notation NI .

Proposition 3.4. Let N be a zero symmetric near-ring. Let I be an non-zero ideal
of N and Γ be an N -group of type 0 such that I ∩ (0 : Γ) = {0}. Suppose that
I ⊆ (0 : θ0) and there is a finite number n of elements {γ1, . . . , γn} ⊆ θ1 such that
∩n

i=1((0 : γi) ∩ I) = {0}. Then N I is a finite direct sum of minimal left ideals of
the near-ring N , all of them being N -isomorphic to Γ and being N -groups of type 0.
Moreover, I is a minimal ideal. I contains a right identity element 1r of I such that
J 1

2
(N ) ⊆ (0 : 1r) and thus, N = (0 : 1r)+̇I . So, I is a direct summand as a left ideal

of N .

Proof. Since Γ is an N -group of type 0, θ1 is not empty and Γ = θ0 ∪ θ1. Since
I ⊆ (0 : θ0) and I ∩ (0 : Γ) = {0} we must have (0 : θ1) ∩ I = {0}.

Suppose there exists a generator γ ∈ θ1 such that (0 : γ) ∩ I = {0}. Then,
ψ : I → Γ, i �→ iγ is injective. By Lemma 3.2, ψ is also surjective and so we see
that I is N -isomorphic to Γ. Since Γ is of type 0, we see that I is minimal as a left
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ideal. By N -isomorphism, I is an N -group of type 0. Since ψ is an N -isomorphism,
there is an element e ∈ I such that eγ = γ . Let i ∈ I . Then, (ie − i)γ = 0. So,
ie − i ∈ I ∩ (0 : γ) = {0}. Thus, we see that e is a right identity element for I .
So, I = Ne ∼=N N/(0 : e). Since Γ is an N -group of type 0, (0 : e) is a 0-modular
left ideal of N by [14, Proposition 3.23] and so, J 1

2
(N ) ⊆ (0 : e). Since e is a right

identity of I we have that N = (0 : e)+̇I . The proof would be complete in this case.
So we now assume that for any γ ∈ θ1 we have (0 : γ) ∩ I �= {0}.

By assumption, there is a finite number n ≥ 2 of elements {γ1, . . . , γn} ⊆ θ1
such that ∩n

i=1((0 : γi) ∩ I) = {0}. Hence, there is a natural number s ≥ 2 and
a set {σ1, . . . , σs} ⊆ θ1 minimal with respect to ∩s

i=1((0 : σi) ∩ I) = {0}. For
i ∈ {1, . . . , s} let

Li := ∩s
j=1,j �=i((0 : σj) ∩ I).

Since s ≥ 2, Li exists for i ∈ {1, . . .s} and Li is non-zero by choice of {σ1, . . . , σs}.
For all γ ∈ θ1 we have Iγ = Γ by Lemma 3.2. So, h : I → Γ, i �→ iγ is an

N -epimorphism with kernel (0 : γ) ∩ I . Thus, I/I ∩ (0 : γ) ∼=N Γ. Since Γ is an
N -group of type 0, we have that I/I ∩ (0 : γ) is an N -group of type 0. Therefore,
for all γ ∈ θ1, (0 : γ) ∩ I is a maximal N -ideal of the N -group I (see [14, Theorem
1.30]). Thus, the N -group I contains a finite set of maximal N -ideals (0 : σi) ∩ I ,
i ∈ {1, . . . , s} with zero intersection and thus, by [14, Theorem 2.50] the N -group I
is the direct sum I =

∑s
i=1 Li, where Li := ∩s

j=1,j �=i((0 : σj) ∩ I). We now show
that for all i ∈ {1, . . . , s}, Li

∼=N Γ.
Let i ∈ {1, . . . , s}. By definition of Li, Liσj = {0} if i �= j and Li ∩ (0 : σi) =

∩s
i=1((0 : σi) ∩ I) = {0}. As σi ∈ θ1, we have Nσi = Γ. Consequently, Liσi is

an N -ideal of Γ which is an N -group of type 0. Thus we either have Liσi = Γ or
Liσi = {0}. Now, Liσi = {0} would contradict Li ∩ (0 : σi) = {0}. Thus we have
Liσi = Γ. So we see that for every i ∈ {1, . . . , s}, hi : Li → Γ, li �→ liσi is an
N -isomorphism. Since Γ is an N -group of type 0 we now also have that Li is an
N -group of type 0, in particular, Li is a minimal left ideal.

Next we prove that I is a minimal ideal. Suppose there is an ideal J with J being
properly contained in I . We already know that I =

∑s
i=1 Li for some natural number

s, and Li, i ∈ {1, . . . , s} being minimal left ideals of N and being N -isomorphic to
Γ. Thus, there must be a j ∈ {1, . . . , s} such that Lj �⊆ J . By minimality of Lj as
a left ideal we get Lj ∩ J = {0} and hence, JLj ∈ Lj ∩ J = {0}. Consequently,
J ⊆ I∩(0 : Lj). Since Lj is N -isomorphic to Γ, it follows that J ⊆ I∩(0 : Γ) = {0}.
Hence, J = {0} and I is minimal as an ideal.

We now prove that I contains a right identity element. Since for all i ∈ {1, . . . , s},
hi is an N -isomorphism, for all i ∈ {1, . . . , s} there is an element ei ∈ Li such
that eiσi = σi. Let i ∈ {1, . . . , s} and li ∈ Li. Then, (liei − li)σi = 0. So,
liei − li ∈ Li ∩ (0 : σi) = {0}. Thus, we see that ei is a right identity element for Li.
Let j ∈ {1, . . . , s} and j �= i and ej ∈ Lj such that ejσj = σj . Since Liσj = {0}, we
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have 0 = eiσj = eiejσj . Thus, eiej ∈ Lj ∩ (0 : σj) = {0}.
Thus, the idempotents ei, i ∈ {1, . . . , s} are orthogonal idempotents and right

identities of the left ideals Li. Let i ∈ I . Since I =
∑s

i=1 Li, for all i ∈ {1, . . . , s}
there exists li ∈ Li such that i = l1 + . . . + ls. For i, j ∈ {1, . . . , s} we have
liej = li if i = j and otherwise liej = 0. By [14, Proposition 2.29], the direct sum
I =

∑s
i=1 Li is distributive, so we see that (l1+. . .+ls)(e1+. . .+es) = (l1+. . .+ls).

Consequently, 1r := e1 + . . . + es is a right identity in I . Let i ∈ {1, . . . , s}. So,
we have that Li = Liei. From the N -homomorphism ψi : N → Li, n �→ nei we see
that Li

∼=N N/(0 : ei). Since Li is an N -group of type 0, we see that (0 : ei) is a
0-modular left ideal of N by [14, Proposition 3.23] and therefore, J 1

2
(N ) ⊆ (0 : ei).

By idempotence of 1r, we have a decomposition of N as N = (0 : 1r) +N1r =
(0 : 1r) + I . Let a ∈ ∩s

i=1(0 : ei). 1r is the distributive sum of the idempotents
ei, i ∈ {1, . . . , s}. Consequently, a1r = ae1 + . . . + aes = 0 and we see that
∩s

i=1(0 : ei) ⊆ (0 : 1r).
Let a ∈ (0 : 1r). Again we use that 1r is the distributive sum of the idempotents ei,

i ∈ {1, . . . , s}. So, 0 = a1r = ae1+ . . .+aes. Since I is the direct sum I =
∑s

i=1 Li,
it follows that aei = 0, for all i ∈ {1, . . . , s}. Consequently, (0 : 1r) ⊆ ∩s

i=1(0 : ei).
We now have that ∩s

i=1(0 : ei) = (0 : 1r) and J 1
2
(N ) ⊆ (0 : 1r).

We keep the notation of Proposition 3.4 for a discussion. Clearly, the assumption
that there is a finite number n of elements {γ1, . . . , γn} ⊆ θ1 such that ∩n

i=1((0 :
γi)∩I) = {0} is a kind of finiteness condition of the near-ring. As we will see, it may
be achieved by assuming a DCC condition on left ideals of N contained in I . Apart
from that, N has to satisfy no finiteness condition at all. We will see in Section 4 that
such ideals do indeed exist even in near-rings which do not satisfy the DCCI.

Lemma 3.5. Let N be a zero symmetric near-ring. Let I be a non-zero ideal
of N and Γ be an N -group of type 0 such that I ∩ (0 : Γ) = {0}. Suppose that I
does not contain an infinite strictly decreasing chain of left ideals of N . Suppose that
I ⊆ (0 : θ0). Then there is a finite number n of elements {γ1, . . . , γn} ⊆ θ1 such that
∩n

i=1((0 : γi) ∩ I) = {0}.

Proof. Suppose there exists a generator γ ∈ θ1 such that (0 : γ)∩ I = {0}. Then
we are done. So we now assume that for every γ ∈ θ1 we have (0 : γ)∩ I �= {0}. For
the proof we introduce a notation. We let (0 : γ) ∩ I := (0 : γ)I for γ ∈ θ1.

Note that (0 : θ1) ∩ I = {0}. This follows from the fact that I ⊆ (0 : θ0),
Γ = θ0 ∪ θ1 and I ∩ (0 : Γ) = {0}. Let γ1 ∈ θ1. Thus, (0 : γ1)I �= {0} and
therefore, there is an element γ2 ∈ θ1 such that (0 : γ1)Iγ2 �= {0}. Consequently,
(0 : γ1)I �⊆ (0 : γ2)I and it follows that

(0 : γ1)I ∩ (0 : γ2)I ⊂ (0 : γ1)I .
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In the same manner, if (0 : γ1)I ∩ (0 : γ2)I �= {0} we obtain an element γ3 ∈ θ1 such
that ((0 : γ1)I ∩ (0 : γ2)I)γ3 �= {0}, so

(0 : γ1)I ∩ (0 : γ2)I ∩ (0 : γ3)I ⊂ (0 : γ1)I ∩ (0 : γ2)I

and
(0 : γ1)I ∩ (0 : γ2)I ⊂ (0 : γ1)I .

Thus we obtain a strictly decreasing chain of left ideals of N which are contained in I .
By assumption, this chain must eventually stop after finitely many steps. Thus, there
is a finite number n ≥ 2 of elements {γ1, . . . , γn} ⊆ θ1 such that ∩n

i=1((0 : γi) ∩ I)
= {0}.

We can get a kind of converse to Proposition 3.4. We will need an additional
lemma to do this.

Lemma 3.6. Let N be a zero symmetric near-ring. Let I be a minimal ideal of N
containing a minimal left ideal L of N such that L2 �= {0}. Suppose that L does not
contain N -subgroups properly contained in L and being N -isomorphic to L. Then,
IθL

0 = {0} and for all l ∈ θL
1 , Il = L. In particular, I acts strongly monogenic on L.

Proof. By Lemma 2.5 we have that L ⊆ (0 : θL
0 ) and (0 : θL

0 ) is an ideal of N .
So, L ⊆ I ∩ (0 : θL

0 ). Minimality of I as an ideal now implies that I ⊆ (0 : θL
0 ).

Let l ∈ θL
1 . Suppose that Il = {0}. Then IL = INl ⊆ Il = {0} contradicting the

fact that L2 �= {0}. Since L = Nl we have that Il is an N -ideal in L. From Lemma
2.2 we have that L is an N -group of type 0 implying that Il = L.

Lemma 3.6 shows that a minimal ideal I of a near-ring N containing a minimal
left ideal L with L2 �= {0} acts faithfully (due to the minimality of I) and strongly
monogenic on L. Following from [16, Theorem 2.3 and Lemma 2.7] we have that
I/J1(I) is a 1-primitive near-ring and IJ1(I) = {0}. From [16, Lemma 2.8] we have
that J1(I) is the unique maximal ideal of I in case I has DCC on I-subgroups of I .
From these results we obtain more knowledge on the structure of minimal ideals of
near-rings N not necessarily satisfying the DCCN but we do not follow this line of
discussion here.

The results of Lemma 3.6 and Proposition 3.4 now allow us to prove a decompo-
sition result for certain minimal ideals in zero symmetric near-rings.

Theorem 3.7. Let N be a zero symmetric near-ring. Let I be a minimal ideal of
N containing a minimal left ideal L of N such that L2 �= {0}. Suppose that I does
not contain an infinite strictly decreasing chain of left ideals of N and suppose that L
does not contain N -subgroups properly contained in L and being N -isomorphic to L.
Then N I is a finite direct sum of minimal left ideals of the near-ring N , all of them
being N -isomorphic to L and being N -groups of type 0. Furthermore, I contains a
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right identity element 1r of I such that J 1
2
(N ) ⊆ (0 : 1r) and I is a direct summand

as a left ideal of N , so N = (0 : 1r)+̇I .

Proof. Let L be the minimal left ideal contained in I such that L2 �= {0} and such
that L does not contain N -subgroups properly contained in L and being N -isomorphic
to L. By minimality of I as an ideal we must have I ∩ (0 : L) = {0}. From Lemma
3.6 we get that IθL

0 = {0}. So, Lemma 3.5 shows that I fulfills all the assumptions
of Proposition 3.4 and the result follows.

Let I be a minimal ideal of a zero symmetric near-ring N . If we assume that I
has the DCC on N -subgroups of N being contained in I , then everything gets much
nicer. In particular, the following Corollary 3.8 applies to finite minimal ideals which
may be contained in a near-ring N which satisfies no chain condition at all (in such a
case Theorem 3.1 cannot be applied).

Corollary 3.8. Let N be a zero symmetric near-ring and I a minimal ideal satis-
fying the DCC on N -subgroups of N being contained in I . Let L be a minimal left
ideal of N being contained in I such that L2 �= {0}. Then I has all the properties as
described in Theorem 3.7.

Proof. Let L be a minimal left ideal of N such that L ⊆ I and L2 �= {0}. Since
I satisfies the DCC on N -subgroups of N being contained in I , L satisfies the DCC
on N -subgroups of N contained in L and I also satisfies the DCC on left ideals of
N being contained in I . Proposition 2.1 shows that L cannot contain N -subgroups
properly contained in L and being N -isomorphic to L. So, Theorem 3.7 applies.

We want to point out that ideals which are the direct sum of minimal left ideals
which are not necessarily N -isomorphic N -groups of type 0 have been studied in [2]
for zero symmetric near-rings with identity element. As shown in [2], such ideals can
be used to study isomorphism types of N -groups of type 0 of zero symmetric near-rings
with identity.

4. AN EXAMPLE

We will demonstrate by a class of examples of zero symmetric near-rings N that
ideals as discussed in Proposition 3.4 exist, even in near-rings without DCCI. Moreover,
these examples contain a minimal ideal I to which Proposition 3.4 applies but I does
not satisfy the DCC for N -groups contained in I . Also, these examples demonstrate that
there exist zero symmetric near-rings N containing a minimal left ideal L without zero
multiplication where the minimal left ideal does contain an infinite decreasing chain of
N -subgroups but does not contain proper N -subgroups which are N -isomorphic to L.
The construction of these near-rings is not tricky at all, to prove the desired properties
requires some effort.
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Let G be a group with more than one element and S be a group which contains
an infinite descending chain of subgroups Si, i ∈ N with S1 := S and Si ⊃ Si+1. Let
G∗ := G \ {0} and for all i ∈ N, S∗

i := Si \ {0}. Let

N := {f ∈M0(G× S)|for all g ∈ G and i ∈ N :f(g × S∗
i ) ⊆ {0} × Si+1}.

One easily checks that N is a zero symmetric near-ring w.r.t pointwise addition of
functions and function composition which is acting faithfully on the N -group G× S.

Suppose that I is a non-trivial N -ideal of G × S. Thus, for all f ∈ N , for all
(a, b) ∈ I and all (g, s) ∈ G× S we must have

f((g, s) + (a, b))− f((g, s)) ∈ I.

Let (a, b) ∈ I and suppose that a �= 0. Then,

f((−a, 0) + (a, b))− f((−a, 0)) = f((0, b))− f((−a, 0)) ∈ I.

Let z ∈ (G× S) \ I . Define f : G× S → G× S such that

f((−a, 0)) = −z

and
f((g, s)) = (0, 0) for(g, s) ∈ (G× S) \ {(−a, 0)},

in particular f((0, b)) = (0, 0) . Then, f ∈ N and

f((0, b))− f((−a, 0)) = z �∈ I.

Thus, the only non-trivial N -ideals of G× S must be contained in {0} × S. Let I be
an N -ideal contained in {0} × S and (0, b) ∈ I , b �= 0. Let x ∈ G∗. Then, for all
f ∈ N ,

f((x,−b) + (0, b))− f((x,−b)) = f((x, 0))− f((x,−b)) ∈ I.

Define f : G× S → G× S such that

f((x, 0)) := (c, 0), c �= 0

and
f((g, s)) = (0, 0) for(g, s) ∈ (G× S) \ {(x, 0)},

in particular f((x,−b)) = (0, 0). Then, f ∈ N and

f((x, 0))− f((x,−b)) = (c, 0) �∈ I.

So, there is no non-trivial N -ideal in G× S.
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Consequently, G× S is an N -group of type 0 with set

θ1 := {(g, 0)|g ∈ G∗}

and
θ0 := {(g, s)|g ∈ N and s ∈ S∗} ∪ {(0, 0)},

where θ1 is the set of generators and θ0 is the set of non-generators of Γ. Thus, N is
a 0-primitive near-ring.

We now show that N does not satisfy the DCCI. Note that each group {0} × Si,
i ∈ N is an N -subgroup of G × S and thus the annihilator (0 : {0} × Si), i ∈ N is
an ideal of N . Since Si ⊃ Si+1 we have that (0 : {0} × Si) ⊆ (0 : {0} × Si+1) for
i ∈ N. Let si ∈ Si \ Si+1. Let f : G× S → G× S such that

f((0, si)) = (0, si+1) with si+1 ∈ S∗
i+1

and
f((g, s)) = (0, 0) for (g, s) ∈ (G× S) \ {(0, si)}.

Then, f ∈ N and f ∈ (0 : {0} × Si+1) but f �∈ (0 : {0} × Si).
So, (0 : {0} × Si), i ∈ N is an infinite properly descending chain of ideals of the

near-ring N . So N does not satisfy the DCCI, nor the DCCL nor the DCCN.
Clearly, (0 : θ0) is a non-zero left ideal of the near-ring. Let δ ∈ θ0 and n ∈ N .

Then N (nδ) ⊆ Nδ �= Γ and so we see that Nθ0 ⊆ θ0. Hence, (0 : θ0) is an
ideal. By faithfulness of N on G × S we have that (0 : θ1) ∩ (0 : θ0) = {0}. From
now on we assume that G is a finite group. Since (0 : θ1) = ∩γ∈θ1(0 : γ) and
θ1 = {(g, 0)|g ∈ G∗}, there is a finite number n of elements {γ1, . . . , γn} ⊆ θ1 such
that ∩n

i=1((0 : γi)∩ (0 : θ0)) = {0}. So, Proposition 3.4 applies to (0 : θ0) and we see
that (0 : θ0) is a minimal ideal. In fact, (0 : θ0) is the unique minimal ideal as we will
see in Proposition 5.1.

We now demonstrate that for certain choices of G and S we do not get proper
N -subgroups of G× S which are N -isomorphic to G× S.

Let U be an N -subgroup of G×S which is N -isomorphic to G×S. Since G×S
is an N -group of type 0, also U is of type 0 and must have a generator (a, b) ∈ U .
Suppose that U is properly contained in G× S. Suppose that b = 0 and thus, a �= 0.
Then, U = N ((a, 0)) = G× S , since θ1 = {(g, 0)|g ∈ G∗}. This contradicts the fact
that U is a proper N -subgroup. So, b �= 0. Then, by definition of N ,

U = N ((a, b))⊆ {0} × S2 ⊆ {0} × S.

Hence, a proper N -subgroup of G × S which is N -isomorphic to G × S must be
contained in {0} × S. G was assumed to be a finite group, so if S is a group without
elements of finite order (and having an infinite descending chain of subgroups Si,
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i ∈ N with S1 := S and Si ⊃ Si+1, Z for example), then we cannot have that {0}×S
contains a subgroup isomorphic to G× S. Note that the condition that an isomorphic
copy of G× S is contained in {0} × S may fail for other reasons also, depending on
the groups S and G.

Now we demonstrate that (0 : θ0) is a minimal ideal which does not satisfy the
DCC on N -subgroups contained in (0 : θ0). Also we give an example of a minimal left
ideal L without zero multiplication which does not properly contain an N -subgroup
N -isomorphic to itself but does not satisfy the DCC on N -subgroups contained in L.
From Proposition 3.4 we know that (0 : θ0) is the finite direct sum of minimal left
ideals of N which are all N -isomorphic to the N -group G×S, so (0 : θ0) =

∑s
i=1 Li

for some s ∈ N and Li, i ∈ {1, . . . , s} minimal left ideals of N . Let L1 be a
minimal left ideal N -isomorphic to G × S from this decomposition of (0 : θ0). By
N -isomorphism to G × S, L1 cannot contain proper N -subgroups isomorphic to L1.
Since (0 : G×S) = {0} we must have L2

1 �= {0}. Clearly, any group {0}×Si, i ∈ N

is an N -subgroup of G× S. So by N -isomorphism, also L1 does contain an infinite
properly decreasing chain of N -subgroups and so does (0 : θ0).

5. 0-PRIMITIVE NEAR-RINGS

The results of Section 3 will now be applied to study 0-primitive near-rings. First we
note that 0-primitive near-rings containing a minimal ideal are subdirectly irreducible
near-rings.

Proposition 5.1. Let N be a zero symmetric near-ring containing a minimal ideal
H . Suppose that N is 0-primitive on the N -group Γ. Then N is a subdirectly
irreducible near-ring with heart H .

Proof. Suppose there is a non-zero ideal I such that H �⊆ I . By minimality of
H , this implies H ∩ I = {0} and therefore, HI = {0}. Let γ ∈ Γ be a generator of
the N -group Γ. Since (0 : Γ) = {0}, I ∩ (0 : Γ) = {0} and H ∩ (0 : Γ) = {0}, so
Lemma 3.2 shows that Iγ = Γ = Hγ . Consequently, there is i ∈ I such that γ = iγ .
Thus, Hγ = Hiγ = {0}, a contradiction. Thus, N is subdirectly irreducible.

Note that the class of near-rings discussed in Section 4 are examples of zero sym-
metric near-rings which are 0-primitive and subdirectly irreducible but do not have the
DCCI.

Proposition 3.4 now allows us to describe the algebraic structure of a 0-primitive
near-ring. We restrict to the situation of non-rings only, since primitive near-rings
which are rings are primitive rings in the usual sense (see [14, Proposition 4.8]). When
dealing with non-rings, the following Proposition is of great use.

Proposition 5.2. ([14, Proposition 3.4]). Let N be a zero symmetric near-ring and
Γ be a faithful N -group with generator γ . Let L1, L2 be two left ideals of N such
that L1 + (0 : γ) = L2 + (0 : γ) = N , but L1 ∩ L2 ⊆ (0 : γ). Then N is a ring.
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Also, similar to Proposition 3.4, we need some finiteness condition. As we will
see, this finiteness condition may be achieved by assuming that the near-ring has the
DCCL, for example. Remember that θ0 := {γ ∈ Γ|Nγ �= Γ} for an N -group Γ (see
Definition 3.3).

Theorem 5.3. Let N be a zero symmetric near-ring which is 0-primitive on Γ. We
assume that N is not a ring. Suppose that I := (0 : θ0) �= {0} and there is a finite
number n of elements {γ1, . . . , γn} ⊆ θ1 such that ∩n

i=1((0 : γi) ∩ I) = {0}. Then,
I = (0 : θ0) is the unique minimal ideal of N and has all the properties described in
Proposition 3.4. In particular, (0 : θ0) contains a right identity element 1r and is a
direct summand as a left ideal of N and N = (0 : θ1)+̇(0 : θ0) with J 1

2
(N ) ⊆ (0 : θ1).

If there is another N -group Γ1 on which N acts 0-primitively also, then Γ ∼=N Γ1.

Proof. As an annihilator, I := (0 : θ0) is a left ideal of N . Since Nθ0 ⊆ θ0
one easily sees that I is an ideal. By assumption I is not zero and by faithfulness of
Γ, I ∩ (0 : Γ) = {0}. Hence, Proposition 3.4 applies to the ideal I = (0 : θ0). In
particular, (0 : θ0) is a minimal ideal and by Proposition 5.1 we have that I = (0 : θ0)
is the unique minimal ideal. It remains to show that N = (0 : θ1)+̇(0 : θ0). To
this end, we use that Proposition 3.4 guarantess the existence of a right identity 1r in
(0 : θ0) and show that (0 : θ1) = (0 : 1r).

The right identity 1r of (0 : θ0) gives rise to a decomposition of N as N = (0 :
1r)+̇N1r = (0 : 1r)+̇(0 : θ0). Let a ∈ (0 : 1r) and suppose there is a generator γ ∈ θ1
such that a �∈ (0 : γ). Thus, (0 : 1r) �⊆ (0 : γ). Since (0 : γ) is a maximal left ideal by
[14, Proposition 3.4], we get (0 : 1r) + (0 : γ) = N . By Lemma 3.2, (0 : θ0)γ = Γ,
so (0 : θ0) �⊆ (0 : γ). Hence, (0 : θ0) + (0 : γ) = N . Since (0 : 1r) ∩ (0 : θ0) = {0},
Proposition 5.2 now tells us that N is a ring, contradicting the assumptions. Therefore
a ∈ (0 : γ) for all γ ∈ θ1.

Now let a ∈ (0 : θ1). We know that (0 : θ0) =
∑s

i=1 Li, s ∈ N and for
i ∈ {1, . . . , s}, Li is a minimal left ideal of N and each of these minimal left ideals
is N -isomorphic to Γ. Consequently, we may write 1r =

∑s
i=1 ei, with ei ∈ Li. Each

of the ei, i ∈ {1, . . . , s} is a right identity of the left ideal Li, by [14, Theorem 3.43].
Suppose there is a j ∈ {1, . . . , s} such that aej �= 0, so (0 : θ1) �⊆ (0 : ej). We
know that N/(0 : ej) ∼=N Nej = Lj

∼=N Γ. Thus, (0 : ej) is a maximal left ideal
in N and therefore we have Lj + (0 : ej) = N as well as (0 : θ1) + (0 : ej) = N .
By minimality of Lj we either have Lj ∩ (0 : θ1) = Lj or Lj ∩ (0 : θ1) = {0}.
But Lj ∩ (0 : θ1) = Lj implies Ljθ1 = {0} and since we have that Ljθ0 = {0},
this contradicts the faithfulness of Γ. So, Lj ∩ (0 : θ1) = {0} holds and again, by
Proposition 5.2 we get that N is a ring, contradicting the assumptions. Therefore,
aej = 0 for all j ∈ {1, . . . , s}. Since 1r = e1 + . . .+ es is a distributive sum by [14,
Proposition 2.29], a ∈ (0 : 1r) and the equality (0 : 1r) = (0 : θ1) is proved.

We now show that two N -groups of type 0 are N -isomorphic. Let Γ1 be an N -
group of type 0 on which N acts 0-primitively also. Let θ10 be the set of non-generators
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of Γ1 and θ11 be the set of generators of Γ1. Let γ1 ∈ θ11. By Lemma 3.2 we have
that (0 : θ0)γ1 = Γ1. We know from Proposition 3.4 that (0 : θ0) =

∑s
i=1 Li, s ∈ N

and for i ∈ {1, . . . , s}, Li is a minimal left ideal of N and each of these minimal left
ideals is N -isomorphic to Γ. Consequently, there must be a minimal left ideal L1 of N
contained in (0 : θ0) such that L1

∼=N Γ and L1 �⊆ (0 : γ1). Thus, by [14, Proposition
3.10] L1

∼=N Γ1. This shows that Γ1
∼=N Γ.

In particular, Theorem 5.3 applies to 0-primitive near-rings with DCCL, provided
that (0 : θ0) �= {0}. This follows from the next corollary.

Corollary 5.4. Let N be a zero symmetric near-ring which is 0-primitive on Γ.
We assume that N is not a ring. Suppose that I := (0 : θ0) �= {0}. If I satisfies
the descending chain condition on left ideals of N contained in I , then Theorem 5.3
applies.

Proof. Due to faithfulness of Γ we must have I ∩ (0 : Γ) = {0} and so Lemma
3.5 applies. It shows that there is a finite number n of elements {γ1, . . . , γn} ⊆ θ1
such that ∩n

i=1((0 : γi) ∩ I) = {0}, so we can apply Theorem 5.3.

We keep the notation of Theorem 5.3 for a discussion and introduce a notation.

Definition 5.5. Let N be a zero symmetric near-ring which is 0-primitive on Γ and
let L be a left ideal of N . On θ1 we define an equivalence relation ∼L by γ1 ∼L γ2

iff (0 : γ1) ∩ L = (0 : γ2) ∩ L.

The finiteness condition of Theorem 5.3 can also be achieved by assuming that
I = (0 : θ0) �= {0} has only finitely many equivalence classes w.r.t ∼I on θ1.

Corollary 5.6. Let N be a zero symmetric near-ring which is 0-primitive on Γ.
We assume that N is not a ring. Suppose that I := (0 : θ0) �= {0} and there are only
finitely many different equivalence classes w.r.t ∼I . Then, there is a finite number n
of elements {γ1, . . . , γn} ⊆ θ1 such that ∩n

i=1((0 : γi) ∩ I) = {0} and Theorem 5.3
applies.

Proof. By faithfulness of Γ we have that I ∩ (0 : Γ) = {0}. The fact that
Iθ0 = {0} implies that {0} = I ∩ (0 : θ1) = I ∩ (∩γ∈θ1(0 : γ)). In case there are
only finitely many different equivalence classes w.r.t ∼I it follows that there is a finite
number n of elements {γ1, . . . , γn} ⊆ θ1 such that ∩n

i=1((0 : γi) ∩ I) = {0}.

Also, we have re-proven a well known and important result in the structure theory
of near-rings. We will point this out by formulating a corollary.

Corollary 5.7. ([14, Theorem 4.46]). Let N be a zero symmetric 1-primitive
near-ring with DCCL. Assume that N is not a ring. Then N is simple, contains a
right identity element and is the finite direct sum of N -isomorphic minimal left ideals
which are N -groups of type 1. Any two N -groups of type 1 are N -isomorphic.
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Proof. Let Γ be the N -group on which N acts 1-primitively. Thus, N acts
strongly monogenic on Γ and we have (0 : θ0) = N and (0 : θ1) = {0}. Corollary 5.4
allows us to apply Theorem 5.3 which gives the result.

So, when we have a zero symmetric and 0-primitive near-ring N with DCCL we
can describe its heart, provided that (0 : θ0) �= {0}. Given a zero symmetric 0-primitive
near-ring we unfortunately cannot be assured that (0 : θ0) �= {0}, as Proposition 7.8
and Example 7.4 in Section 7 shows. On the other hand, the example in Section 4
shows that there exist zero symmetric 0-primitive near-rings even without DCCI such
that (0 : θ0) �= {0}. When using the DCCN, we can be assured that (0 : θ0) �= {0} in
a zero symmetric and 0-primitive near-ring. This is the content of the next corollary.

Corollary 5.8. Let N be a 0-primitive near-ring with DCCN which acts 0-primitively
on the N -group Γ. Then, (0 : θ0) �= {0} and hence, Theorem 5.3 applies.

Proof. We have to prove that (0 : θ0) �= {0}. Let γ ∈ θ1. Consider the
annihilator (0 : γ) and suppose there is an ideal I of N contained in (0 : γ). Then
{0} = Iγ , contradicting Lemma 3.2. According to Theorem 3.1 a minimal ideal of
N is a direct sum of minimal left ideals. Consequently, there must be a minimal left
ideal L of N such that L �⊆ (0 : γ). Thus, by [14, Proposition 3.10] L ∼=N Γ.
Let δ ∈ θ0 and suppose that Lδ �= {0}. Thus, by minimality of L we must have
L ∩ (0 : δ) = {0} and consequently, ψ : L→ Lδ, l �→ lδ is an N -isomorphism. Since
δ ∈ θ0, Lδ �= Γ. Thus, Γ contains a proper N -subgroup which is N -isomorphic to
L and since L ∼=N Γ, Lδ ∼=N Γ. By N -isomorphism of L and Γ, L must now also
have a proper N -subgroup which is N -isomorphic to L. This violates the statement
of Proposition 2.1. Thus, L ⊆ (0 : θ0). Corollary 5.4 now shows that we can apply
Theorem 5.3.

If we have a decomposition of a zero symmetric and 0-primitive near-ring N =
(0 : θ1)+̇(0 : θ0) as in Theorem 5.3, then cleary the minimal ideal I := (0 : θ0) acts
faithfully and strongly monogenic on Γ. We will see in the example of the sub-section
5 that I can act 1-primitively on Γ, the example in Section 6 shows that there exist
zero symmetric 0-primitive near-rings where this is not the case.

A partial converse of Proposition 5.1 is the next theorem. Remember that for a left
ideal L in a near-ring N we have introduced the notation θL

0 := {l ∈ L|Nl �= L} (see
Definition 2.4).

Theorem 5.9. Let N be a zero symmetric and subdirectly irreducible near-ring
which is not a ring with heart H . Suppose that H satisfies the decending chain
condition on left ideals of N contained in H and suppose H contains a minimal left
ideal L of N such that L2 �= {0}. Suppose that L does not contain N -subgroups
properly contained in L and being N -isomorphic to L. Then, N is 0-primitive on L,
H = (0 : θL

0 ) and H has a structure as described in Theorem 3.7.
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Proof. Lemma 2.2 gives that L is an N -group of type 0. Suppose that {0} �=
(0 : L). Then, H ⊆ (0 : L) contradicting the fact that L2 �= {0}, so N is 0-primitive
on L. Lemma 2.5 shows that (0 : θL

0 ) is a non-zero ideal containing L. Corollary 5.4
now allows us to apply Theorem 5.3 which gives the result.

In the presence of the DCCN, Proposition 5.1 and Theorem 5.9 can be combined
nicely. This is not a new observation and was pointed out for example in [5] but should
be added at this point for completeness.

Theorem 5.10. Let N be a zero symmetric near-ring with DCCN. Then the fol-
lowing are equivalent:

(1) N is 0-primitive.
(2) N is subdirectly irreducible with non-nilpotent heart.

Proof. (1) ⇒ (2) follows from Proposition 5.1.
(2) ⇒ (1): Let H be the non-nilpotent heart. [14, Corollary 3.55] now shows that

a minimal left ideal contained in H is non-nilpotent. Let L ⊆ H be a minimal left
ideal. Since L2 �= {0} we must have H �⊆ (0 : L). Thus, (0 : L) = {0}. Lemma 2.1
shows that we can apply Lemma 2.2 to prove that L is an N -group of type 0.

Theorem 5.3 shows that we can describe the algebraic structure of a 0-primitive
near-ring quite well if we have a kind of finiteness condition and if we know that
(0 : θ0) �= {0}. Proposition 5.1 shows that a zero symmetric 0-primitive near-ring
will have a unique minimal ideal H , provided that there exist minimal ideals. We
now show that we can prove some interesting results concerning this minimal ideal H
without any further assumptions. In fact, we now prove a kind of “density” result for
the heart H of a zero symmetric and 0-primitive near-ring. The result is similar to the
well known [14, Theorem 4.30] which states that a zero symmetric and 0-primitive
near-ring allows interpolation on generators of Γ which have different annihilators. We
now will see that, although H does not have to be 0-primitive again (see [14, Remark
4.50] or the example in Section 6), H also allows such a kind of interpolation. In our
case we will explicitely assume that the 0-primitive near-ring is not 2-primitive. Ideals
in 2-primitive near-rings are known to be 2-primitive again, see [14, Theorem 4.49],
so we do not loose any information. Note that the example in Section 6 will show that
the heart H of a zero symmetric and 0-primitive near-ring need not be 0-primitive on
Γ again, so [14, Theorem 4.30] does not directly carry over. We need a lemma first:

Lemma 5.11. Let N be a zero symmetric and 0-primitive near-ring N which acts
0-primitively on Γ. Let I be an ideal of N . Assume that I is not a ring. Let m ∈ N

and γ1, . . . , γm ∈ θ1 such that for i, j ∈ {1, . . . , m}, i �= j, γi �∼I γj . Let γ ∈ θ1.
Then, ∩m

i=1(0 : γi) ∩ I ⊆ (0 : γ) ∩ I implies that there is a j ∈ {1, . . . , m} such that
(0 : γj) ∩ I = (0 : γ) ∩ I .



894 Gerhard Wendt

Proof. Let γ ∈ θ1. By Lemma 3.2 we have Iγ = Γ. So, h : I → Γ, i �→ iγ is
an N -epimorphism with kernel (0 : γ)∩ I . For the proof we introduce a notation. Let
γ ∈ θ1. Then, (0 : γ)∩ I := (0 : γ)I . Thus, I/(0 : γ)I

∼=N Γ. Since Γ is an N -group
of type 0, we have that I/(0 : γ)I is an N -group of type 0. Therefore, (0 : γ)I is a
left ideal of I and a maximal N -ideal of the N -group I .

We prove the statement by induction on m. Let m = 1, γ ∈ θ1 and γ1 ∈ θ1.
Both, (0 : γ1)I and (0 : γ)I are maximal N -ideals of the N -group I and therefore,
(0 : γ1)I ⊆ (0 : γ)I implies (0 : γ1)I = (0 : γ)I .

Now assume that ∩m+1
i=1 (0 : γi)I ⊆ (0 : γ)I. If (0 : γm+1)I ⊆ (0 : γ)I , then we are

done since maximality of these N -ideals of I imply equality. By induction hypothesis
we are done if ∩m

i=1(0 : γi)I ⊆ (0 : γ)I, also. So assume that ∩m
i=1(0 : γi)I �⊆ (0 : γ)I

and (0 : γm+1)I �⊆ (0 : γ)I . Maximality of (0 : γ)I as an N -ideal now implies that

I = (0 : γm+1)I + (0 : γ)I

as well as
I = ∩m

i=1(0 : γi)I + (0 : γ)I.

Γ is a faithful I-group with generator γ and I is assumed not to be a ring. So,
Proposition 5.2 shows that

∩m+1
i=1 (0 : γi)I = ∩m

i=1(0 : γi)I ∩ (0 : γm+1)I �⊆ (0 : γ)I.

But this violates the induction assumption. So the proof is complete.

Theorem 5.12. Let N be a zero symmetric near-ring which is 0-primitive and not
2-primitive on Γ. Let H be a minimal ideal of N . Let m ∈ N and γ1, . . . , γm ∈ θ1
such that for i, j ∈ {1, . . . , m}, i �= j, γi �∼H γj . Let δ1, . . . , δm ∈ Γ. Then H is not
a ring and there exists an element h ∈ H such that hγi = δi for all i ∈ {1, . . . , m}.

Proof. By Proposition 5.1, N is subdirectly irreducible with heart H . If
J2(N ) = {0}, then N is a subdirect product of 2-primitive near-rings and following
from subdirect irreducibility, N is 2-primitive, contradicting our assumptions. Thus,
H ⊆ J2(N ). By [14, Theorem 5.21] J2(H) = J2(N )∩H = H . First assume that H
is a ring. Then, by [14, Proposition 5.3] J0(H) = H . Thus, by [14, Theorem 5.37]
H is quasiregular in H . This means by definition of quasiregularity, [14, Definition
3.36], that for all z ∈ H , z is contained in the left ideal LH

z of H which is generated
by the set {h − hz|h ∈ H}. We proceed to show that z is a quasiregular element of
the near-ring N . Thus we have to show that z is contained in the left ideal Lz which
is generated by the set {n− nz|n ∈ N}.

Let L be the left ideal of N which is generated by the set {h− hz|h ∈ H}. Since
{h−hz|h ∈ H} ⊆ {n−nz|n ∈ N} we have that L ⊆ Lz . On the other hand, L∩H
is a left ideal of H containing the set {h − hz|h ∈ H}, since {h− hz|h ∈ H} ⊆ H .
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Now, LH
z is the intersection of all left ideals of H containing {h − hz|h ∈ H} and

hence, LH
z ⊆ L ∩H . So we see that LH

z ⊆ L ⊆ Lz. So, z ∈ Lz and we see that z is
quasiregular in N . Thus, H is a quasiregular ideal of N and by [14, Theorem 5.37]
H ⊆ J0(N ). This contradicts 0-primitivity of N . Therefore we can be assured that H
is not a ring.

Note that the statement of the theorem is trivial if m = 1, so let m ≥ 2. For
i ∈ {1, . . . , m} we define

Li := ∩m
j=1,j �=i(0 : γj) ∩H.

Lemma 5.11 shows that Li �⊆ (0 : γi) ∩ H . Since Li is a left ideal of N we get that
Liγi is a non-zero N -ideal of Γ and therefore, by 0-primitivity of N , Liγi = Γ. So,
for all i ∈ {1, . . . , m} there is an element li ∈ Li such that liγi = δi. By definition
of Li we have Liγj = {0} if j �= i, j ∈ {1, . . . , m}. Now let k = (l1 + . . .+ lm).
Then, kγi = δi for all i ∈ {1, . . . , m}. Since for i ∈ {1, . . . , m}, Li ⊆ H we have
that k ∈ H and the proof is complete.

5.1. An example. Theorem 5.3 may be used to construct special examples of 0-
primitive near-rings. We will use this in the next Section 6 to prove that the non-
nilpotent heart of a zero symmetric subdirectly irreducible near-ring does not have to
be subdirectly irreducible again. Before, we will construct a class of finite 0-primitive
near-rings which are not 1-primitive (hence not simple) which have the property that
they are Js-radical and do not contain a right identity element (this is in contrast to the
situation of finite zero symmetric 1-primitive near-rings which are simple and contain
a right identity element, see [14, Theorem 4.46]). Also, they contain a minimal ideal
which is a 1-primitive near-ring (in contrast to the example in the next Section 6).
The Js-radical of a near-ring N is a Jacobson type radical which is the smallest ideal
containing J 1

2
(N ) if N has DCCL (see [13, Corollary 8.23]). It is mentioned in [13,

p. 146] that examples of a near-ring N with J0(N ) �= Js(N ) are not very common
and usually quite complicated to construct. So we take the opportunity to present an
easy to construct example of a zero symmetric and 0-primitive near-ring N where we
will have Js(N ) = N . Also, this example serves as an example how to use Theorem
5.3 to study the structure of a 0-primitive near-ring.

Let (Γ,+) be a group containing two non-trivial subgroups S1 and S2, S1 ⊂ S2,
which form a chain, thus {0} ⊂ S1 ⊂ S2 ⊂ Γ. Let

N := {f : Γ → Γ|f(0) = 0 and f(S2) ⊆ S1 and f(S1) = {0}}.

It is straightforward to see that N is a zero symmetric near-ring which acts faithfully
but not strongly monogenic on Γ. By definition of functions in N we see that the
elements in Γ \ S2 can be mapped arbitrarily, so we have θ1 = Γ \ S2 and θ0 = S2.
Suppose there exists a non-trivial N -ideal I in Γ. Since N is zero symmetric we must
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have that I is an N -subgroup also, so I ⊆ θ0. Let i ∈ I \ {0}. Thus, i ∈ θ0 = S2. Let
γ1 ∈ Γ\S2. Then, since (θ0,+) is a group, we have that γ1+i �∈ θ0. Consequently, we
can define a function f : Γ → Γ such that f(γ1 + i) = γ1 and f(δ) = 0, δ ∈ Γ \ {γ1}.
Then, f ∈ N and f(γ1+i)−f(γ1) = γ1 �∈ θ0. Hence, I is not an N -ideal. This shows
that N acts 0-primitively but not 1-primitively on Γ. Clearly (and also from Corollary
5.8), (0 : θ0) �= {0}. Consequently, Theorem 5.3 shows that N = (0 : θ1)+̇(0 : θ0)
and (0 : θ1) �= {0}.

We now show that (0 : θ1)2 = {0}. Let f1, f2 ∈ (0 : θ1). For γ ∈ θ1, f1(f2(γ)) =
0 since the functions in N are zero preserving. Let δ ∈ θ0 = S2. Then, f1(f2(δ)) =
f1(δ1) with δ1 ∈ S1 because f2(S2) ⊆ S1. But f1(δ1) = 0 since f1(S1) = {0}. This
shows that (0 : θ1) is nilpotent. Thus, by [14, Theorem 5.37] (0 : θ1) ⊆ J 1

2
(N ).

Theorem 5.3 shows that J 1
2
(N ) ⊆ (0 : θ1), so J 1

2
(N ) = (0 : θ1). Also from Theorem

5.3 we have that N = J 1
2
(N )+̇(0 : θ0), (0 : θ0) being the heart of N . So, the smallest

ideal containing J 1
2
(N ) now must equal N , so Js(N ) = N .

Note that (N/(0 : θ0))2 = {0}. So the factor near-ring of a 0-primitive near-ring
by (0 : θ0) does not have to be 0-primitive again, not even 0-semisimple. In our case
it is 0-radical, so J0(N/(0 : θ0)) = N/(0 : θ0) by [14, Theorem 5.37].

Also, the example shows that contrary to the situation in 1-primitive near-rings
(see [14, Theorem 4.46]) a finite 0-primitive near-ring does not necessarily have a
multiplicative right identity. Suppose g ∈ N would be a multiplicative right identity.
Then, by [14, Theorem 3.43], g = e1 + e2 with e1 ∈ (0 : θ1) and e2 ∈ (0 : θ0) and
e21 = e1. But we just proved that (0 : θ1)2 = {0}, so e21 = 0. Thus, g = e2 and so,
N = (0 : θ0) which is not true, since N is not acting 1-primitively on Γ. So, N has
no right identity.

Clearly, H := (0 : θ0) acts faithfully and strongly monogenic on Γ and any
element in θ1 generates Γ as an H-group (note that this must be the case by Lemma
3.2). Suppose that U is a non-trivial H-ideal and thus an H-group in Γ. Then,
U ⊆ θ0. Let u ∈ U \ {0}. Let γ1 ∈ Γ \ S2. Then, since (θ0,+) is a group, we
have that γ1 + u �∈ θ0. Consequently, similar as before, we can define a function
f : Γ → Γ such that f(γ1 + u) = γ1 and f(δ) = 0, δ ∈ Γ \ {γ1}. Then, f ∈ H and
f(γ1 + u) − f(γ1) = γ1 �∈ θ0. Hence, U is not an H-ideal. This shows that (0 : θ0)
acts 1-primitively on Γ and is a 1-primitive near-ring and hence, (0 : θ0) is a simple
near-ring. That this is not always the case will be shown in the example of the next
section. What is more, Proposition 5.1 shows that N is subdirectly irreducible. Since
N is not 1-primitive we have J1(N ) �= {0}. Thus, since (0 : θ0) is the heart of N we
have (0 : θ0) ⊆ J1(N ).

6. A MINIMAL IDEAL WHICH IS NOT NILPOTENT AND NOT SUBDIRECTLY IRREDUCIBLE

The result of Theorem 5.3 now allows us to adress an open question in the theory of
minimal ideals of near-rings. In [1] the question was raised if a non-nilpotent minimal
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ideal of a zero symmetric near-ring is a subdirectly irreducible near-ring. This is true
and was proved in [7] for example when the near-ring is distributively generated (see
also [4] concerning the topic of ideals in distributively generated near-rings). The
general case remained open in [1] and this problem was also adressed in [3]. For more
details and references concerning this topic consult [1] or [3].

We will now give an example that in general a minimal ideal which is not nilpo-
tent does not have to be subdirectly irreducible. In fact, the example shows that the
non-nilpotent heart of a zero symmetric subdirectly irreducible near-ring need not be
subdirectly irreducible again. To fix the notation, let (Γ,+) be a group. Then M0(Γ) is
the near-ring of zero preserving functions mapping from Γ to Γ where near-ring addition
is the pointwise addition of functions and multiplication is function composition.

Let (Γ,+) := (Z8 × Z8,+). Let θ0 := {0, 2, 4, 6} × {0, 2, 4, 6}. (θ0,+) is a
subgroup of (Γ,+). Let S1 := {0, 4} × {0} and S2 := {0} × {0, 4}. Both (S1,+)
and (S2,+) are subgroups of (θ0,+). Let

N : = {f ∈M0(Γ)|f(θ0) ⊆ θ0 and ∀(x, y) ∈ Γ \ θ0 :

f((x, y)) = f((x, y) + (4, 0)) = f((x, y) + (0, 4))}.
It is easy to see that N is a zero symmetric subnear-ring of M0(Γ) acting faithfully on
Γ. Note that whenever (x, y) ∈ Γ\θ0, then also {(x, y)+(4, 0), (x, y)+(0, 4)} ⊆ Γ\θ0.
Both elements (4, 0) and (0, 4) are of additive order 2. So, for an element (x, y) ∈ Γ\θ0
and f ∈ N , f(x, y) = f(4 + x, y) = f(x, y+ 4) = f(x+ 4, y+ 4). From that we see
that always 4 elements in Γ\θ0 are mapped to the same value by a function in N . Each
element in Γ\θ0 is a generator of Γ as an N -group. So, a proper N -ideal of Γ must be
contained in θ0. Since elements from θ0 can be mapped arbitrarily into θ0 again, we see
that the only subgroup of (θ0,+) which is invariant under the near-ring action is (θ0,+)
itself. So, the only possible N -ideal of Γ is (θ0,+) (it certainly is an N -subgroup).
Let f ∈ N and suppose that θ0 is an N -ideal, indeed. Then, since (2, 0) ∈ θ0, we
must have f((1, 0) + (2, 0)) − f((1, 0)) = f((3, 0)) − f((1, 0)) ∈ θ0. Both, (3, 0)
and (1, 0) are elements in Γ \ θ0. Since f((1, 0)) = f((5, 0)) = f((1, 4)) = f((5, 4))
and f((3, 0)) = f((7, 0)) = f((3, 4)) = f((7, 4)) we see that (3, 0) and (1, 0) can be
independently mapped arbitrarily into Γ. Let δ1 ∈ θ0 and δ2 �∈ θ0. Let f : Γ → Γ such
that

f((3, 0)) = f((7, 0)) = f((3, 4)) = f((7, 4)) = δ1

and
f((1, 0)) = f((5, 0)) = f((1, 4)) = f((5, 4)) = δ2

and

f(γ) = 0 for γ ∈ Γ \ {(3, 0), (7, 0), (3, 4), (7, 4), (1, 0), (5, 0), (1, 4), (5, 4)}.
Then, f ∈ N and f((3, 0))− f((1, 0)) �∈ θ0. So, θ0 is not an N -ideal. Hence, N acts
0-primitively on Γ. Clearly, (0 : θ0) �= {0}, this also follows from Corollary 5.8 by the
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way. So, it follows from Theorem 5.3 that I := (0 : θ0) is a minimal and non-nilpotent
(it contains a right identity element) ideal of N , in fact I is the heart of the subdirectly
irreducible near-ring N by Proposition 5.1. Let

J1 := {f ∈ I |∀γ ∈ Γ : f(γ) ∈ S1}
and

J2 := {f ∈ I |∀γ ∈ Γ : f(γ) ∈ S2}.
Obviously, J1 and J2 are non-zero subsets of N . Since S1 and S2 are groups and
the sum of two elements of I is again in I , J1 and J2 are closed w.r.t. pointwise
addition of functions. Let j ∈ J1, f ∈ N . Then, since I is an ideal, jf ∈ I . Let
γ ∈ Γ and f(γ) = γ1. Then, j(f(γ)) = j(γ1) ∈ S1 and so we see that J1 is closed
under composition of functions and is even a right ideal of N and so of I (that (J1,+)
is a normal subgroup of (N,+) clearly follows from the fact that (Γ,+) is abelian).
Similary, this holds for J2. So we have that J1 and J2 are non-zero right ideals of N
and therefore of I . We now prove that they are also left ideals of I . Thus we have to
show that for all i1, i2 ∈ I and for all j ∈ J1, i1(i2 + j)− i1i2 ∈ J1 and similary for
J2. Let i1, i2 ∈ I and j ∈ J1. First note that since I is an ideal, i1(i2 + j)− i1i2 ∈ I .
Let γ ∈ Γ. If j(γ) = (0, 0), then clearly (i1(i2 + j) − i1i2)(γ) = (0, 0) ∈ S1. So
suppose that j(γ) �= (0, 0). Since j(γ) ∈ S1 this means that j(γ) = (4, 0). First
suppose that i2(γ) ∈ θ0, so also i2(γ) + j(γ) = i2(γ) + (4, 0) ∈ θ0, by definition of
θ0. Since i1 ∈ I = (0 : θ0) we have that

(i1(i2 + j) − i1i2)(γ) = i1(i2(γ) + j(γ))− i1i2(γ)

and
i1(i2(γ) + j(γ))− i1i2(γ) = (0, 0)− (0, 0) ∈ S1.

Now suppose that i2(γ) �∈ θ0. Consequently, by definition of functions in N , i1(i2(γ)+
(4, 0)) = i1(i2(γ)). Therefore,

(i1(i2 + j) − i1i2)(γ) = i1(i2(γ) + j(γ))− i1i2(γ)

and

i1(i2(γ) + j(γ))− i1i2(γ) = i1(i2(γ) + (4, 0))− i1(i2(γ)) = (0, 0) ∈ S1.

Thus, J1 is a left ideal and therefore and ideal of I .
Now we have to show that J2 is a left ideal of I . Thus we have to show that for

all i1, i2 ∈ I and for all j ∈ J2, i1(i2 + j) − i1i2 ∈ J2. Again since I is an ideal,
i1(i2 + j) − i1i2 ∈ I . Let i1, i2 ∈ I and j ∈ J2. Let γ ∈ Γ. If j(γ) = (0, 0),
then clearly (i1(i2 + j) − i1i2)(γ) = (0, 0) ∈ S2. So suppose that j(γ) �= (0, 0).
Since j(γ) ∈ S2 this means that j(γ) = (0, 4). First suppose that i2(γ) ∈ θ0, so also
i2(γ) + j(γ) = i2(γ) + (0, 4) ∈ θ0. Since i1 ∈ I = (0 : θ0) we have that
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(i1(i2 + j) − i1i2)(γ) = i1(i2(γ) + j(γ))− i1i2(γ)
and

i1(i2(γ) + j(γ))− i1i2(γ) = (0, 0)− (0, 0) ∈ S2.

Now suppose that i2(γ) �∈ θ0. Consequently, by definition of functions in N , i1(i2(γ)+
(0, 4)) = i1(i2(γ)). Therefore,

(i1(i2 + j) − i1i2)(γ) = i1(i2(γ) + j(γ))− i1i2(γ)

and

i1(i2(γ) + j(γ))− i1i2(γ) = i1(i2(γ) + (0, 4))− i1(i2(γ)) = (0, 0) ∈ S2.

Thus, J2 is a left ideal and therefore and ideal of I .
Since S1 ∩ S2 = {(0, 0)}, J1 ∩ J2 = {0}. Therefore, I contains two non-zero

ideals with zero intersection and I cannot be subdirectly irreducible. So, there is no
unique minimal ideal in I . Note that N is 0-primitive on Γ but not 1-primitive, so
J1(N ) �= {0} as a consequence of Proposition 5.1. Thus, the minimal ideal I is
contained in J1(N ) ⊆ J2(N ) and by [14, Theorem 5.21] J2(I) = I . Note also that
the ideal I of this example is also an example of a minimal ideal which does not have
zero multiplication but is not simple as a near-ring. Consequently, I is not a 1-primitive
near-ring, by [14, Theorem 4.46]. Since I acts stronlgy monogenic on Γ this shows
that I is not acting 0-primitively on Γ. The first example of a non-nilpotent minimal
ideal I in a zero symmetric near-ring such that I is not a simple near-ring was given by
K. Kaarli, see [8, Proposition 3.5]. In Kaarli’s example I contains a unique minimal
ideal S such that S2 = {0}, so I is subdirectly irreducible.

We summarize the results in this section as a proposition:

Proposition 6.1. There exists a finite zero symmetric subdirectly irreducible near-
ring N with (N,+) abelian and heart H such that H contains a right identity element
and is not nilpotent and H is not a subdirectly irreducible near-ring.

7. SIMPLE NEAR-RINGS

For a ring R it is well kown that if R contains a minimal left ideal and is simple,
then R is a primitive ring or R2 = {0}. If one considers a zero symmetric near-ring N
which is simple, then N 2 = {0} or N is 1-primitive if one assumes that the near-ring
satisfies the DCCN, as we will see in Corollary 7.6. Since in a near-ring which is a
ring, the DCCN equals the DCCL, Corollary 7.6 re-proves the ring theory result. This
observation was already made in [6] and will be re-proven in this section. First note
the following easy to establish proposition:

Proposition 7.1. Let N be a zero symmetric simple near-ring which contains a
minimal N -subgroup M of N such that M2 �= {0}. Then N acts 2-primitively on M .
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Proof. Due to the simplicity of N , (0 : M) = {0} or (0 : M) = N . In case
NM = {0}, this would imply M2 = {0}, a contradiction. Due to minimality of
M as an N -subgroup it follows that M is an N -subgroup of type 2 and so, N acts
2-primitively on M .

Proposition 7.1 is easy to prove and well known (see [14, Corollary 4.47]) but it
requires a minimal condition on N -subgroups. In this section we address the question
what can be said if we require the existence of a minimal left ideal only.

The result concerning simple rings with a minimal left ideal and also Proposition
7.1 can be extended accordingly in the following way:

Theorem 7.2. Let N be a zero symmetric near-ring which is a simple near-ring.
Let L be a minimal left ideal such that L2 �= {0}. Suppose that L does not contain
N -subgroups properly contained in L and being N -isomorphic to L. Then N is a
1-primitive near-ring, acting 1-primitively on L.

Proof. By Lemma 2.2, L is an N -group of type 0. We proceed to show that
L is an N -group of type 1 in our situation. Thus, we have to show that N acts
strongly monogenic on L. Lemma 2.5 implies that (0 : θL

0 ) is a non-zero ideal of N
and by simplicity of N this implies that (0 : θL

0 ) = N . Consequently, for l ∈ θL
0 we

have Nl = {0}, so N acts strongly monogenic on L and L is an N -group of type 1.
Suppose (0 : L) �= {0}. Then, (0 : L) is a non-zero ideal of N and by simplicity of
N , (0 : L) = N . This contradicts L2 �= {0}. So, N acts faithfully on L, L being an
N -group of type 1. This shows that N is 1-primitive on L.

In case we deal with simple near-rings with identity we can rule out the case of
having minimal left ideals with zero multiplication and we get the following:

Theorem 7.3. Let N be a zero symmetric simple near-ring with identity containing
a minimal left ideal L. Then one of the following holds:

(1) N is a 2-primitive near-ring, acting 2-primitively on L.
(2) Every minimal left ideal J of N contains an N -subgroup M , M �= J , such that

M is N -isomorphic to J and J2(N ) = N .

Proof. We assume that there is a minimal left ideal L which does not contain N -
subgroups properly contained in L and being N -isomorphic to L. Suppose L2 = {0}.
Thus, {0} �= L ⊆ (0 : L). By simplicity of N this implies N = (0 : L), so
NL = {0}. But N contains an identity element, so L ⊆ NL = {0} which is a
contradiction. Consequently, L2 �= {0} and Theorem 7.2 shows that N is a 1-primitive
near-ring acting on L. Since N has an identity element, N is also 2-primitive by [14,
Proposition 3.7].

Assume that every minimal left ideal J contains an N -subgroup M , M �= J , such
that M is N -isomorphic to J . By simplicity of N we can only have J2(N ) = {0} or
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J2(N ) = N . Suppose that J2(N ) = {0}. Thus, by [14, Theorem 5.2] the intersection
of the 2-primitive ideals of N is zero. Since N is assumed to be simple, the zero
ideal must be a 2-primitive ideal and consequently, N must be a 2-primitive near-ring
acting 2-primitively on the N -group Γ, say. Thus, Γ is an N -group of type 2. Let J
be a minimal left ideal in N . Since Γ is faithful, JΓ �= {0}, so there is an element
γ ∈ Γ such that Jγ �= {0}. Since Γ is a strongly monogenic N -group this implies
that Nγ = Γ. Consequently, Jγ is an N -ideal in Γ and by 2-primitivity, Γ = Jγ .
Thus, ψ : J → Γ, j �→ jγ is an N -epimorphism with kernel J ∩ (0 : γ) = {0} due to
minimality of J . Thus, ψ is an N -isomorphism. This is a contradiction to Γ being an
N -group of type 2 because J contains a proper N -subgroup M .

Note that the identity in Theorem 7.3 was only needed to guarantee that nilpotent
left ideals do not exist in the near-ring. So one could appropriately generalize the
statement of the theorem. The situation in item (2) of Theorem 7.3 may occur. There
exist zero symmetric simple J2-radical near-rings with identity and containing minimal
left ideals.

Example 7.4. Let D be a principal ideal domain which is not a field. Let D2 be
the natural right D-module of the ring D. Then,

MD(D2) := {f : D2 → D2|∀g ∈ D2∀d ∈ D : f(gd) = f(g)d}
is a zero symmetric near-ring with identity.

It is shown in [11, Theorem 2.12] that MD(D2) is a simple near-ring. In [12,
Theorem 2.2] it is shown that J2(MD(D2)) = MD(D2). In [11, Theorem 3.5] it is
shown that MD(D2) contains minimal left ideals. Thus, MD(D2) is a near-ring whose
structure is as described in item (2) of Theorem 7.3.

Consequently, we formulate as a proposition:

Proposition 7.5. There exists a zero symmetric simple near-ring N with identity
and containing a minimal left ideal such that J2(N ) = N and every minimal left ideal
L contains an N -subgroup M , M �= L, such that M is N -isomorphic to L.

As a corollary, Theorem 7.2 triggers a result concerning simple near-rings with
DCCN which also was proved in [6].

Corollary 7.6. Let N be a zero symmetric near-ring with DCCN which is a
simple near-ring. Then one of the following holds:

(1) N 2 = {0}.
(2) N is a 1-primitive near-ring, acting 1-primitively on some minimal left ideal L.

Proof. Suppose that N �= {0}. The DCCN guarantees the existence of a minimal
left ideal L. Due to simplicity of the near-ring N , N is minimal as an ideal. Suppose
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first that L2 = {0}. Then, L is a nilpotent left ideal. Since L ∩ N �= {0}, [14,
Corollary 3.55] implies that N is nilpotent. Thus, there is a natural number k > 1
such that N k = {0} and Nk−1 �= {0}. Consequently, Nk−1 ⊆ (0 : N ). Thus, (0 : N )
is a non-zero ideal of N . By simplicity of N this implies N = (0 : N ). So, we have
proven N 2 = {0} in case the minimal left ideal L is such that L2 = {0}.

Thus, we now assume that L2 �= {0}. Proposition 2.1 shows that we can apply
Theorem 7.2 giving the result.

In Proposition 7.1 we have seen that given a zero symmetric simple near-ring N
containing a minimal N -subgroup M of N such that M2 �= {0}, then N acts 2-
primitively on M . Corollary 7.6 claims that given a zero symmetric near-ring N with
DCCN which is a simple near-ring and N 2 �= {0} then N acts 1-primitively on a
minimal left ideal L. We now present an example of a finite zero symmetric near-ring
N which does not have zero multiplication and which is not acting 1-primitively on
some minimal N -subgroup of N but is acting 1-primitively only on a minimal left
ideal. While simple near-rings with identity which are J2-radical are hard to construct
(the only class of that type known to the author is the class of near-rings discussed in
Example 7.4) it is easy to construct simple J2-radical near-rings which contain a right
identity element, as the example also shows.

Example 7.7. Let (N,+) := (Z9,+), the cyclic group of order 9 and define the
multiplication ∗ as follows:

∗ 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 8 1 0 0 0
2 0 0 0 0 7 2 0 0 0
3 0 0 0 0 6 3 0 0 0
4 0 0 0 0 5 4 0 0 0
5 0 0 0 0 4 5 0 0 0
6 0 0 0 0 3 6 0 0 0
7 0 0 0 0 2 7 0 0 0
8 0 0 0 0 1 8 0 0 0

(N,+, ∗) is a so called planar near-ring (see [14, Theorem 8.96 and Example 1.4] for
the details of constructing planar near-rings using fixedpointfree automorphism groups;
here we use the group ({id,−id}, ◦) which acts without fixedpoints on (Z9,+)). U :=
({0, 3, 6},+) is the only subgroup of (N,+) and in fact it is an N -subgroup of N .
Since 1 ∗ (1 + 3) − 1 ∗ 1 = 1 ∗ 4 − 1 ∗ 1 = 8 �∈ U , U is not a left ideal of N . From
that we see that N itself is an N -group of type 1 and N acts 1-primitively on N but
not on U which is the minimal N -subgroup contained in N . Clearly, N is a simple
near-ring and since NU = {0} we have that J2(N ) = N by [14, Corollary 5.45].
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In any case zero symmetric simple near-rings which contain a right identity element
are 0-primitive near-rings. This parallels the result in ring theory which says that any
simple ring with a right identity is primitive. We add one more aspect concerning the
Jacobson radical of type 1.

Proposition 7.8. Let N be a zero symmetric simple near-ring which contains a
multiplicative right identity. Then N is a 0-primitive near-ring. Let Γ be the N -group
of type 0 the near-ring N acts on 0-primitively. Let θ0 := {δ ∈ Γ|Nδ �= Γ}. If
J1(N ) = N , then (0 : θ0) = {0}.

Proof. Due to the right identity element of N , the zero ideal is a modular ideal
(see [14, Remark 3.21]). By simplicity of N , the zero ideal is a maximal ideal and so
a maximal modular ideal. Hence, by [14, Theorem 4.36] the zero ideal is a 0-primitive
ideal which proves that N is a 0-primitive near-ring.

Suppose that (0 : θ0) �= {0}. Since Nθ0 ⊆ θ0 we have that (0 : θ0) is an ideal of
N and by simplicity, N = (0 : θ0). Hence for any δ ∈ θ0, Nδ = 0 and so N acts
1-primitively on Γ. Thus, J1(N ) = {0} �= N .

In case a near-ring N has an identity element, J2(N ) = J1(N ). So we see from
Proposition 7.8 that a near-ring N as described in Example 7.4 is 0-primitive and
serves as an example of a zero symmetric 0-primitive near-ring with (0 : θ0) = {0}
(see Theorem 5.3 and the subsequent discussion).

8. OPEN QUESTIONS

In Section 6 we could answer an open question in the theory of minimal ideals of
near-rings. However, new questions arise. In particular it would be interesting to know
if given a zero symmetric near-ringN with DCCL which is subdirectly irreducible with
heart H and H2 �= {0}, then does H contain a minimal left ideal L of N such that
L2 �= {0}? Such a situation occured when studying 0-primitive near-rings in Section
5. In case N has the DCCN, this is true by Theorem 3.1.

Also of interest is the situation in Theorem 5.3. Given a zero symmetric near-ring
N which is 0-primitive on Γ and θ0 := {γ ∈ Γ|Nγ �= Γ} when is (0 : θ0) �= {0}?
From Corollary 5.8 we know that this must be true if N satisfies the DCCN. The
example in Section 4 shows that this can be true even if N does not satisfy the DCCI.
On the other hand, Example 7.4 shows that this does not have to be true always. The
near-ring N of Example 7.4 has the property that every left ideal of N contains a
minimal left ideal, by [11, Lemma 3.3] and [11, Theorem 3.5]. But from the results in
[11] we see that in general N does not have the DCCL and an example of a near-ring
of the type required in Example 7.4 and having the DCCL is not known to the author.
So, would the DCCL suffice that (0 : θ0) �= {0}? In the same setting we may ask if
near-rings of the form as described in item (2) of Theorem 7.3 do really exist if we
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assume the DCCL (instead of the existence of minimal left ideals only). Note that this
situation is very different from ring theory, for if we have a simple ring R with identity
which contains a minimal left ideal, then R satisfies the DCCL, see [10, Theorem
3.10].

Also interesting would be an example of a minimal left ideal without zero multipli-
cation in a zero symmetric near-ring N which is not an N -group of type 0 (see Lemma
2.2).
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