TAIWANESE JOURNAL OF MATHEMATICS Vol. 19, No. 4, pp. 1227-1245, August 2015 DOI: 10.11650/tjm.19.2015.4737 This paper is available online at http://journal.taiwanmathsoc.org.tw

LOCAL K-CONVOLUTED C-SEMIGROUPS AND ABSTRACT CAUCHY PROBLEMS

Chung-Cheng Kuo

Abstract. Let $K : [0, T_0) \to \mathbb{F}$ be a locally integrable function, and $C : X \to X$ a bounded linear operator on a Banach space X over the field $\mathbb{F}(=\mathbb{R} \text{ or } \mathbb{C})$. In this paper, we will deduce some basic properties of a nondegenerate local K-convoluted C-semigroup on X and some generation theorems of local K-convoluted C-semigroups on X with or without the nondegeneracy, which can be applied to obtain some equivalence relations between the generation of a nondegenerate local K-convoluted C-semigroup on X with subgenerator A and the unique existence of solutions of the abstract Cauchy problem:

ACP
$$(A, f, x)$$

 $\begin{cases} u'(t) = Au(t) + f(t) & \text{for a.e. } t \in (0, T_0), \\ u(0) = x \end{cases}$

when K is a kernel on $[0, T_0)$, $C : X \to X$ an injection, and $A : D(A) \subset X \to X$ a closed linear operator in X such that $CA \subset AC$. Here $0 < T_0 \leq \infty$, $x \in X$, and $f \in L^1_{loc}([0, T_0), X)$.

1. INTRODUCTION

Let X be a Banach space over the field $\mathbb{F}(=\mathbb{R} \text{ or } \mathbb{C})$ with norm $\|\cdot\|$, and let L(X) denote the family of all bounded linear operators from X into itself. For each $0 < T_0 \leq \infty$, we consider the following abstract Cauchy problem:

(1.1)
$$\operatorname{ACP}(A, f, x) = \begin{cases} u'(t) = Au(t) + f(t) & \text{for a.e. } t \in (0, T_0), \\ u(0) = x, \end{cases}$$

where $x \in X$, $A : D(A) \subset X \to X$ is a closed linear operator, and $f \in L^1_{loc}([0, T_0), X)$. A function u is called a (strong) solution of ACP(A, f, x) if $u \in C([0, T_0), X)$ satisfies ACP(A, f, x) (that is, u(0) = x and for a.e. $t \in (0, T_0)$, u(t) is differentiable

Received April 25, 2014, accepted December 22, 2014.

Communicated by Chin-Cheng Lin.

²⁰¹⁰ Mathematics Subject Classification: 47D60, 47D62.

Key words and phrases: Local *K*-convoluted *C*-semigroup, Generator, Abstract Cauchy problem. Research partially supported by the National Science Council of Taiwan.

and $u(t) \in D(A)$, and u'(t)=Au(t)+f(t) for a.e. $t \in (0, T_0)$). For each $C \in L(X)$ and $K \in L^1_{loc}([0, T_0), \mathbb{F})$, a family $S(\cdot)(= \{S(t) \mid 0 \le t < T_0\})$ in L(X) is called a local K-convoluted C-semigroup on X if it is strongly continuous, $S(\cdot)C = CS(\cdot)$, and satisfies

(1.2)
$$S(t)S(s)x = \left(\int_0^{t+s} - \int_0^t - \int_0^s K(t+s-r)S(r)Cxdr\right)$$

for all $0 \le t, s, t + s < T_0$ and $x \in X$ (see [8]). In particular, $S(\cdot)$ is called a local (0-times integrated) C-semigroup on X if $K = j_{-1}$ (the Dirac measure at 0) or equivalently, $S(\cdot)$ is strongly continuous, $S(\cdot)C = CS(\cdot)$, and satisfies

(1.3)
$$S(t)S(s)x = S(t+s)Cx \text{ for all } 0 \le t, s, t+s < T_0 \text{ and } x \in X$$

(see [1, 3-4, 26, 28, 30]). Moreover, we say that $S(\cdot)$ is nondegenerate, if x = 0 whenever S(t)x = 0 for all $0 \le t < T_0$. The nondegeneracy of a local K-convoluted C-semigroup $S(\cdot)$ on X implies that

(1.4)
$$S(0) = C$$
 if $K = j_{-1}$, and $S(0) = 0$ (the zero operator on X) otherwise,

and the (integral) generator $A : D(A) \subset X \to X$ of $S(\cdot)$ is a closed linear operator in X defined by

$$D(A) = \{x \in X \mid \text{ there exists a } y_x \in X \text{ such that} \\ S(\cdot)x - K_0(\cdot)Cx = \widetilde{S}(\cdot)y_x \text{ on } [0, T_0)\}$$

and $Ax = y_x$ for all $x \in D(A)$. Here $K_{\beta}(t) = K * j_{\beta}(t) = \int_0^t K(t-s)j_{\beta}(s)ds$ for $\beta > -1$ with $j_{\beta}(t) = \frac{t^{\beta}}{\Gamma(\beta+1)}$ and the Gamma function $\Gamma(\cdot)$, and $\widetilde{S}(t)z = \int_0^t S(s)zds$. In general, a local K-convoluted C-semigroup on X is called a K-convoluted C-semigroup on X if $T_0 = \infty$ (see [8, 17]); a (local) K-convoluted C-semigroup on X is called a (local) K-convoluted semigroup on X if C = I (the identity operator on X) or a (local) α -times integrated C-semigroup on X if $K = j_{\alpha-1}$ for some $\alpha \ge 0$ (see [2, 5, 12-16, 21-25, 29, 31]). Some basic properites of a nondegenerate (local) α -times integrated C-semigroup on X if K = $j_{\alpha-1}$ for the case $\alpha \ge 0$ (see [2, 3, 26-28] for the case $\alpha = 0$, in [19] for the case $\alpha \in \mathbb{N}$, in [14] for the case $\alpha > 0$ is arbitrary with $T_0 = \infty$ and in [18] for the general case $0 < T_0 \le \infty$), which can be applied to deduce some equivalence relations between the generation of a nondegenerate (local) α -times integrated C-semigroup on X with subgenerator A (see Definition 2.4 below) and the unique existence of strong or weak solutions of the abstract Cauchy problem ACP(A, f, x) (see the results in [2-3, 26-27] for the case $\alpha = 0$, in [19] when $\alpha \in \mathbb{N}$ and in [11, 14-15, 18, 29] when $\alpha > 0$ is arbitrary). The purpose of this paper

is to investigate the following basic properties of a nondegenerate local K-convoluted C-semigroup $S(\cdot)$ on X just as results in [18] concerning local α -times integrated C-semigroups on X when C is injective and some additional conditions are taken into consideration.

$$(1.5) C^{-1}AC = A;$$

(1.6)
$$S(t)x \in D(A) \text{ and } AS(t)x = S(t)x - K_0(t)Cx$$

for all
$$x \in X$$
 and $0 \le t < T_0$;

(1.7)
$$S(t)x \in D(A)$$
 and $AS(t)x = S(t)Ax$ for all $x \in D(A)$ and $0 \le t < T_0$;

and

(1.8)
$$S(t)S(s) = S(s)S(t)$$
 for all $0 \le t, s, t+s < T_0$

(see Theorems 2.7 and 2.11, and Corollary 2.12 below). We then deduce some equivalence relations between the generation of a nondegenerate local K-convoluted Csemigroup on X with subgenerator A and the unique existence of strong solutions of ACP(A, f, x) in section 3 just as some results in [14, 15] concerning some equivalence relations between the generation of a nondegenerate local α -times C-semigroup on X with subgenerator A and the unique existence of strong solutions of ACP(A, f, x). To do these, we will prove an important lemma which shows that a strongly continuous family $S(\cdot)$ in L(X) is a local K-convoluted C-semigroup on X is equivalent to say that $S(\cdot)$ is a local K_0 -convoluted C-semigroup on X (see Lemma 2.1 below), and then show that a strongly continuous family $S(\cdot)$ in L(X) which commutes with C on X is a local K-convoluted C-semigroup on X is equivalent to say that $S(t)[S(s) - K_0(s)C] = [S(t) - K_0(t)C]S(s)$ for all $0 \le t, s, t + s < T_0$ (see Theorem 2.2 below). In order, we show that $a * S(\cdot)$ is a local a * K-convoluted C-semigroup on X if $S(\cdot)$ is a local K-convoluted C-semigroup on X and $a \in L^1_{loc}([0,T_0),\mathbb{F})$. In particular, $j_{\beta} * S(\cdot)$ is a local K_{β} -convoluted C-semigroup on X if $S(\cdot)$ is a local K-convoluted C-semigroup on X and $\beta > -1$ (see Proposition 2.3 below). Here $f * S(t)x = \int_0^t f(t-s)S(s)xds$ for all $x \in X$ and $f \in L^1_{loc}([0,T_0),\mathbb{F})$. We also show that a strongly continuous family in L(X) which commutes with C on X is a local K-convoluted C-semigroup on X when $S(\cdot)$ has a subgenerator (see Theorem 2.5 below), which had been proven in [8] by another method similar to that already employed in [14] in the case that $S(\cdot)$ has a closed subgenerator and C is injective; and the generator of a nondegenerate local K-convoluted C-semigroup $S(\cdot)$ on X is the unique subgenerator of $S(\cdot)$ which contains all subgenerators of $S(\cdot)$ and each subgenerator of $S(\cdot)$ is closable and its closure is also a subgenerator of $S(\cdot)$ when $S(\cdot)$ has a subgenerator (see Theorems 2.7 and 2.11, and Corollary 2.12 below). This can

be applied to show that $CA \subset AC$ and $S(\cdot)$ is a nondegenerate local K-convoluted C-semigroup on X with generator $C^{-1}AC$ when C is injective, K_0 a kernel on $[0, T_0)$ (that is, f = 0 on $[0, T_0)$ whenever $f \in C([0, T_0), \mathbb{F})$ with $\int_0^t K_0(t-s)f(s)ds = 0$ for all $0 \le t < T_0$) and $S(\cdot)$ a strongly continuous family in L(X) with closed subgenerator A. In this case, $C^{-1}\overline{A_0}C$ is the generator of $S(\cdot)$ for each subgenerator A_0 of $S(\cdot)$ (see Theorem 2.13 below). Some illustrative examples concerning these theorems are also presented in the final part of paper.

2. Basic Properties of Local K-convoluted C-semigroups

We will deduce an important lemma which can be applied to obtain an equivalence relation between the generation of a local K-convoluted C-semigroup $S(\cdot)$ on X and the equation

(2.1)
$$\widetilde{S}(t)[S(s) - K_0(s)C] = [S(t) - K_0(t)C]\widetilde{S}(s)$$
 for all $0 \le t, s, t + s < T_0$

(see a result in [18] for the case of local α -times integrated C-semigroup and a corresponding statement in [9] for the case of (a, k)-regularized (C_1, C_2) -existence and uniqueness family).

Lemma 2.1. Let $S(\cdot)$ be a strongly continuous family in L(X). Then $S(\cdot)$ is a local K-convoluted C-semigroup on X if and only if $\tilde{S}(\cdot)$ is a local K₀-convoluted C-semigroup on X.

Proof. We will show that

(2.2)
$$\frac{d}{dt} [(\int_0^{t+s} - \int_0^t - \int_0^s) K_0(t+s-r)\widetilde{S}(r)Cxdr] + K_0(s)\widetilde{S}(t)Cxdr] = (\int_0^{t+s} - \int_0^t - \int_0^s) K(t+s-r)\widetilde{S}(r)Cxdr$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Indeed, for $0 \le t, s, t + s < T_0$, we have

$$\frac{d}{dt} [(\int_0^{t+s} -\int_0^t -\int_0^s) K_0(t+s-r)\tilde{S}(r)Cxdr$$
$$= [(\int_0^{t+s} -\int_0^t -\int_0^s) K(t+s-r)\tilde{S}(r)Cxdr - K_0(s)\tilde{S}(t)Cx]$$

That is, (2.2) holds for all $0 \le t, s, t + s < T_0$. Clearly, the right-hand side of (2.2) is symmetric in t, s with $0 \le t, s, t + s < T_0$. It follows that

(2.3)
$$\frac{d}{ds} [(\int_0^{t+s} - \int_0^t - \int_0^s) K_0(t+s-r)\widetilde{S}(r)Cxdr] + K_0(t)\widetilde{S}(s)Cx \\ = (\int_0^{t+s} - \int_0^t - \int_0^s) K(t+s-r)\widetilde{S}(r)Cxdr$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Using integration by parts, we obtain

(2.4)

$$(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s})K(t+s-r)\widetilde{S}(r)Cxdr$$

$$= (\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s})K_{0}(t+s-r)S(r)Cxdr$$

$$+K_{0}(s)\widetilde{S}(t)Cx + K_{0}(t)\widetilde{S}(s)Cx$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Suppose that $\widetilde{S}(\cdot)$ is a local K_0 -convoluted C-semigroup on X. Then we have by (2.3) - (2.4) that

$$\widetilde{S}(t)S(s)x = \frac{d}{ds}\widetilde{S}(t)\widetilde{S}(s)x$$

$$= (\int_0^{t+s} -\int_0^t -\int_0^s)K_0(t+s-r)S(r)Cxdr + K_0(s)\widetilde{S}(t)Cx$$

$$+ K_0(t)\widetilde{S}(s)Cx - K_0(t)\widetilde{S}(s)Cx$$

$$= (\int_0^{t+s} -\int_0^t -\int_0^s)K_0(t+s-r)S(r)Cxdr + K_0(s)\widetilde{S}(t)Cx$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$, so that

(2.5)
$$S(t)S(s)x = \frac{d}{dt}\widetilde{S}(t)S(s)x = (\int_0^{t+s} - \int_0^t - \int_0^s)K(t+s-r)S(r)Cxdr$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Hence, $S(\cdot)$ is a local K-convoluted C-semigroup on X. Conversely, suppose that $S(\cdot)$ is a local K-convoluted C-semigroup on X. We will apply Fubini's theorem for double integrals to obtain

(2.6)
$$S(t)\widetilde{S}(s)x = \left(\int_0^{t+s} - \int_0^t - \int_0^s K_0(t+s-r)S(r)Cxdr + K_0(t)\widetilde{S}(s)Cx\right)$$

for all $x \in X$ and $0 \le t, s, t+s < T_0$. Let $x \in X$ be given, then for $0 \le t, \tau, t+\tau < T_0$, we have

(2.7)
$$\int_{0}^{\tau} \int_{t}^{t+\lambda} K(t+\lambda-r)S(r)Cxdrd\lambda$$
$$= \int_{t}^{t+\tau} \int_{r-t}^{\tau} K(t+\lambda-r)S(r)Cxd\lambda dr$$
$$= \int_{t}^{t+\tau} K_{0}(t+\tau-r)S(r)Cxdr,$$

and

(2.8)
$$\int_{0}^{\tau} \int_{0}^{\lambda} K(t - \lambda + r)S(r)Cxdrd\lambda$$
$$= \int_{0}^{\tau} \int_{r}^{\tau} K(t - \lambda + r)S(r)Cxd\lambda dr$$
$$= \int_{0}^{\tau} K_{0}(t - \tau + r)S(r)Cxdr - K_{0}(t)\widetilde{S}(\tau)Cx.$$

Combining (1.2) with (2.7) and (2.8), we get

$$S(t)\widetilde{S}(\tau)x = (\int_0^{t+\tau} - \int_0^t - \int_0^{\tau})K_0(t+\tau - r)S(r)Cxdr + K_0(t)\widetilde{S}(\tau)Cx.$$

That is, (2.6) holds for all $x \in X$ and $0 \le t, s, t + s < T_0$. Combining (2.2) with (2.4) and (2.6), we have

$$S(t)S(s)x = (\int_0^{t+s} - \int_0^t - \int_0^s) K(t+s-r)\widetilde{S}(r)Cxdr - K_0(s)\widetilde{S}(t)Cx = \frac{d}{dt}[(\int_0^{t+s} - \int_0^t - \int_0^s)K_0(t+s-r)\widetilde{S}(r)Cxdr]$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Combining this and (2.2) with t = 0, we conclude that $\widetilde{S}(\cdot)$ is a local K_0 -convoluted C-semigroup on X.

Theorem 2.2. Let $S(\cdot)$ be a strongly continuous family in L(X) which commutes with C on X. Then $S(\cdot)$ is a local K-convoluted C-semigroup on X if and only if (2.1) holds for all $0 \le t, s, t + s < T_0$.

Proof. Suppose that $S(\cdot)$ is a local K-convoluted C-semigroup on X. By Lemma 2.1, (2.2) and (2.3), we have $S(t)\widetilde{S}(s)x + K_0(s)\widetilde{S}(t)Cx = \widetilde{S}(t)S(s)x + K_0(t)\widetilde{S}(s)Cx$ for all $x \in X$ and $0 \le t, s, t + s < T_0$ or equivalently, $\widetilde{S}(t)[S(s) - K_0(s)C] = [S(t) - K_0(t)C]\widetilde{S}(s)$ for all $0 \le t, s, t + s < T_0$. Conversely, suppose that (2.1) holds for all $0 \le t, s, t + s < T_0$. Then $\widetilde{S}(t)S(s)x - S(t)\widetilde{S}(s)x = K_0(s)\widetilde{S}(t)Cx - K_0(t)\widetilde{S}(s)Cx$ for all $x \in X$ and $0 \le t, s, t + s < T_0$. Fix $x \in X$ and $0 \le t, s, t + s < T_0$, we have

(2.9)
$$\widetilde{S}(t+s-r)S(r)x - S(t+s-r)\widetilde{S}(r)x$$
$$= K_0(r)\widetilde{S}(t+s-r)Cx - K_0(t+s-r)\widetilde{S}(r)Cx$$

for all $0 \le r \le t$. Using integration by parts to the left-hand side of the integration of (2.9) and change of variables to the right-hand side of the integration of (2.9), we

obtain

$$\begin{split} \widetilde{S}(t)\widetilde{S}(s)x &= \int_0^t [\widetilde{S}(t+s-r)S(r)x - S(t+s-r)\widetilde{S}(r)x]dr \\ &= \int_0^t [K_0(r)\widetilde{S}(t+s-r)Cx - K_0(t+s-r)\widetilde{S}(r)Cx]dr \\ &= (\int_0^{t+s} - \int_0^t - \int_0^s)K_0(t+s-r)\widetilde{S}(r)Cxdr \end{split}$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Consequently, $\widetilde{S}(\cdot)$ is a local K_0 -convoluted C-semigroup on X. Combining this with Lemma 2.1, we get that $S(\cdot)$ is a local Kconvoluted C-semigroup on X.

By slightly modifying the proof of [18, Corollary 2.4], the next result concerning local K-convoluted C-semigroups on X is also attained.

Proposition 2.3. Let $S(\cdot)$ be a local K-convoluted C-semigroup on X and $a \in$ $L^1_{loc}([0,T_0),\mathbb{F})$. Then $a * S(\cdot)$ is a local a * K-convoluted C-semigroup on X. In particular, for each $\beta > -1$ $j_{\beta} * S(\cdot)$ is a local K_{β} -convoluted C-semigroup on X.

Definition 2.4. Let $S(\cdot)$ be a strongly continuous family in L(X). A linear operator A in X is called a subgenerator of $S(\cdot)$ if

(2.10)
$$S(t)x - K_0(t)Cx = \int_0^t S(t)Axdt$$

for all $x \in D(A)$ and $0 \le t < T_0$, and

(2.11)
$$\int_{0}^{t} S(r) x dr \in D(A) \text{ and } A \int_{0}^{t} S(r) x dr = S(t) x - K_{0}(t) C x$$

for all $x \in X$ and $0 \leq t < T_0$. A subgenerator A of $S(\cdot)$ is called the maximal subgenerator of $S(\cdot)$ if it is an extension of each subgenerator of $S(\cdot)$ to D(A).

Applying Theorem 2.2, we can obtain the next result concerning the generation of a local K-convoluted C-semigroup $S(\cdot)$ on X, which had been proven in [8] by another method similar to that already employed in [14] in the case that $S(\cdot)$ has a closed subgenerator and C is injective.

Theorem 2.5. Let $S(\cdot)$ be a strongly continuous family in L(X) which commutes with C on X. Assume that $S(\cdot)$ has a subgenerator. Then $S(\cdot)$ is a local K-convoluted C-semigroup on X. Moreover, $S(\cdot)$ is nondegenerate if the injectivity of C is added and K_0 is a non-zero function on $[0, T_0)$.

Proof. Let A be a subgenerator of $S(\cdot)$. By (2.11), we have

~

$$[S(t) - K_0(t)C]\widetilde{S}(\cdot)x = \widetilde{S}(t)A\widetilde{S}(\cdot)x = \widetilde{S}(t)[S(\cdot) - K_0(\cdot)C]x$$

on $[0, T_0 - t)$ for all $x \in X$ and $0 \le t < T_0$. Applying Theorem 2.2, we get that $S(\cdot)$ is a local K-convoluted C-semigroup on X. Suppose that C is injective, K_0 is a non-zero function, $x \in X$ and S(t)x = 0, $t \in [0, T_0)$. By (2.11), we have $K_0(\cdot)Cx = 0$ on $[0, T_0)$, and so Cx = 0. Hence, x = 0, which implies that $S(\cdot)$ is nondegenerate.

Lemma 2.6. Let A be a closed subgenerator of a strongly continuous family $S(\cdot)$ in L(X), and K_0 a kernel on $[0, t_0)$ (or equivalently, K is a kernel on $[0, t_0)$). Assume that C is injective and $u \in C([0, t_0), X)$ satisfies $u(\cdot) = Aj_0 * u(\cdot)$ on $[0, t_0)$ for some $0 < t_0 < T_0$. Then u = 0 on $[0, t_0)$.

Proof. We know from (2.10)-(2.11) that $A \int_0^t S(r)x dr = \int_0^t S(r)Ax dr$ for all $x \in D(A)$ and $0 \le t < T_0$. Combining this with the closedness of A, we have AS(t)x = S(t)Ax for all $x \in D(A)$ and $0 \le t < T_0$, and so $\int_0^t S(t-s)u(s)ds = \int_0^t S(t-s)Aj_0 * u(s)ds = \int_0^t AS(t-s)j_0 * u(s)ds = A \int_0^t S(t-s)j_0 * u(s)ds = A\widetilde{S} * u(t) = \int_0^t S(t-s)u(s)ds - C \int_0^t K_0(t-s)u(s)ds$ for all $0 \le t < t_0$. Hence, $\int_0^t K_0(t-s)u(s)ds = 0$ for all $0 \le t < t_0$, which implies that u(t) = 0 for all $0 \le t < t_0$.

Theorem 2.7. Let $S(\cdot)$ be a nondegenerate local K-convoluted C-semigroup on X with generator A. Assume that $S(\cdot)$ has a subgenerator. Then A is the maximal subgenerator of $S(\cdot)$, and each subgenerator of $S(\cdot)$ is closable and its closure is also a subgenerator of $S(\cdot)$. Moreover, if C is injective. Then (1.5)-(1.7) hold, and (1.8) also holds when K_0 is a kernel on $[0, T_0)$ or $T_0 = \infty$.

Proof. Let *B* be a subgenerator of *S*(·). Clearly, *B* ⊂ *A*. It follows that *C*(*t*)*z* − $K_0(t)Cz = B \int_0^t \int_0^s C(r)zdrds = A \int_0^t \int_0^s C(r)zdrds$ for all $z \in X$ and $0 \le t < T_0$, which together with the definition of *A* implies that *A* is also a subgenerator of *S*(·). To show that each subgenerator of *S*(·) is closable and its closure is also a subgenerator of *S*(·). We will show that *B* is closable. Let $x_k \in D(B)$, $x_k \to 0$, and $Bx_k \to y$ in *X*. Then $x_k \in D(A)$ and $Ax_k = Bx_k \to y$. By the closedness of *A*, we have y = 0. In order to show that *B* is a subgenerator of *S*(·). Let $x \in D(\overline{B})$ be given, then $x_k \to x$ and $Bx_k \to \overline{Bx}$ in *X* for sequence $\{x_k\}_{k=1}^\infty$ in *D*(*B*). By (2.10), we have $S(t)x_k - K_0(t)Cx_k = \int_0^t S(r)Bx_kdr$ for all $k \in \mathbb{N}$ and $0 \le t < T_0$. Letting $k \to \infty$, we get that $S(t)x - K_0(t)Cx = \int_0^t S(r)\overline{Bx}dr$ for all $0 \le t < T_0$.

Since $B \subset \overline{B}$, we also have $S(t)z - K_0(t)Cz = B \int_0^t S(r)zdr = \overline{B} \int_0^t S(r)zdr$ for all $z \in X$ and $0 \le t < T_0$. Consequently, the closure of B is a subgenerator of $S(\cdot)$. To show that A is the maximal subgenerator of $S(\cdot)$. Let \mathcal{F} be the family of all subgenerators of $S(\cdot)$. We define a partial order " \subset " on \mathcal{F} by $f \subset g$ if g is an extension of f to D(g). By Zorn's lemma, (\mathcal{F}, \subset) has a maximal element B which is a subgenerator of $S(\cdot)$, and does not have a proper extension that is still a subgenerator of $S(\cdot)$. In particular, $B \subset A$. Similarly, we can show that B is the maximal subgenerator of $S(\cdot)$, which implies that $A \subset B$. Clearly,(1.6) and (1.7) both hold because A is the maximal subgenerator of $S(\cdot)$. To show that (1.5) holds when C is injective. We will show that $A \subset C^{-1}AC$ or equivalently, $CA \subset AC$. Let $x \in D(A)$ be given, then $K_1(t)Cx = \widetilde{S}(t)x - j_0 * \widetilde{S}(t)Ax \in D(A)$ and

$$AK_{1}(t)Cx = A\widetilde{S}(t)x - Aj_{0} * \widetilde{S}(t)Ax$$
$$= A\widetilde{S}(t)x - [\widetilde{S}(t)Ax - K_{1}(t)CAx]$$
$$= K_{1}(t)CAx$$

for all $0 \le t < T_0$, so that CAx = ACx. Hence, $CA \subset AC$. In order to show that $C^{-1}AC \subset A$. Let $x \in D(C^{-1}AC)$ be given, then $Cx \in D(A)$ and $ACx \in R(C)$. By the definition of generator and the commutativity of C with $S(\cdot)$, we have $C[S(t)x - K_0(t)Cx] = S(t)Cx - K_0(t)C^2x = \int_0^t S(r)ACxdr = \int_0^t S(r)CC^{-1}ACxdr = C\int_0^t S(r)C^{-1}ACxdr$. Since C is injective, we have $x \in D(A)$ and $Ax = C^{-1}ACx$. Consequently, $A \subset C^{-1}AC$. Finally, we will show that (1.8) holds when K_0 is a kernel on $[0, T_0)$. Clearly, it suffices to show that $\widetilde{S}(t)\widetilde{S}(s)x=\widetilde{S}(s)\widetilde{S}(t)x$ for all $x \in X$ and $0 \le t, s < T_0$. Let $x \in X$ and $0 \le s < T_0$ be given. By (1.7) and the closedness of A, we have $\widetilde{S}(r)\widetilde{S}(s)x = \widetilde{S}(r)\widetilde{S}(s)x$

$$S(\cdot)S(s)x - Aj_0 * S(\cdot)S(s)x$$

=K₁(·)C $\widetilde{S}(s)x$
= $\widetilde{S}(s)K_1(\cdot)Cx$
= $\widetilde{S}(s)[\widetilde{S}(\cdot)x - Aj_0 * \widetilde{S}(\cdot)x]$
= $\widetilde{S}(s)\widetilde{S}(\cdot)x - \widetilde{S}(s)Aj_0 * \widetilde{S}(\cdot)x$
= $\widetilde{S}(s)\widetilde{S}(\cdot)x - Aj_0 * \widetilde{S}(s)\widetilde{S}(\cdot)x$

on $[0, T_0)$, and so $[\widetilde{S}(\cdot)\widetilde{S}(s)x - \widetilde{S}(s)\widetilde{S}(\cdot)x] = Aj_0 * [\widetilde{S}(\cdot)\widetilde{S}(s)x - \widetilde{S}(s)\widetilde{S}(\cdot)x]$ on $[0, T_0)$. Hence, $\widetilde{S}(\cdot)\widetilde{S}(s)x = \widetilde{S}(s)\widetilde{S}(\cdot)x$ on $[0, T_0)$, which implies that $\widetilde{S}(t)\widetilde{S}(s)x = \widetilde{S}(s)\widetilde{S}(t)x$ for all $0 \le t, s < T_0$.

Lemma 2.8. Let $S(\cdot)$ be a local K-convoluted C-semigroup on X, and $0 \in suppK_0$ (the support of K_0). Assume that $S(\cdot)x = 0$ on $[0, t_0)$ for some $x \in X$ and

 $0 < t_0 < T_0$. Then $CS(\cdot)x = 0$ on $[0, T_0)$. In particular, S(t)x = 0 for all $0 \le t < T_0$ if the injectivity of C is added.

Proof. Let $0 \le t < T_0$ be given, then $t + s < T_0$ and $K_0(s)$ is nonzero for some $0 < s < t_0$, so that $\widetilde{S}(s)S(t)x = S(t)\widetilde{S}(s)x = 0$, $S(s)\widetilde{S}(t)x = \widetilde{S}(t)S(s)x = 0$ and $\widetilde{S}(s)K_0(t)Cx = K_0(t)C\widetilde{S}(s)x = 0$. By Theorem 2.2, we have $K_0(s)\widetilde{S}(t)Cx = K_0(s)C\widetilde{S}(t)x = 0$. Hence, $\widetilde{S}(t)Cx = 0$. Since $0 \le t < T_0$ is arbitrary, we have CS(t)x = S(t)Cx = 0 for all $0 \le t < T_0$. In particular, S(t)x = 0 for all $0 \le t < T_0$ if the injectivity of C is added.

Theorem 2.9. Let $S(\cdot)$ be a local K-convoluted C-semigroup on X, and $0 \in suppK_0$. Assume that C is injective. Then $S(\cdot)$ is nondegenerate if and only if it has a subgenerator.

Proof. By Theorem 2.5, we need only to show that A is a subgenerator of $S(\cdot)$ when $S(\cdot)$ is a nondegenerate local K-convoluted C-semigroup on X with generator A and $0 \in \text{supp}K_0$. Observe (2.10)-(2.11) and the definition of A, we need only to show that (2.10) holds. Let $0 \leq t_0 < T_0$ be fixed. Then for each $x \in X$ and $0 \leq s < T_0$, we set $y = \widetilde{S}(t_0)x$. By Theorem 2.2, we have

$$\begin{split} S(r)[S(s) - K_0(s)C]y \\ = & [S(r) - K_0(r)C]\widetilde{S}(s)y \\ = & \widetilde{S}(s)[S(r) - K_0(r)C]y \\ = & \widetilde{S}(s)([S(r) - K_0(r)C]\widetilde{S}(t_0)x) \\ = & \widetilde{S}(s)(\widetilde{S}(r)[S(t_0) - K_0(t_0)C]x) \\ = & [\widetilde{S}(s)\widetilde{S}(r)][S(t_0) - K_0(t_0)C]x \\ = & \widetilde{S}(r)\widetilde{S}(s)[S(t_0) - K_0(t_0)C]x \end{split}$$

for all $0 \le r < T_0$ with $r + s, r + t_0 < T_0$ or equivalently, $S(r)[S(s) - K_0(s)C]y = \widetilde{S}(r)\widetilde{S}(s)[S(t_0) - K_0(t_0)C]x$ for all $0 \le r < T_0$ with $r + s, r + t_0 < T_0$. It follows from Lemma 2.8 and the nondegeneracy of $S(\cdot)$ that we have $[S(s) - K_0(s)C]y = \widetilde{S}(s)[S(t_0) - K_0(t_0)C]x$. Since $0 \le s < T_0$ is arbitrary, we have $y \in D(A)$ and $Ay = [S(t_0) - K_0(t_0)C]x$. Since $0 \le t_0 < T_0$ is arbitrary, we conclude that (2.10) holds.

By slightly modifying the proof of Theorem 2.9, we can apply (1.2) to obtain the next result concerning nondegenerate K-convoluted C-semigroups.

Theorem 2.10. Let $S(\cdot)$ be a nondegenerate K-convoluted C-semigroup on X. Then C is injective, and $S(\cdot)$ has a subgenerator.

Combining Theorem 2.10 with Theorem 2.7, the next result concerning nondegenerate *K*-convoluted *C*-semigroups is also obtained.

Theorem 2.11. Let $S(\cdot)$ be a nondegenerate K-convoluted C-semigroup on X with generator A. Then A is the maximal subgenerator of $S(\cdot)$, and each subgenerator of $S(\cdot)$ is closable and its closure is also a subgenerator of $S(\cdot)$. Moreover, (1.5)-(1.8) hold.

Since $0 \in \text{supp}K_0$ implies that K_0 is a kernel on $[0, T_0)$, we can apply Theorems 2.7 and 2.9 to obtain the next corollary.

Corollary 2.12. Let $S(\cdot)$ be a nondegenerate local K-convoluted C-semigroup on X with generator A, and $0 \in suppK_0$. Assume that C is injective. Then A is the maximal subgenerator of $S(\cdot)$, and each subgenerator of $S(\cdot)$ is closable and its closure is also a subgenerator of $S(\cdot)$. Moreover, (1.5)-(1.8) hold.

Theorem 2.13. Let A be a closed subgenerator of a strongly continuous family $S(\cdot)$ in L(X), and K_0 a kernel on $[0, T_0)$. Assume that C is injective. Then $CA \subset AC$, and $S(\cdot)$ is a nondegenerate local K-convoluted C-semigroup on X with generator $C^{-1}AC$. In particular, $C^{-1}\overline{A_0}C$ is the generator of $S(\cdot)$ for each subgenerator A_0 of $S(\cdot)$.

Proof. To show that $S(\cdot)$ is a nondegenerate local K-convoluted C-semigroup on X. By Theorem 2.5, we need only to show that $CS(\cdot) = S(\cdot)C$ or equivalently, $C\widetilde{S}(\cdot) = \widetilde{S}(\cdot)C$. Just as in the proof of Theorem 2.7, we have $CA \subset AC$ and $[\widetilde{S}(\cdot)Cx - C\widetilde{S}(\cdot)x] = Aj_0 * [\widetilde{S}(\cdot)Cx - C\widetilde{S}(\cdot)x]$ on $[0, T_0)$. By Lemma 2.6, we also have $\widetilde{S}(\cdot)Cx = C\widetilde{S}(\cdot)x$ on $[0, T_0)$. We will prove that $C^{-1}AC$ is the generator of $S(\cdot)$. Let B denote the generator of $S(\cdot)$. By Theorem 2.7, we have $A \subset B$. By (1.5), we also have $C^{-1}AC \subset C^{-1}BC = B$. Conversely, let $x \in D(B)$ be given, then $K_1(t)Cx = \widetilde{S}(t)x - j_0 * \widetilde{S}(t)Bx \in D(A)$ for all $0 \le t < T_0$, so that $Cx \in D(A)$ and

$$AK_{1}(\cdot)Cx = AS(\cdot)x - Aj_{0} * S(\cdot)Bx$$
$$= A\widetilde{S}(\cdot)x - [\widetilde{S}(\cdot)Bx - K_{1}(\cdot)CBx]$$
$$= A\widetilde{S}(\cdot)x - [B\widetilde{S}(\cdot)x - K_{1}(\cdot)CBx]$$
$$= K_{1}(\cdot)CBx$$

on $[0, T_0)$. Hence, $ACx = CBx \in R(C)$, which implies that $x \in D(C^{-1}AC)$ and $C^{-1}ACx = Bx$. Consequently, $B \subset C^{-1}AC$.

Corollary 2.14. Let $S(\cdot)$ be a nondegenerate local K-convoluted C-semigroup on X, and $0 \in suppK_0$. Assume that C is injective. Then $C^{-1}\overline{A_0}C$ is the generator of $S(\cdot)$ for each subgenerator A_0 of $S(\cdot)$.

Remark 2.15. Let $S(\cdot)$ be a local *K*-convoluted *C*-semigroup on *X*. Then (i) $S(\cdot)$ is nondegenerate if and only if $\widetilde{S}(\cdot)$ is;

- (ii) A is the generator of $S(\cdot)$ if and only if it is the generator of $\widetilde{S}(\cdot)$;
- (iii) A is a closed subgenerator of $S(\cdot)$ if and only if it is a closed subgenerator of $\widetilde{S}(\cdot)$.

Remark 2.16. A strongly continuous family in L(X) may not have a subgenerator; a local K-convoluted C-semigroup on X is degenerate when it has a subgenerator but does not have a maximal subgenerator; and a closed linear operator in X generates at most one nondegenerate local K-convoluted C-semigroup on X when C is injective and K_0 a kernel on $[0, T_0)$.

3. Abstract Cauchy Problems

In the following, we always assume that $C \in L(X)$ is injective, K_0 a kernel on $[0, T_0)$, and A a closed linear operator in X such that $CA \subset AC$. We also note some basic properties concerning the strong solutions of ACP(A, f, x) just as results in [14] when A is the generator of a nondegenerate (local) α -times integrated C-semigroup on X.

Proposition 3.1. Let A be a subgenerator of a nondegenerate local K_0 -convoluted C-semigroup $S(\cdot)$ on X. Then for each $x \in D(A)$ $S(\cdot)x$ is the unique solution of $ACP(A, K_0(\cdot)Cx, 0)$ in $C([0, T_0), [D(A)])$. Here [D(A)] denotes the Banach space D(A) equipped with the graph norm $|x|_A = ||x|| + ||Ax||$ for $x \in D(A)$.

Proposition 3.2. Let A be a subgenerator of a nondegenerate local K-convoluted C-semigroup $S(\cdot)$ on X and $C^1 = \{x \in X \mid S(\cdot)x \text{ is continuously differentiable on } (0, T_0)\}$. Then

- (i) for each $x \in C^1$ $S(t)x \in D(A)$ for a.e. $t \in (0, T_0)$;
- (ii) for each $x \in C^1$ $S(\cdot)x$ is the unique solution of $ACP(A, K(\cdot)Cx, 0)$;
- (iii) for each $x \in D(A)$ $S(\cdot)x$ is the unique solution of $ACP(A, K(\cdot)Cx, 0)$ in $C([0, T_0), [D(A)])$.

Proposition 3.3. Let A be the generator of a nondegenerate local K-convoluted Csemigroup $S(\cdot)$ on X and $x \in X$. Assume that $S(t)x \in R(C)$ for all $0 \le t < T_0$, and $C^{-1}S(\cdot)x \in C([0,T_0), X)$ is differentiable a.e. on $(0,T_0)$. Then $C^{-1}S(t)x \in D(A)$ for a.e. $t \in (0,T_0)$, and $C^{-1}S(\cdot)x$ is the unique solution of ACP $(A, K(\cdot)x, 0)$.

Proof. Clearly, $S(\cdot)x = CC^{-1}S(\cdot)x$ is differentiable a.e. on $(0, T_0)$. By Theorem 2.11, we have $C\frac{d}{dt}C^{-1}S(t)x = \frac{d}{dt}S(t)x = AS(t)x + K(t)Cx = ACC^{-1}S(t)x + K(t)Cx$ for a.e. $t \in (0, T_0)$. Hence, for a.e. $t \in (0, T_0)$, $C^{-1}S(t)x \in D(C^{-1}AC) = D(A)$ and $\frac{d}{dt}C^{-1}S(t)x = (C^{-1}AC)C^{-1}S(t)x + K(t)x = AC^{-1}S(t)x + K(t)x$, which implies that $C^{-1}S(\cdot)x$ is a solution of ACP $(A, K(\cdot)x, 0)$.

1239

Applying Theorem 2.13, we can prove an important result concerning the relation between the generation of a nondegenerate local K-convoluted C-semigroup on X with subgenerator A and the unique existence of strong solutions of ACP(A, f, x), which has been established in [18] when $K = j_{\alpha-1}$, in [15] when $K = j_{\alpha-1}$ with $T_0 = \infty$, and in [26] when $K = j_{-1}$ with $T_0 = \infty$.

Theorem 3.4. The following statements are equivalent:

- (i) A is a subgenerator of a nondegenerate local K-convoluted C-semigroup $S(\cdot)$ on X;
- (ii) for each $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$ the problem $ACP(A, K_0(\cdot)Cx + K_0 * Cg(\cdot), 0)$ has a unique solution in $C^1([0, T_0), X) \cap C([0, T_0), [D(A)])$;
- (iii) for each $x \in X$ the problem ACP $(A, K_0(\cdot)Cx, 0)$ has a unique solution in $C^1([0, T_0), X) \cap C([0, T_0), [D(A)]);$
- (iv) for each $x \in X$ the integral equation $v(\cdot) = Aj_0 * v(\cdot) + K_0(\cdot)Cx$ has a unique solution $v(\cdot; x)$ in $C([0, T_0), X)$.

In this case, $\tilde{S}(\cdot)x + \tilde{S} * g(\cdot)$ is the unique solution of $ACP(A, K_0(\cdot)Cx + K_0 * Cg(\cdot), 0)$ and $v(\cdot; x) = S(\cdot)x$.

Proof. We will prove that (i) implies (ii). Let $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$ be given. We set $u(\cdot) = \widetilde{S}(\cdot)x + \widetilde{S} * g(\cdot)$, then $u \in C^1([0, T_0), X) \cap C([0, T_0), [D(A)])$, u(0) = 0, and

$$\begin{aligned} Au(t) &= A\widetilde{S}(t)x + A \int_0^t \widetilde{S}(t-s)g(s)ds \\ &= S(t)x - K_0(t)Cx + \int_0^t [S(t-s) - K_0(t-s)C]g(s)ds \\ &= S(t)x + \int_0^t S(t-s)g(s)ds - [K_0(t)Cx + K_0 * Cg(t)] \\ &= u'(t) - [K_0(t)Cx + K_0 * Cg(t)] \end{aligned}$$

for all $0 \le t < T_0$. Hence, u is a solution of $ACP(A, K_0(\cdot)Cx + K_0 * Cg(\cdot), 0)$ in $C^1([0, T_0), X) \cap C([0, T_0), [D(A)])$. The uniqueness of solutions for $ACP(A, K_0(\cdot)Cx + K_0 * Cg(\cdot), 0)$ follows directly from the uniqueness of solutions for $ACP(A, K_0(\cdot)Cx + K_0 * Cg(\cdot), 0)$ follows directly from the uniqueness of solutions for ACP(A, 0, 0). Clearly, " $(ii) \Rightarrow (iii)$ " holds, and (iii) and (iv) both are equivalent. We remain only to show that " $(iv) \Rightarrow (i)$ " holds. Let $S(t) : X \to X$ be defined by S(t)x = v(t; x) for all $x \in X$ and $0 \le t < T_0$. Clearly, $S(\cdot)$ is strongly continuous, and satisfies (2.11). Combining the uniqueness of solutions for the integral equation $v(\cdot)=Aj_0 * v(\cdot)+K_0(\cdot)Cx$ with the assumption $CA \subset AC$, we have $v(\cdot; Cx) = Cv(\cdot; x)$ for each $x \in X$, which implies that S(t) for $0 \le t < T_0$ are linear, and commute with C. Let $\{t_k\}_{k=1}^{\infty}$ be an increasing sequence in $(0, T_0)$ such that $t_k \to T_0$, and $C([0, T_0), X)$

a Frechet space with the quasi-norm $|\cdot|$ defined by $|v| = \sum_{k=1}^{\infty} \frac{\|v\|_k}{2^k(1+\|v\|_k)}$ for $v \in$ $C([0,T_0),X)$. Here $||v||_k = \max_{t \in [0,t_k]} ||v(t)||$ for all $k \in \mathbb{N}$. To show that $S(\cdot)$ is a family in L(X), we need only to show that the linear map $\eta: X \to C([0, T_0), X)$ defined by $\eta(x) = v(\cdot; x)$ for $x \in X$, is continuous or equivalently, $\eta: X \to C([0, T_0), X)$ is a closed linear operator. Let $\{x_k\}_{k=1}^\infty$ be a sequence in X such that $x_k \to x$ in X and $\eta(x_k) \to v$ in $C([0,T_0),X)$, then $v(\cdot;x_k) = Aj_0 * v(\cdot;x_k) + K_0(\cdot)Cx_k$ on $[0, T_0)$. Combining the closedness of A with the uniform convergence of $\{\eta(x_k)\}_{k=1}^{\infty}$ on $[0, t_k]$, we have $v(\cdot) = Aj_0 * v(\cdot) + K_0(\cdot)Cx$ on $[0, T_0)$. By the uniqueness of solutions for integral equations, we have $v(\cdot)=v(\cdot;x)=\eta(x)$. Consequently, $\eta: X \to X$ $C([0, T_0), X)$ is a closed linear operator. To show that A is a subgenerator of $S(\cdot)$, we remain only to show that $\hat{S}(t)A \subset A\hat{S}(t)$ for all $0 \leq t < T_0$. Let $x \in D(A)$ be given, then $\widetilde{S}(t)x - K_1(t)Cx = Aj_0 * \widetilde{S}(t)x = j_0 * A\widetilde{S}(t)x$ for all $0 \le t < T_0$, and so $\widetilde{S}(t)Ax - Aj_0 * \widetilde{S}(t)Ax = K_1(t)CAx = AK_1(t)Cx = A\widetilde{S}(t)x - Aj_0 * \widetilde{S}(t)Ax$ for all $0 \le t < T_0$. Hence, $Aj_0 * [S(\cdot)Ax - AS(\cdot)x] = S(\cdot)Ax - AS(\cdot)x$ on $[0, T_0)$. By the uniqueness of solutions for ACP(A, 0, 0), we have $S(\cdot)Ax = AS(\cdot)x$ on $[0, T_0)$. Applying Theorem 2.5, we get that $S(\cdot)$ is a nondegenerate local K-convoluted Csemigroup on X with subgenerator A.

By slightly modifying the proof of [15, Corollary 2.5], we can apply Theorem 3.4 to obtain the next result.

Theorem 3.5. Assume that $R(C) \subset R(\lambda-A)$ for some $\lambda \in \mathbb{F}$, and $ACP(A, K(\cdot)x, 0)$ has a unique solution in $C([0, T_0), [D(A)])$ for each $x \in D(A)$ with $(\lambda - A)x \in R(C)$. Then A is a subgenerator of a nondegenerate local K-convoluted C-semigroup on X.

Proof. Clearly, it suffices to show that for each $x \in X$ the integral equation

(3.1)
$$v(\cdot) = A \int_0^{\cdot} v(r)dr + K_0(\cdot)Cx$$

has a (unique) solution $v(\cdot; x)$ in $C([0, T_0), X)$ for each $x \in X$. Indeed, if $x \in X$ is given, then there exists a $y_x \in D(A)$ such that $(\lambda - A)y_x = Cx$. By hypothesis, $ACP(A, K(\cdot)y_x, 0)$ has a unique solution $u(\cdot; y_x)$ in $C([0, T_0), [D(A)])$. In particular, $u'(\cdot; y_x) = Au(\cdot; y_x) + K(\cdot)y_x \in L^1_{loc}([0, T_0), X)$. By the closedness of A and the continuity of $Au(\cdot; y_x)$, we have $\int_0^t u(r; y_x)dr \in D(A)$ and $A\int_0^t u(r; y_x)dr = \int_0^t Au(r; y_x)dr = u(t; y_x) - K_0(t)y_x \in D(A)$ for all $0 \le t < T_0$, so that

(3.2)
$$(\lambda - A)u(t; y_x) = (\lambda - A)[A \int_0^t u(r; y_x)dr + K_0(t)y_x] = A \int_0^t (\lambda - A)u(r; y_x)dr + K_0(t)Cx$$

for all $0 \le t < T_0$. Hence, $v(\cdot; x) = (\lambda - A)u(\cdot; y_x)$ is a solution of (3.1) in $C([0, T_0), X)$.

Since $C^{-1}AC = A$ and $R((\lambda - A)^{-1}C) = C(\mathbf{D}(A))$ if $\rho(A) \neq \emptyset$, we can apply Proposition 3.1 and Theorem 3.5 to obtain the next corollary.

Corollary 3.6. Assume that the resolvent set of A is nonempty. Then A is the generator of a nondegenerate local K-convoluted C-semigroup on X if and only if for each $x \in D(A)$ ACP $(A, K(\cdot)Cx, 0)$ has a unique solution in $C([0, T_0), [D(A)])$.

Just as results in [15] for the case of α -times integrated C-semigroup, we can apply Theorem 3.4 to obtain the next theorem. The wellposedness of abstract fractional Cauchy problems and abstract Cauchy problems associated with various classes of Volterra integro-differential equations in locally convex spaces have been recently considered in [10].

Theorem 3.7. Assume that A is densely defined. Then the following are equivalent:

- (i) A is a subgenerator of a nondegenerate local K-convoluted C-semigroup $S(\cdot)$ on X;
- (ii) for each $x \in D(A)$ ACP $(A, K(\cdot)Cx, 0)$ has a unique solution $u(\cdot; Cx)$ in $C([0, T_0), [D(A)])$ which depends continuously on x. That is, if $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $(D(A), \|\cdot\|)$, then $\{u(\cdot; Cx_n)\}_{n=1}^{\infty}$ converges uniformly on compact subsets of $[0, T_0)$.

Proof. $(i) \Rightarrow (ii)$. It is easy to see from the definition of a subgenerator of $S(\cdot)$ that $S(\cdot)x$ is the unique solution of $ACP(A, K(\cdot)Cx, 0)$ in $C([0, T_0), [D(A)])$ which depends continuously on $x \in D(A)$. $(ii) \Rightarrow (i)$. In view of Theorem 3.4, we need only to show that for each $x \in X$ (3.1) has a unique solution $v(\cdot; x)$ in $C([0, T_0), X)$. Let $x \in X$ be given. By the denseness of D(A), we have $x_m \to x$ in X for some sequence $\{x_m\}_{m=1}^{\infty}$ in D(A). We set $u(\cdot; Cx_m)$ to denote the unique solution of $ACP(A, K(\cdot)Cx_m, 0)$ in $C([0, T_0), [D(A)])$. Then $u(\cdot; Cx_m) \to u(\cdot)$ uniformly on compact subsets of $[0, T_0)$ for some $u \in C([0, T_0), X)$, and so $\int_0^{\cdot} u(r; Cx_m) dr \to C^{\cdot}$.

 $\int_{0} u(r)dr \text{ uniformly on compact subsets of } [0, T_0). \text{ Since } u'(\cdot; Cx_m) = Au(\cdot; Cx_m) + K(\cdot)Cx_m \text{ a.e. on } (0, T_0), \text{ we have}$

(3.3)
$$A\int_0^{\cdot} u(r; Cx_m)dr = \int_0^{\cdot} Au(r; Cx_m)dr = u(\cdot; Cx_m) - K_0(\cdot)Cx_m$$

on $[0, T_0)$ for all $m \in \mathbb{N}$. Clearly, the right-hand side of the last equality of (3.3) converges uniformly to $u(\cdot) - K_0(\cdot)Cx$ on compact subsets of $[0, T_0)$. It follows from the closedness of A that $\int_0^t u(r)dr \in D(A)$ for all $0 \le t < T_0$ and $A \int_0^{\cdot} u(r)dr = u(\cdot) - K_0(\cdot)Cx$ on $[0, T_0)$, which implies that $u(\cdot)$ is a (unique) solution of (3.1) in $C([0, T_0), X)$.

We end this paper with several illustrative examples.

Example 1. Let $X = C_b(\mathbb{R})$, and S(t) for $t \ge 0$ be bounded linear operators on X defined by S(t)f(x) = f(x+t) for all $x \in \mathbb{R}$. Then for each $K \in L^1_{loc}([0, T_0), \mathbb{F})$ and $\beta > -1$, $K_\beta * S(\cdot) = \{K_\beta * S(t) | 0 \le t < T_0\}$ is local a K_β -convoluted semigroup on X which is also nondegenerate with a closed subgenerator $\frac{d}{dx}$ acting with its maximal distributional domain when K_0 is not the zero function on $[0, T_0)$ (or equivalently, K is not the zero in $L^1_{loc}([0, T_0), \mathbb{F})$), but $K * S(\cdot)$ may not be a local K-convoluted semigroup on X except for $K \in L^1_{loc}([0, T_0), \mathbb{F})$ so that $K * S(\cdot)$ is a strongly continuous family in L(X) for which $\frac{d}{dx}$ is a closed subgenerator of $K * S(\cdot)$ when K_0 is not the zero function on $[0, T_0)$. Moreover, (1.5)-(1.8) hold and $\frac{d}{dx}$ is its generator and maximal subgenerator when K_0 is a kernel on $[0, T_0)$. In this case, $\frac{d}{dx} = \overline{A_0}$ for each subgenerator A_0 of $S(\cdot)$.

Example 2. Let k be a fixed nonnegative integer and K_0 a kernel on $[0, \infty)$, and let S(t) for $t \ge 0$ and C be bounded linear operators on c_0 (the family of all convergent sequences in \mathbb{F} with limit 0) defined by $S(t)x = \{x_n(n-k)e^{-n}\int_0^t K(t-s)e^{ns}ds\}_{n=1}^{\infty}$ and $Cx = \{x_n(n-k)e^{-n}\}_{n=1}^{\infty}$ for all $x = \{x_n\}_{n=1}^{\infty} \in c_0$, then $\{S(t)|0 \le t < 1\}$ is a local K-convoluted C-semigroup on c_0 which is degenerate except for k = 0 and generator A defined by $Ax = \{nx_n\}_{n=1}^{\infty}$ for all $x = \{x_n\}_{n=1}^{\infty} \in c_0$ with $\{nx_n\}_{n=1}^{\infty} \in c_0$, and for each r > 1 $\{S(t)|0 \le t < r\}$ is not a local K-convoluted C-semigroup on c_0 for $a \in \mathbb{F}$ defined by $A_ax = \{ny_n\}_{n=1}^{\infty} \in c_0$, suppose that $k \in \mathbb{N}$. Then $A_a : c_0 \to c_0$ for $a \in \mathbb{F}$ defined by $A_ax = \{ny_n\}_{n=1}^{\infty}$ for all $x = \{x_n\}_{n=1}^{\infty} \in c_0$ with $\{nx_n\}_{n=1}^{\infty} \in c_0$, are subgenerators of $\{S(t)|0 \le t < 1\}$ which do not have proper extensions that are still subgenerators of $\{S(t)|0 \le t < 1\}$. Here $y_n = akx_k$ if n = k, and $y_n = nx_n$ otherwise. Consequently, $\{S(t)|0 \le t < 1\}$ does not have a maximal subgenerator when $k \in \mathbb{N}$.

Example 3. Let $X = C_b(\mathbb{R})$ (or $L^{\infty}(\mathbb{R})$), and A be the maximal differential operator in X defined by $Au = \sum_{j=0}^{k} a_j D^j u$ on \mathbb{R} for all $u \in D(A)$, then $UC_b(\mathbb{R})$ (or $C_0(\mathbb{R})$) $= \overline{D(A)}$. Here $a_0, a_1, \dots, a_k \in \mathbb{C}$ and $D^j u(x) = u^{(j)}(x)$ for all $x \in \mathbb{R}$. It is shown

in [2,19] that $\{S(t)|0 \leq t < T_0\}$ defined by $(S(t)f)(x) = \frac{1}{\sqrt{2\pi}} \int_0^t \int_{-\infty}^\infty K(t-s)\widetilde{\phi_s}(x-y)f(y)dyds$ for all $f \in X$ and $0 \leq t < T_0$, is a norm continuous local K_0 -convoluted semigroup on X with closed subgenerator A if the real-valued polynomial $p(x) = \sum_{j=0}^k a_j(ix)^j$ satisfies $\sup_{x\in\mathbb{R}} p(x) < \infty$, and $K \in L^1_{loc}([0,T_0),\mathbb{F})$ is not the zero function on $[0,T_0)$. Here $\widetilde{\phi_t}$ denotes the inverse Fourier transform of ϕ_t with $\phi_t(x) = \int_0^t e^{p(x)s}ds$ for all $t \geq 0$. Suppose that K_0 is a kernel on $[0,T_0)$. Then A is its generator and maximal subgenerator. Applying Theorem 3.4, we get that for each $f \in X$ and continuous function g on $[0,T_0) \times \mathbb{R}$ with $\int_0^t \sup_{x\in\mathbb{R}} |g(s,x)|ds < \infty$ for all $0 \leq t < T_0$, the function u on $[0,T_0) \times \mathbb{R}$ defined by $u(t,x) = \frac{1}{\sqrt{2\pi}} \int_0^t \int_{-\infty}^\infty K_0(t-s)\widetilde{\phi_s}(x-y)f(y)dyds + \frac{1}{\sqrt{2\pi}} \int_0^t \int_0^{t-r} \int_{-\infty}^\infty K_0(t-r-s)\widetilde{\phi_s}(x-y)g(r,y)dydsdr$ for all $0 \leq t < T_0$ and $x \in \mathbb{R}$, is the unique solution of

$$\begin{cases} \frac{\partial u(t,x)}{\partial t} = \sum_{j=0}^{k} a_{j} (\frac{\partial}{\partial x})^{j} u(t,x) + K_{1}(t) f(x) \\ &+ \int_{0}^{t} K_{1}(t-s)g(s,x) ds \text{ for } t \in (0,T_{0}) \text{ and a.e. } x \in \mathbb{R}, \\ u(0,x) = 0 \quad \text{ for a.e. } x \in \mathbb{R} \end{cases}$$

in $C^1([0, T_0), X) \cap C([0, T_0), [D(A)])$.

ACKNOWLEDGMENT

The author is grateful to the referee for his or her corrections and valuable suggestions.

REFERENCES

- 1. W. Arendt, C. J. K. Batty, H. Hieber and F. Neubrander, *Vector-valued Laplace Transformes and Cauchy Problem*, Birkhauser Verlag Basel-Boston-Berlin, 2001.
- 2. R. DeLaubenfuls, Integrated semigroups, C-semigroups and the abstract Cauchy problem, *Semigroup Forum*, **41** (1990), 83-95.
- 3. M. Gao, Local C-semigroups and local C-cosine functions, Acta Math. Sci., 19 (1999), 201-213.
- 4. J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, 1985.

- 5. M. Hieber, Integrated semigroups and differential operators on L^p spaces, *Math. Ann.*, **291** (1991), 1-16.
- 6. M. Hieber, Laplace transforms and α -times integrated semigroups, *Forum Math.*, **3** (1991), 595-612.
- 7. H. Kellerman and M. Hieber, Integrated semigroups, J. Funct. Anal., 84 (1989), 160-180.
- 8. M. Kostic, *Generalized Semigroups and Cosine Functions*, Mathematical Institute Belgrade, 2011.
- M. Kostic, (a,k)-regularized (C1, C2)-existence and uniqueness families, Bull. Cl. Sci. Math., 38 (2013), 9-26.
- 10. M. Kostic, *Abstract Volterra Integro-differential Equations*, Taylor and Francis Group, 2014.
- 11. C.-C. Kuo, On existence and approximation of solutions of abstract Cauchy problem, *Taiwanese J. Math.*, **13** (2009), 137-155.
- C.-C. Kuo, On perturbation of α-times integrated C-semigroups, Taiwanese J. Math., 14 (2010), 1979-1992.
- 13. C.-C. Kuo, Perturbation theorems for local integrated semigroups, *Studia Math.*, **197** (2010), 13-26.
- 14. C.-C. Kuo and S.-Y. Shaw, On α-times integrated C-semigroups and the abstract Cauchy problem, *Studia Math.*, **142** (2000), 201-217.
- 15. C.-C. Kuo and S.-Y. Shaw, On strong and weak solutions of abstract Cauchy problem, *J. Concrete and Applicable Math.*, **2** (2004), 191-212.
- M. Li and Q. Zheng, α-times integrated semigroups: local and global, *Studia Math.*, 154 (2003), 243-252.
- 17. F. Li, T.-J. Xiao, J. Liang and J. Zhang, On perturbation of convoluted *C*-regularized operator families, *J. Funct. Spaces Appl.*, **2013** (2013), Article ID 579326, 8 pages.
- Y.-C. Li and S.-Y. Shaw, On local α-times integrated C-semigroups, Abstract and Applied Anal., 2007 (2007), Article ID 34890, 18 pages.
- 19. Y.-C. Li and S.-Y. Shaw, N-times integrated C-semigroups and the abstract Cauchy problem, *Taiwanese J. Math.*, **1** (1997), 75-102.
- 20. Y.-C. Li and S.-Y. Shaw, Perturbation of nonexponentially-bounded α -times integrated *C*-semigroups, *J. Math. Soc. Japan*, **55** (2003), 1115-1136.
- 21. M. Mijatović and S, Pilipović, α -times integrated semigroups($\alpha \in \mathbb{R}^+$), J. Math. Anal. Appl., **210** (1997), 790-803.
- 22. I. Miyadera, M. Okubo and N. Tanaka, On integrated semigroups where are not exponentially bounded, *Proc. Japan Acad.*, **69** (1993), 199-204.
- 23. F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, *Pacific J. Math.*, **135** (1988), 111-155.

- 24. F. Neubrander, Integrated semigroups and their applications to complete second order Cauchy problems, *Semigroup Forum*, **38** (1989), 233-251.
- 25. S. Nicasie, The Hille-Yosida and Trotter-Kato theorems for integrated semigroups, J. Math. Anal. Appl., 180 (1993), 303-316.
- 26. S.-Y. Shaw and C.-C. Kuo, Generation of local *C*-semigroups and solvability of the abstract Cauchy problems, *Taiwanese J. Math.*, **9** (2005), 291-311.
- 27. N. Tanaka and I. Miyadera, C-semigroups and the abstract Cauchy problem, J. Math. Anal. Appl., **170** (1992), 196-206.
- 28. N. Tanaka and N. Okazawa, Local *C*-semigroups and local integrated semigroups, *Proc. London Math. Soc.*, **61(3)** (1990), 63-90.
- 29. T.-J. Xiao and J. Liang, *The Cauchy Problem for Higher-order Abstract Differential Equations*, Lectures Notes in Math., 1701, Springer, 1998.
- 30. T.-J. Xiao and J. Liang, Differential operators and C-wellposedness of complete second order abstract Cauchy problems, *Pacific J. Math.*, **186** (1998), 167-200.
- 31. T.-J. Xiao and J. Liang, Approximations of Laplace transforms and integrated semigroups, J. Funct. Anal., 172 (2000), 202-220.

Chung-Cheng Kuo Department of Mathematics Fu Jen University New Taipei City 24205 Taiwan E-mail: cckuo@math.fju.edu.tw