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LOCAL K-CONVOLUTED C-SEMIGROUPS AND
ABSTRACT CAUCHY PROBLEMS

Chung-Cheng Kuo

Abstract. Let K : [0, T0) → F be a locally integrable function, and C : X → X
a bounded linear operator on a Banach space X over the field F(=R or C).
In this paper, we will deduce some basic properties of a nondegenerate local
K-convoluted C-semigroup on X and some generation theorems of local K-
convoluted C-semigroups on X with or without the nondegeneracy, which can
be applied to obtain some equivalence relations between the generation of a non-
degenerate local K-convoluted C-semigroup on X with subgenerator A and the
unique existence of solutions of the abstract Cauchy problem:

ACP(A, f, x)

{
u′(t) = Au(t) + f(t) for a.e. t ∈ (0, T0),
u(0) = x

when K is a kernel on [0, T0), C : X → X an injection, and A : D(A) ⊂ X → X
a closed linear operator in X such that CA ⊂ AC . Here 0 < T0 ≤ ∞, x ∈ X,
and f ∈ L1

loc([0, T0), X).

1. INTRODUCTION

Let X be a Banach space over the field F(=R or C) with norm ‖ · ‖, and let
L(X) denote the family of all bounded linear operators from X into itself. For each
0 < T0 ≤ ∞, we consider the following abstract Cauchy problem:

(1.1) ACP(A, f, x)

{
u′(t) = Au(t) + f(t) for a.e. t ∈ (0, T0),
u(0) = x,

where x ∈ X , A : D(A) ⊂ X → X is a closed linear operator, and f ∈ L1
loc([0, T0), X).

A function u is called a (strong) solution of ACP(A, f, x) if u ∈ C([0, T0), X) sat-
isfies ACP(A, f, x) (that is, u(0) = x and for a.e. t ∈ (0, T0), u(t) is differentiable
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and u(t) ∈ D(A), and u′(t)=Au(t)+f(t) for a.e. t ∈ (0, T0)). For each C ∈ L(X)
and K ∈ L1

loc([0, T0), F), a family S(·)(= {S(t) | 0 ≤ t < T0}) in L(X) is called a
local K-convoluted C-semigroup on X if it is strongly continuous, S(·)C = CS(·),
and satisfies

(1.2) S(t)S(s)x = (
∫ t+s

0
−

∫ t

0
−

∫ s

0
)K(t + s − r)S(r)Cxdr

for all 0 ≤ t, s, t + s < T0 and x ∈ X (see [8]). In particular, S(·) is called a
local (0-times integrated) C-semigroup on X if K = j−1(the Dirac measure at 0) or
equivalently, S(·) is strongly continuous, S(·)C = CS(·), and satisfies

(1.3) S(t)S(s)x = S(t + s)Cx for all 0 ≤ t, s, t + s < T0 and x ∈ X

(see [1, 3-4, 26, 28, 30]). Moreover, we say that S(·) is nondegenerate, if x = 0
whenever S(t)x = 0 for all 0 ≤ t < T0. The nondegeneracy of a local K-convoluted
C-semigroup S(·) on X implies that

(1.4) S(0) = C if K = j−1, and S(0) = 0 (the zero operator on X) otherwise,

and the (integral) generator A : D(A) ⊂ X → X of S(·) is a closed linear operator in
X defined by

D(A) = {x ∈ X | there exists a yx ∈ X such that

S(·)x− K0(·)Cx = S̃(·)yx on [0, T0)}

and Ax=yx for all x∈D(A). Here Kβ(t)=K ∗jβ(t)=
∫ t

0
K(t−s)jβ(s)ds for β>−1

with jβ(t) =
tβ

Γ(β + 1)
and the Gamma function Γ(·), and S̃(t)z =

∫ t

0
S(s)zds.

In general, a local K-convoluted C-semigroup on X is called a K-convoluted C-
semigroup on X if T0 = ∞ (see [8, 17]); a (local) K-convoluted C-semigroup on X
is called a (local) K-convoluted semigroup on X if C = I(the identity operator on X)
or a (local) α-times integrated C-semigroup on X if K = jα−1 for some α ≥ 0 (see
[2, 5, 12-16, 21-25, 29, 31]). Some basic properites of a nondegenerate (local) α-times
integrated C-semigroup on X have been established by many authors (see results in
[2, 3, 26-28] for the case α = 0, in [19] for the case α ∈ N, in [14] for the case α > 0
is arbitrary with T0 = ∞ and in [18] for the general case 0 < T0 ≤ ∞), which can be
applied to deduce some equivalence relations between the generation of a nondegenerate
(local) α-times integrated C-semigroup on X with subgenerator A (see Definition 2.4
below) and the unique existence of strong or weak solutions of the abstract Cauchy
problem ACP(A, f, x) (see the results in [2-3, 26-27] for the case α = 0, in [19] when
α ∈ N and in [11, 14-15, 18, 29] when α > 0 is arbitrary). The purpose of this paper
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is to investigate the following basic properties of a nondegenerate local K-convoluted
C-semigroup S(·) on X just as results in [18] concerning local α-times integrated
C-semigroups on X when C is injective and some additional conditions are taken into
consideration.

(1.5) C−1AC = A;

(1.6)
S̃(t)x ∈ D(A) and AS̃(t)x = S(t)x − K0(t)Cx

for all x ∈ X and 0 ≤ t < T0;

(1.7) S(t)x ∈ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and 0 ≤ t < T0;

and

(1.8) S(t)S(s) = S(s)S(t) for all 0 ≤ t, s, t + s < T0

(see Theorems 2.7 and 2.11, and Corollary 2.12 below). We then deduce some equiv-
alence relations between the generation of a nondegenerate local K-convoluted C-
semigroup on X with subgenerator A and the unique existence of strong solutions of
ACP(A, f, x) in section 3 just as some results in [14, 15] concerning some equivalence
relations between the generation of a nondegenerate local α-times C-semigroup on X
with subgenerator A and the unique existence of strong solutions of ACP(A, f, x).
To do these, we will prove an important lemma which shows that a strongly contin-
uous family S(·) in L(X) is a local K-convoluted C-semigroup on X is equivalent
to say that S̃(·) is a local K0-convoluted C-semigroup on X (see Lemma 2.1 be-
low), and then show that a strongly continuous family S(·) in L(X) which commutes
with C on X is a local K-convoluted C-semigroup on X is equivalent to say that
S̃(t)[S(s)−K0(s)C]=[S(t)−K0(t)C]S̃(s) for all 0 ≤ t, s, t + s < T0 (see Theorem
2.2 below). In order, we show that a ∗ S(·) is a local a ∗ K-convoluted C-semigroup
on X if S(·) is a local K-convoluted C-semigroup on X and a ∈ L1

loc([0, T0), F).
In particular, jβ ∗ S(·) is a local Kβ-convoluted C-semigroup on X if S(·) is a local
K-convoluted C-semigroup on X and β > −1 (see Proposition 2.3 below). Here

f ∗ S(t)x =
∫ t

0
f(t − s)S(s)xds for all x ∈ X and f ∈ L1

loc([0, T0), F). We also

show that a strongly continuous family in L(X) which commutes with C on X is a
local K-convoluted C-semigroup on X when S(·) has a subgenerator (see Theorem
2.5 below), which had been proven in [8] by another method similar to that already
employed in [14] in the case that S(·) has a closed subgenerator and C is injective;
and the generator of a nondegenerate local K-convoluted C-semigroup S(·) on X is
the unique subgenerator of S(·) which contains all subgenerators of S(·) and each sub-
generator of S(·) is closable and its closure is also a subgenerator of S(·) when S(·)
has a subgenerator (see Theorems 2.7 and 2.11, and Corollary 2.12 below). This can
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be applied to show that CA ⊂ AC and S(·) is a nondegenerate local K-convoluted
C-semigroup on X with generator C−1AC when C is injective, K0 a kernel on [0, T0)

(that is, f = 0 on [0, T0) whenever f ∈ C([0, T0), F) with
∫ t

0
K0(t − s)f(s)ds = 0

for all 0 ≤ t < T0) and S(·) a strongly continuous family in L(X) with closed subgen-
erator A. In this case, C−1A0C is the generator of S(·) for each subgenerator A0 of
S(·) (see Theorem 2.13 below). Some illustrative examples concerning these theorems
are also presented in the final part of paper.

2. BASIC PROPERTIES OF LOCAL K-CONVOLUTED C-SEMIGROUPS

We will deduce an important lemma which can be applied to obtain an equivalence
relation between the generation of a local K-convoluted C-semigroup S(·) on X and
the equation

(2.1) S̃(t)[S(s)− K0(s)C] = [S(t)− K0(t)C]S̃(s) for all 0 ≤ t, s, t + s < T0

(see a result in [18] for the case of local α-times integrated C-semigroup and a cor-
responding statement in [9] for the case of (a, k)-regularized (C1, C2)-existence and
uniqueness family).

Lemma 2.1. Let S(·) be a strongly continuous family in L(X). Then S(·) is a
local K-convoluted C-semigroup on X if and only if S̃(·) is a local K0-convoluted
C-semigroup on X .

Proof. We will show that

(2.2)

d

dt
[(

∫ t+s

0
−

∫ t

0
−

∫ s

0
)K0(t + s − r)S̃(r)Cxdr] + K0(s)S̃(t)Cx

= (
∫ t+s

0
−

∫ t

0
−

∫ s

0
)K(t + s − r)S̃(r)Cxdr

for all x ∈ X and 0 ≤ t, s, t + s < T0. Indeed, for 0 ≤ t, s, t + s < T0, we have

d

dt
[(

∫ t+s

0
−

∫ t

0
−

∫ s

0
)K0(t + s − r)S̃(r)Cxdr

= [(
∫ t+s

0

−
∫ t

0

−
∫ s

0

)K(t + s − r)S̃(r)Cxdr − K0(s)S̃(t)Cx].

That is, (2.2) holds for all 0 ≤ t, s, t + s < T0. Clearly, the right-hand side of (2.2) is
symmetric in t, s with 0 ≤ t, s, t + s < T0. It follows that

(2.3)

d

ds
[(

∫ t+s

0
−

∫ t

0
−

∫ s

0
)K0(t + s − r)S̃(r)Cxdr] + K0(t)S̃(s)Cx

= (
∫ t+s

0
−

∫ t

0
−

∫ s

0
)K(t + s − r)S̃(r)Cxdr
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for all x ∈ X and 0 ≤ t, s, t + s < T0. Using integration by parts, we obtain

(2.4)

(
∫ t+s

0

−
∫ t

0

−
∫ s

0

)K(t + s − r)S̃(r)Cxdr

= (
∫ t+s

0

−
∫ t

0

−
∫ s

0

)K0(t + s − r)S(r)Cxdr

+K0(s)S̃(t)Cx + K0(t)S̃(s)Cx

for all x ∈ X and 0 ≤ t, s, t + s < T0. Suppose that S̃(·) is a local K0-convoluted
C-semigroup on X . Then we have by (2.3)− (2.4) that

S̃(t)S(s)x =
d

ds
S̃(t)S̃(s)x

= (
∫ t+s

0

−
∫ t

0

−
∫ s

0

)K0(t + s − r)S(r)Cxdr + K0(s)S̃(t)Cx

+ K0(t)S̃(s)Cx − K0(t)S̃(s)Cx

= (
∫ t+s

0
−

∫ t

0
−

∫ s

0
)K0(t + s − r)S(r)Cxdr + K0(s)S̃(t)Cx

for all x ∈ X and 0 ≤ t, s, t + s < T0, so that

(2.5) S(t)S(s)x =
d

dt
S̃(t)S(s)x = (

∫ t+s

0
−

∫ t

0
−

∫ s

0
)K(t + s − r)S(r)Cxdr

for all x ∈ X and 0 ≤ t, s, t + s < T0. Hence, S(·) is a local K-convoluted C-
semigroup on X . Conversely, suppose that S(·) is a local K-convoluted C-semigroup
on X . We will apply Fubini’s theorem for double integrals to obtain

(2.6) S(t)S̃(s)x = (
∫ t+s

0
−

∫ t

0
−

∫ s

0
)K0(t + s − r)S(r)Cxdr + K0(t)S̃(s)Cx

for all x ∈ X and 0 ≤ t, s, t+s < T0. Let x ∈ X be given, then for 0 ≤ t, τ, t+τ < T0,
we have

(2.7)

∫ τ

0

∫ t+λ

t
K(t + λ − r)S(r)Cxdrdλ

=
∫ t+τ

t

∫ τ

r−t
K(t + λ − r)S(r)Cxdλdr

=
∫ t+τ

t
K0(t + τ − r)S(r)Cxdr,
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and

(2.8)

∫ τ

0

∫ λ

0
K(t − λ + r)S(r)Cxdrdλ

=
∫ τ

0

∫ τ

r

K(t − λ + r)S(r)Cxdλdr

=
∫ τ

0
K0(t − τ + r)S(r)Cxdr − K0(t)S̃(τ)Cx.

Combining (1.2) with (2.7) and (2.8), we get

S(t)S̃(τ)x = (
∫ t+τ

0
−

∫ t

0
−

∫ τ

0
)K0(t + τ − r)S(r)Cxdr + K0(t)S̃(τ)Cx.

That is, (2.6) holds for all x ∈ X and 0 ≤ t, s, t + s < T0. Combining (2.2) with (2.4)
and (2.6), we have

S(t)S̃(s)x

= (
∫ t+s

0
−

∫ t

0
−

∫ s

0
)K(t + s − r)S̃(r)Cxdr − K0(s)S̃(t)Cx

=
d

dt
[(

∫ t+s

0
−

∫ t

0
−

∫ s

0
)K0(t + s − r)S̃(r)Cxdr]

for all x ∈ X and 0 ≤ t, s, t + s < T0. Combining this and (2.2) with t = 0, we
conclude that S̃(·) is a local K0-convoluted C-semigroup on X .

Theorem 2.2. Let S(·) be a strongly continuous family in L(X) which commutes
with C on X . Then S(·) is a local K-convoluted C-semigroup on X if and only if
(2.1) holds for all 0 ≤ t, s, t + s < T0.

Proof. Suppose that S(·) is a local K-convoluted C-semigroup on X . By Lemma
2.1, (2.2) and (2.3), we have S(t)S̃(s)x+K0(s)S̃(t)Cx = S̃(t)S(s)x+K0(t)S̃(s)Cx
for all x ∈ X and 0 ≤ t, s, t + s < T0 or equivalently, S̃(t)[S(s)− K0(s)C]=[S(t)−
K0(t)C]S̃(s) for all 0 ≤ t, s, t + s < T0. Conversely, suppose that (2.1) holds for all
0 ≤ t, s, t + s < T0. Then S̃(t)S(s)x − S(t)S̃(s)x = K0(s)S̃(t)Cx − K0(t)S̃(s)Cx

for all x ∈ X and 0 ≤ t, s, t + s < T0. Fix x ∈ X and 0 ≤ t, s, t + s < T0, we have

(2.9)
S̃(t + s − r)S(r)x− S(t + s − r)S̃(r)x

= K0(r)S̃(t + s − r)Cx − K0(t + s − r)S̃(r)Cx

for all 0 ≤ r ≤ t. Using integration by parts to the left-hand side of the integration
of (2.9) and change of variables to the right-hand side of the integration of (2.9), we
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obtain
S̃(t)S̃(s)x =

∫ t

0

[S̃(t + s − r)S(r)x− S(t + s − r)S̃(r)x]dr

=
∫ t

0
[K0(r)S̃(t + s − r)Cx − K0(t + s − r)S̃(r)Cx]dr

= (
∫ t+s

0
−

∫ t

0
−

∫ s

0
)K0(t + s − r)S̃(r)Cxdr

for all x ∈ X and 0 ≤ t, s, t + s < T0. Consequently, S̃(·) is a local K0-convoluted
C-semigroup on X. Combining this with Lemma 2.1, we get that S(·) is a local K-
convoluted C-semigroup on X .

By slightly modifying the proof of [18, Corollary 2.4], the next result concerning
local K-convoluted C-semigroups on X is also attained.

Proposition 2.3. Let S(·) be a local K-convoluted C-semigroup on X and a ∈
L1

loc([0, T0), F). Then a ∗ S(·) is a local a ∗ K-convoluted C-semigroup on X . In
particular, for each β > −1 jβ ∗ S(·) is a local Kβ-convoluted C-semigroup on X .

Definition 2.4. Let S(·) be a strongly continuous family in L(X). A linear operator
A in X is called a subgenerator of S(·) if

(2.10) S(t)x − K0(t)Cx =
∫ t

0
S(r)Axdr

for all x ∈ D(A) and 0 ≤ t < T0, and

(2.11)
∫ t

0
S(r)xdr ∈ D(A) and A

∫ t

0
S(r)xdr = S(t)x− K0(t)Cx

for all x ∈ X and 0 ≤ t < T0. A subgenerator A of S(·) is called the maximal
subgenerator of S(·) if it is an extension of each subgenerator of S(·) to D(A).

Applying Theorem 2.2, we can obtain the next result concerning the generation
of a local K-convoluted C-semigroup S(·) on X , which had been proven in [8] by
another method similar to that already employed in [14] in the case that S(·) has a
closed subgenerator and C is injective.

Theorem 2.5. Let S(·) be a strongly continuous family in L(X) which commutes
with C on X . Assume that S(·) has a subgenerator. Then S(·) is a local K-convoluted
C-semigroup on X . Moreover, S(·) is nondegenerate if the injectivity of C is added
and K0 is a non-zero function on [0, T0).

Proof. Let A be a subgenerator of S(·). By (2.11), we have

[S(t)− K0(t)C]S̃(·)x = S̃(t)AS̃(·)x = S̃(t)[S(·)− K0(·)C]x
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on [0, T0 − t) for all x ∈ X and 0 ≤ t < T0. Applying Theorem 2.2, we get that S(·)
is a local K-convoluted C-semigroup on X . Suppose that C is injective, K0 is a non-
zero function, x ∈ X and S(t)x = 0, t ∈ [0, T0). By (2.11), we have K0(·)Cx = 0
on [0, T0), and so Cx = 0. Hence, x = 0, which implies that S(·) is nondegenerate.

Lemma 2.6. Let A be a closed subgenerator of a strongly continuous family S(·)
in L(X), and K0 a kernel on [0, t0) (or equivalently, K is a kernel on [0, t0)). Assume
that C is injective and u ∈ C([0, t0), X) satisfies u(·) = Aj0 ∗u(·) on [0, t0) for some
0 < t0 < T0. Then u = 0 on [0, t0).

Proof. We know from (2.10)-(2.11) that A

∫ t

0
S(r)xdr =

∫ t

0
S(r)Axdr for all

x ∈ D(A) and 0 ≤ t < T0. Combining this with the closedness of A, we have

AS(t)x = S(t)Ax for all x ∈ D(A) and 0 ≤ t < T0, and so
∫ t

0
S(t − s)u(s)ds =∫ t

0

S(t − s)Aj0 ∗ u(s)ds =
∫ t

0

AS(t − s)j0 ∗ u(s)ds = A

∫ t

0

S(t − s)j0 ∗ u(s)ds =

AS̃ ∗ u(t) =
∫ t

0
S(t − s)u(s)ds − C

∫ t

0
K0(t − s)u(s)ds for all 0 ≤ t < t0. Hence,∫ t

0

K0(t − s)u(s)ds = 0 for all 0 ≤ t < t0, which implies that u(t) = 0 for all

0 ≤ t < t0.

Theorem 2.7. Let S(·) be a nondegenerate local K-convoluted C-semigroup on
X with generator A. Assume that S(·) has a subgenerator. Then A is the maximal
subgenerator of S(·), and each subgenerator of S(·) is closable and its closure is also
a subgenerator of S(·). Moreover, if C is injective. Then (1.5)-(1.7) hold, and (1.8)
also holds when K0 is a kernel on [0, T0) or T0 = ∞.

Proof. Let B be a subgenerator of S(·). Clearly, B ⊂ A. It follows that C(t)z −
K0(t)Cz = B

∫ t

0

∫ s

0
C(r)zdrds = A

∫ t

0

∫ s

0
C(r)zdrds for all z ∈ X and 0 ≤ t <

T0, which together with the definition of A implies that A is also a subgenerator of
S(·). To show that each subgenerator of S(·) is closable and its closure is also a
subgenerator of S(·). We will show that B is closable. Let xk ∈ D(B), xk → 0, and
Bxk → y in X . Then xk ∈ D(A) and Axk = Bxk → y. By the closedness of A,
we have y = 0. In order to show that B is a subgenerator of S(·). Let x ∈ D(B)
be given, then xk → x and Bxk → Bx in X for sequence {xk}∞k=1 in D(B). By

(2.10), we have S(t)xk − K0(t)Cxk =
∫ t

0
S(r)Bxkdr for all k ∈ N and 0 ≤ t < T0.

Letting k → ∞, we get that S(t)x − K0(t)Cx =
∫ t

0
S(r)Bxdr for all 0 ≤ t < T0.
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Since B ⊂ B, we also have S(t)z − K0(t)Cz = B

∫ t

0
S(r)zdr = B

∫ t

0
S(r)zdr

for all z ∈ X and 0 ≤ t < T0. Consequently, the closure of B is a subgenerator of
S(·). To show that A is the maximal subgenerator of S(·). Let F be the family of
all subgenerators of S(·). We define a partial order ”⊂” on F by f ⊂ g if g is an
extension of f to D(g). By Zorn’s lemma, (F ,⊂) has a maximal element B which is a
subgenerator of S(·), and does not have a proper extension that is still a subgenerator of
S(·). In particular, B ⊂ A. Similarly, we can show that B is the maximal subgenerator
of S(·), which implies that A ⊂ B. Clearly,(1.6) and (1.7) both hold because A is the
maximal subgenerator of S(·). To show that (1.5) holds when C is injective. We will
show that A ⊂ C−1AC or equivalently, CA ⊂ AC. Let x ∈ D(A) be given, then
K1(t)Cx = S̃(t)x− j0 ∗ S̃(t)Ax ∈ D(A) and

AK1(t)Cx =AS̃(t)x − Aj0 ∗ S̃(t)Ax

=AS̃(t)x − [S̃(t)Ax − K1(t)CAx]
=K1(t)CAx

for all 0 ≤ t < T0, so that CAx = ACx. Hence, CA ⊂ AC. In order to show that
C−1AC ⊂ A. Let x ∈ D(C−1AC) be given, then Cx ∈ D(A) and ACx ∈ R(C). By
the definition of generator and the commutativity of C with S(·), we have C[S(t)x−
K0(t)Cx] = S(t)Cx − K0(t)C2x =

∫ t

0
S(r)ACxdr =

∫ t

0
S(r)CC−1ACxdr =

C

∫ t

0
S(r)C−1ACxdr. Since C is injective, we have x ∈ D(A) and Ax = C−1ACx.

Consequently, A ⊂ C−1AC. Finally, we will show that (1.8) holds when K0 is a
kernel on [0, T0). Clearly, it suffices to show that S̃(t)S̃(s)x=S̃(s)S̃(t)x for all x ∈ X

and 0 ≤ t, s < T0. Let x ∈ X and 0 ≤ s < T0 be given. By (1.7) and the closedness
of A, we have

S̃(·)S̃(s)x − Aj0 ∗ S̃(·)S̃(s)x

=K1(·)CS̃(s)x

=S̃(s)K1(·)Cx

=S̃(s)[S̃(·)x− Aj0 ∗ S̃(·)x]

=S̃(s)S̃(·)x− S̃(s)Aj0 ∗ S̃(·)x
=S̃(s)S̃(·)x− Aj0 ∗ S̃(s)S̃(·)x

on [0, T0), and so [S̃(·)S̃(s)x− S̃(s)S̃(·)x] =Aj0 ∗ [S̃(·)S̃(s)x− S̃(s)S̃(·)x] on [0, T0).
Hence, S̃(·)S̃(s)x=S̃(s)S̃(·)x on [0, T0), which implies that S̃(t)S̃(s)x=S̃(s)S̃(t)x for
all 0 ≤ t, s < T0.

Lemma 2.8. Let S(·) be a local K-convoluted C-semigroup on X , and 0 ∈
suppK0 (the support of K0). Assume that S(·)x = 0 on [0, t0) for some x ∈ X and
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0 < t0 < T0. Then CS(·)x = 0 on [0, T0). In particular, S(t)x = 0 for all 0 ≤ t < T0

if the injectivity of C is added.

Proof. Let 0 ≤ t < T0 be given, then t + s < T0 and K0(s) is nonzero for some
0 < s < t0, so that S̃(s)S(t)x = S(t)S̃(s)x = 0, S(s)S̃(t)x = S̃(t)S(s)x = 0 and
S̃(s)K0(t)Cx = K0(t)CS̃(s)x = 0. By Theorem 2.2, we have K0(s)S̃(t)Cx =
K0(s)CS̃(t)x = 0. Hence, S̃(t)Cx = 0. Since 0 ≤ t < T0 is arbitrary, we have
CS(t)x = S(t)Cx = 0 for all 0 ≤ t < T0. In particular, S(t)x = 0 for all 0 ≤ t < T0

if the injectivity of C is added.

Theorem 2.9. Let S(·) be a local K-convoluted C-semigroup on X , and 0 ∈
suppK0. Assume that C is injective. Then S(·) is nondegenerate if and only if it has
a subgenerator.

Proof. By Theorem 2.5, we need only to show that A is a subgenerator of S(·)
when S(·) is a nondegenerate local K-convoluted C-semigroup on X with generator A

and 0 ∈ suppK0. Observe (2.10)-(2.11) and the definition of A, we need only to show
that (2.10) holds. Let 0 ≤ t0 < T0 be fixed. Then for each x ∈ X and 0 ≤ s < T0,
we set y = S̃(t0)x. By Theorem 2.2, we have

S̃(r)[S(s)− K0(s)C]y

=[S(r)− K0(r)C]S̃(s)y

=S̃(s)[S(r)− K0(r)C]y

=S̃(s)([S(r)− K0(r)C]S̃(t0)x)

=S̃(s)(S̃(r)[S(t0)− K0(t0)C]x)

=[S̃(s)S̃(r)][S(t0) − K0(t0)C]x

=S̃(r)S̃(s)[S(t0) − K0(t0)C]x

for all 0 ≤ r < T0 with r + s, r + t0 < T0 or equivalently, S(r)[S(s)− K0(s)C]y =
S̃(r)S̃(s)[S(t0) − K0(t0)C]x for all 0 ≤ r < T0 with r + s, r + t0 < T0. It follows
from Lemma 2.8 and the nondegeneracy of S(·) that we have [S(s) − K0(s)C]y =
S̃(s)[S(t0) − K0(t0)C]x. Since 0 ≤ s < T0 is arbitrary, we have y ∈ D(A) and
Ay = [S(t0) − K0(t0)C]x. Since 0 ≤ t0 < T0 is arbitrary, we conclude that (2.10)
holds.

By slightly modifying the proof of Theorem 2.9, we can apply (1.2) to obtain the
next result concerning nondegenerate K-convoluted C-semigroups.

Theorem 2.10. Let S(·) be a nondegenerate K-convoluted C-semigroup on X .
Then C is injective, and S(·) has a subgenerator.

Combining Theorem 2.10 with Theorem 2.7, the next result concerning nondegen-
erate K-convoluted C-semigroups is also obtained.
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Theorem 2.11. Let S(·) be a nondegenerate K-convoluted C-semigroup on X with
generator A. Then A is the maximal subgenerator of S(·), and each subgenerator of
S(·) is closable and its closure is also a subgenerator of S(·). Moreover, (1.5)-(1.8)
hold.

Since 0 ∈ suppK0 implies that K0 is a kernel on [0, T0), we can apply Theorems
2.7 and 2.9 to obtain the next corollary.

Corollary 2.12. Let S(·) be a nondegenerate local K-convoluted C-semigroup
on X with generator A, and 0 ∈ suppK0. Assume that C is injective. Then A is
the maximal subgenerator of S(·), and each subgenerator of S(·) is closable and its
closure is also a subgenerator of S(·). Moreover, (1.5)-(1.8) hold.

Theorem 2.13. Let A be a closed subgenerator of a strongly continuous family
S(·) in L(X), and K0 a kernel on [0, T0). Assume that C is injective. Then CA ⊂ AC,
and S(·) is a nondegenerate local K-convoluted C-semigroup on X with generator
C−1AC. In particular, C−1A0C is the generator of S(·) for each subgenerator A0

of S(·).
Proof. To show that S(·) is a nondegenerate local K-convoluted C-semigroup

on X . By Theorem 2.5, we need only to show that CS(·) = S(·)C or equivalently,
CS̃(·) = S̃(·)C. Just as in the proof of Theorem 2.7, we have CA ⊂ AC and
[S̃(·)Cx − CS̃(·)x] =Aj0 ∗ [S̃(·)Cx − CS̃(·)x] on [0, T0). By Lemma 2.6, we also
have S̃(·)Cx = CS̃(·)x on [0, T0). We will prove that C−1AC is the generator of
S(·). Let B denote the generator of S(·). By Theorem 2.7, we have A ⊂ B. By (1.5),
we also have C−1AC ⊂ C−1BC = B. Conversely, let x ∈ D(B) be given, then
K1(t)Cx = S̃(t)x− j0 ∗ S̃(t)Bx ∈ D(A) for all 0 ≤ t < T0, so that Cx ∈ D(A) and

AK1(·)Cx =AS̃(·)x− Aj0 ∗ S̃(·)Bx

=AS̃(·)x− [S̃(·)Bx − K1(·)CBx]

=AS̃(·)x− [BS̃(·)x− K1(·)CBx]
=K1(·)CBx

on [0, T0). Hence, ACx = CBx ∈ R(C), which implies that x ∈ D(C−1AC) and
C−1ACx = Bx. Consequently, B ⊂ C−1AC.

Corollary 2.14. Let S(·) be a nondegenerate local K-convoluted C-semigroup on
X , and 0 ∈ suppK0. Assume that C is injective. Then C−1A0C is the generator of
S(·) for each subgenerator A0 of S(·).

Remark 2.15. Let S(·) be a local K-convoluted C-semigroup on X . Then
(i) S(·) is nondegenerate if and only if S̃(·) is;
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(ii) A is the generator of S(·) if and only if it is the generator of S̃(·);
(iii) A is a closed subgenerator of S(·) if and only if it is a closed subgenerator of

S̃(·).

Remark 2.16. A strongly continuous family in L(X) may not have a subgenerator;
a local K-convoluted C-semigroup on X is degenerate when it has a subgenerator but
does not have a maximal subgenerator; and a closed linear operator in X generates at
most one nondegenerate local K-convoluted C-semigroup on X when C is injective
and K0 a kernel on [0, T0).

3. ABSTRACT CAUCHY PROBLEMS

In the following, we always assume that C ∈ L(X) is injective, K0 a kernel on
[0, T0), and A a closed linear operator in X such that CA ⊂ AC. We also note some
basic properties concerning the strong solutions of ACP(A, f, x) just as results in [14]
when A is the generator of a nondegenerate (local) α-times integrated C-semigroup on
X .

Proposition 3.1. Let A be a subgenerator of a nondegenerate local K0-convoluted
C-semigroup S(·) on X . Then for each x ∈ D(A) S(·)x is the unique solution of
ACP(A, K0(·)Cx, 0) in C([0, T0), [D(A)]). Here [D(A)] denotes the Banach space
D(A) equipped with the graph norm |x|A = ‖x‖ + ‖Ax‖ for x ∈ D(A).

Proposition 3.2. Let A be a subgenerator of a nondegenerate local K-convoluted
C-semigroup S(·) on X and C1 = {x ∈ X

∣∣ S(·)x is continuously differentiable on
(0, T0)}. Then

(i) for each x ∈ C1 S(t)x ∈ D(A) for a.e. t ∈ (0, T0);
(ii) for each x ∈C1 S(·)x is the unique solution of ACP(A, K(·)Cx, 0);
(iii) for each x ∈ D(A) S(·)x is the unique solution of ACP(A, K(·)Cx, 0)

in C([0, T0), [D(A)]).

Proposition 3.3. Let A be the generator of a nondegenerate local K-convoluted C-
semigroup S(·) on X and x ∈ X . Assume that S(t)x ∈ R(C) for all 0 ≤ t < T0, and
C−1S(·)x ∈ C([0, T0), X) is differentiable a.e. on (0, T0). Then C−1S(t)x ∈ D(A)
for a.e. t ∈ (0, T0), and C−1S(·)x is the unique solution of ACP(A, K(·)x, 0).

Proof. Clearly, S(·)x = CC−1S(·)x is differentiable a.e. on (0, T0). By Theorem

2.11, we have C
d

dt
C−1S(t)x =

d

dt
S(t)x = AS(t)x + K(t)Cx = ACC−1S(t)x +

K(t)Cx for a.e. t ∈ (0, T0). Hence, for a.e. t ∈ (0, T0), C−1S(t)x ∈ D(C−1AC) =

D(A) and
d

dt
C−1S(t)x = (C−1AC)C−1S(t)x + K(t)x = AC−1S(t)x + K(t)x,

which implies that C−1S(·)x is a solution of ACP(A, K(·)x, 0).
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Applying Theorem 2.13, we can prove an important result concerning the relation
between the generation of a nondegenerate local K-convoluted C-semigroup on X with
subgenerator A and the unique existence of strong solutions of ACP(A, f, x), which
has been established in [18] when K = jα−1, in [15] when K = jα−1 with T0 = ∞,
and in [26] when K = j−1 with T0 = ∞.

Theorem 3.4. The following statements are equivalent:
(i) A is a subgenerator of a nondegenerate local K-convoluted C-semigroup S(·)

on X;
(ii) for each x ∈ X and g ∈ L1

loc([0, T0), X) the problem ACP(A, K0(·)Cx + K0 ∗
Cg(·), 0) has a unique solution in C1([0, T0), X)∩ C([0, T0), [D(A)]);

(iii) for each x ∈ X the problem ACP(A, K0(·)Cx, 0) has a unique solution in
C1([0, T0), X)∩ C([0, T0), [D(A)]);

(iv) for each x ∈ X the integral equation v(·) = Aj0 ∗ v(·) + K0(·)Cx has a unique
solution v(·; x) in C([0, T0), X).

In this case, S̃(·)x+S̃∗g(·) is the unique solution of ACP(A, K0(·)Cx+K0∗Cg(·), 0)
and v(·; x) = S(·)x.

Proof. We will prove that (i) implies (ii). Let x ∈ X and g ∈ L1
loc([0, T0), X) be

given. We set u(·) = S̃(·)x + S̃ ∗ g(·), then u ∈ C1([0, T0), X)∩ C([0, T0), [D(A)]),
u(0) = 0, and

Au(t) = AS̃(t)x + A

∫ t

0

S̃(t − s)g(s)ds

= S(t)x − K0(t)Cx +
∫ t

0
[S(t− s) − K0(t − s)C]g(s)ds

= S(t)x +
∫ t

0
S(t − s)g(s)ds− [K0(t)Cx + K0 ∗ Cg(t)]

= u′(t) − [K0(t)Cx + K0 ∗Cg(t)]

for all 0 ≤ t < T0. Hence, u is a solution of ACP(A, K0(·)Cx + K0 ∗ Cg(·), 0) in
C1([0, T0), X)∩C([0, T0), [D(A)]). The uniqueness of solutions for ACP(A, K0(·)Cx

+ K0 ∗ Cg(·), 0) follows directly from the uniqueness of solutions for ACP(A, 0, 0).
Clearly, ”(ii)⇒(iii)” holds, and (iii) and (iv) both are equivalent. We remain only
to show that ”(iv)⇒(i)” holds. Let S(t) : X → X be defined by S(t)x = v(t; x)
for all x ∈ X and 0 ≤ t < T0. Clearly, S(·) is strongly continuous, and satisfies
(2.11). Combining the uniqueness of solutions for the integral equation v(·)=Aj0 ∗
v(·)+K0(·)Cx with the assumption CA ⊂ AC, we have v(·; Cx) = Cv(·; x) for each
x ∈ X , which implies that S(t) for 0 ≤ t < T0 are linear, and commute with C. Let
{tk}∞k=1 be an increasing sequence in (0, T0) such that tk → T0, and C([0, T0), X)
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a Frechet space with the quasi-norm | · | defined by |v| =
∞∑

k=1

‖v‖k

2k(1 + ‖v‖k)
for v ∈

C([0, T0), X). Here ‖v‖k = max
t∈[0,tk]

‖v(t)‖ for all k ∈ N. To show that S(·) is a family

in L(X), we need only to show that the linear map η : X → C([0, T0), X) defined
by η(x) = v(·; x) for x ∈ X , is continuous or equivalently, η : X → C([0, T0), X)
is a closed linear operator. Let {xk}∞k=1 be a sequence in X such that xk → x in
X and η(xk) → v in C([0, T0), X), then v(·; xk) = Aj0 ∗ v(·; xk) + K0(·)Cxk on
[0, T0). Combining the closedness of A with the uniform convergence of {η(xk)}∞k=1

on [0, tk], we have v(·)=Aj0 ∗ v(·) + K0(·)Cx on [0, T0). By the uniqueness of
solutions for integral equations, we have v(·)=v(·;x)=η(x). Consequently, η : X →
C([0, T0), X) is a closed linear operator. To show that A is a subgenerator of S(·),
we remain only to show that S̃(t)A ⊂ AS̃(t) for all 0 ≤ t < T0. Let x ∈ D(A) be
given, then S̃(t)x − K1(t)Cx=Aj0 ∗ S̃(t)x=j0 ∗ AS̃(t)x for all 0 ≤ t < T0, and so
S̃(t)Ax − Aj0 ∗ S̃(t)Ax = K1(t)CAx = AK1(t)Cx = AS̃(t)x − Aj0 ∗ S̃(t)Ax for
all 0 ≤ t < T0. Hence, Aj0 ∗ [S̃(·)Ax − AS̃(·)x]=S̃(·)Ax − AS̃(·)x on [0, T0). By
the uniqueness of solutions for ACP(A, 0, 0), we have S̃(·)Ax = AS̃(·)x on [0, T0).
Applying Theorem 2.5, we get that S(·) is a nondegenerate local K-convoluted C-
semigroup on X with subgenerator A.

By slightly modifying the proof of [15, Corollary 2.5], we can apply Theorem 3.4
to obtain the next result.

Theorem 3.5. Assume that R(C) ⊂ R(λ−A) for some λ ∈ F, and ACP(A, K(·)x,
0) has a unique solution in C([0, T0), [D(A)]) for each x ∈ D(A) with (λ − A)x ∈
R(C). Then A is a subgenerator of a nondegenerate local K-convoluted C-semigroup
on X .

Proof. Clearly, it suffices to show that for each x ∈ X the integral equation

(3.1) v(·) = A

∫ ·

0
v(r)dr + K0(·)Cx

has a (unique) solution v(·; x) in C([0, T0), X) for each x ∈ X . Indeed, if x ∈ X
is given, then there exists a yx ∈ D(A) such that (λ − A)yx = Cx. By hypothesis,
ACP(A, K(·)yx, 0) has a unique solution u(·; yx) in C([0, T0), [D(A)]). In particu-
lar, u′(·; yx) = Au(·; yx) + K(·)yx ∈ L1

loc([0, T0), X). By the closedness of A and

the continuity of Au(·; yx), we have
∫ t

0
u(r; yx)dr ∈ D(A) and A

∫ t

0
u(r; yx)dr =∫ t

0
Au(r; yx)dr = u(t; yx)− K0(t)yx ∈ D(A) for all 0 ≤ t < T0, so that
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(3.2)
(λ − A)u(t; yx) = (λ − A)[A

∫ t

0
u(r; yx)dr + K0(t)yx]

= A

∫ t

0

(λ − A)u(r; yx)dr + K0(t)Cx

for all 0 ≤ t < T0. Hence, v(·; x) = (λ − A)u(·; yx) is a solution of (3.1) in
C([0, T0), X).

Since C−1AC = A and R((λ − A)−1C) = C(D(A)) if ρ(A) �= ∅, we can apply
Proposition 3.1 and Theorem 3.5 to obtain the next corollary.

Corollary 3.6. Assume that the resolvent set of A is nonempty. Then A is the
generator of a nondegenerate local K-convoluted C-semigroup on X if and only if
for each x ∈ D(A) ACP(A, K(·)Cx, 0) has a unique solution in C([0, T0), [D(A)]).

Just as results in [15] for the case of α-times integrated C-semigroup, we can
apply Theorem 3.4 to obtain the next theorem. The wellposedness of abstract frac-
tional Cauchy problems and abstract Cauchy problems associated with various classes
of Volterra integro-differential equations in locally convex spaces have been recently
considered in [10].

Theorem 3.7. Assume that A is densely defined. Then the following are equivalent:
(i) A is a subgenerator of a nondegenerate local K-convoluted C-semigroup S(·)

on X;
(ii) for each x ∈ D(A) ACP(A, K(·)Cx, 0) has a unique solution u(·; Cx) in

C([0, T0), [D(A)]) which depends continuously on x. That is, if {xn}∞n=1 is
a Cauchy sequence in (D(A), ‖ · ‖), then {u(·; Cxn)}∞n=1 converges uniformly
on compact subsets of [0, T0).

Proof. (i)⇒(ii). It is easy to see from the definition of a subgenerator of S(·)
that S(·)x is the unique solution of ACP(A, K(·)Cx, 0) in C([0, T0), [D(A)]) which
depends continuously on x ∈ D(A). (ii)⇒(i). In view of Theorem 3.4, we need
only to show that for each x ∈ X (3.1) has a unique solution v(·; x) in C([0, T0), X).
Let x ∈ X be given. By the denseness of D(A), we have xm → x in X for some
sequence {xm}∞m=1 in D(A). We set u(·; Cxm) to denote the unique solution of
ACP(A, K(·)Cxm, 0) in C([0, T0), [D(A)]). Then u(·; Cxm) → u(·) uniformly on

compact subsets of [0, T0) for some u ∈ C([0, T0), X), and so
∫ ·

0
u(r; Cxm)dr →∫ ·

0
u(r)dr uniformly on compact subsets of [0, T0). Since u′(·; Cxm) = Au(·; Cxm)+

K(·)Cxm a.e. on (0, T0), we have

(3.3) A

∫ ·

0
u(r; Cxm)dr =

∫ ·

0
Au(r; Cxm)dr = u(·; Cxm) − K0(·)Cxm
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on [0, T0) for all m ∈ N. Clearly, the right-hand side of the last equality of (3.3)
converges uniformly to u(·)−K0(·)Cx on compact subsets of [0, T0). It follows from

the closedness of A that
∫ t

0
u(r)dr ∈ D(A) for all 0 ≤ t < T0 and A

∫ ·

0
u(r)dr=u(·)−

K0(·)Cx on [0, T0), which implies that u(·) is a (unique) solution of (3.1) in C([0, T0),
X).

We end this paper with several illustrative examples.

Example 1. Let X = Cb(R), and S(t) for t ≥ 0 be bounded linear operators on X

defined by S(t)f(x) = f(x+ t) for all x ∈ R. Then for each K ∈ L1
loc([0, T0), F) and

β > −1, Kβ ∗S(·) = {Kβ ∗S(t)|0 ≤ t < T0} is local a Kβ-convoluted semigroup on

X which is also nondegenerate with a closed subgenerator
d

dx
acting with its maximal

distributional domain when K0 is not the zero function on [0, T0) (or equivalently,
K is not the zero in L1

loc([0, T0), F)), but K ∗ S(·) may not be a local K-convoluted
semigroup on X except for K ∈ L1

loc([0, T0), F) so that K∗S(·) is a strongly continuous

family in L(X) for which
d

dx
is a closed subgenerator of K ∗ S(·) when K0 is not

the zero function on [0, T0). Moreover, (1.5)-(1.8) hold and
d

dx
is its generator and

maximal subgenerator when K0 is a kernel on [0, T0). In this case,
d

dx
= A0 for each

subgenerator A0 of S(·).

Example 2. Let k be a fixed nonnegative integer and K0 a kernel on [0,∞), and
let S(t) for t ≥ 0 and C be bounded linear operators on c0 (the family of all convergent

sequences in F with limit 0) defined by S(t)x = {xn(n−k)e−n

∫ t

0
K(t−s)ensds}∞n=1

and Cx = {xn(n − k)e−n}∞n=1 for all x = {xn}∞n=1 ∈ c0, then {S(t)|0 ≤ t < 1} is
a local K-convoluted C-semigroup on c0 which is degenerate except for k = 0 and
generator A defined by Ax = {nxn}∞n=1 for all x = {xn}∞n=1 ∈ c0 with {nxn}∞n=1 ∈
c0, and for each r > 1 {S(t)|0 ≤ t < r} is not a local K-convoluted C-semigroup on
c0. Suppose that k ∈ N. Then Aa : c0 → c0 for a ∈ F defined by Aax = {nyn}∞n=1

for all x = {xn}∞n=1 ∈ c0 with {nxn}∞n=1 ∈ c0, are subgenerators of {S(t)|0 ≤ t < 1}
which do not have proper extensions that are still subgenerators of {S(t)|0 ≤ t < 1}.
Here yn = akxk if n = k, and yn = nxn otherwise. Consequently, {S(t)|0 ≤ t < 1}
does not have a maximal subgenerator when k ∈ N.

Example 3. Let X = Cb(R)(or L∞(R)), and A be the maximal differential operator

in X defined by Au =
k∑

j=0

ajD
ju on R for all u ∈ D(A), then UCb(R) (or C0(R))

= D(A). Here a0, a1, · · · , ak ∈ C and Dju(x) = u(j)(x) for all x ∈ R. It is shown
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in [2,19] that {S(t)|0 ≤ t < T0} defined by (S(t)f)(x) =
1√
2π

∫ t

0

∫ ∞

−∞
K(t −

s)φ̃s(x − y)f(y)dyds for all f ∈ X and 0 ≤ t < T0, is a norm continuous local K0-
convoluted semigroup on X with closed subgenerator A if the real-valued polynomial

p(x) =
k∑

j=0

aj(ix)j satisfies sup
x∈R

p(x) < ∞, and K ∈ L1
loc([0, T0), F) is not the

zero function on [0, T0). Here φ̃t denotes the inverse Fourier transform of φt with

φt(x) =
∫ t

0

ep(x)sds for all t ≥ 0. Suppose that K0 is a kernel on [0, T0). Then A is

its generator and maximal subgenerator. Applying Theorem 3.4, we get that for each

f ∈ X and continuous function g on [0, T0) × R with
∫ t

0
sup
x∈R

|g(s, x)|ds < ∞ for all

0 ≤ t < T0, the function u on [0, T0) × R defined by u(t, x) =
1√
2π

∫ t

0

∫ ∞

−∞
K0(t −

s)φ̃s(x− y)f(y)dyds +
1√
2π

∫ t

0

∫ t−r

0

∫ ∞

−∞
K0(t− r− s)φ̃s(x− y)g(r, y)dydsdr for

all 0 ≤ t < T0 and x ∈ R, is the unique solution of⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u(t, x)
∂t

=
k∑

j=0

aj(
∂

∂x
)ju(t, x) + K1(t)f(x)

+
∫ t

0

K1(t − s)g(s, x)ds for t ∈ (0, T0) and a.e. x ∈ R,

u(0, x) = 0 for a.e. x ∈ R

in C1([0, T0), X) ∩ C([0, T0), [D(A)]).
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