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EXISTENCE, UNIQUENESS AND STABILITY OF
PERIODIC SOLUTIONS OF A DUFFING EQUATION UNDER

PERIODIC AND ANTI-PERIODIC EIGENVALUES CONDITIONS

Feng Wang and Hailong Zhu

Abstract. Using periodic and anti-periodic eigenvalues, we present new criteria
for guaranteeing the existence, uniqueness and asymptotic stability (in the sense of
Lyapunov) of periodic solutions of a Duffing equation under conditions which are
weaker than those used in the literature. The proof is based on the application of
the existence theorem of Leray-Schauder type, Floquet theory, Lyapunov stability
theory and some analytic techniques.

1. INTRODUCTION

In this paper, we consider the existence, uniqueness and stability of periodic solu-
tions for the Duffing-type equation

x′′ + cx′ + g(t, x) = h(t),(1.1)

where c > 0 is fixed, h is a T -periodic function and g : R × R → R is a T -periodic
function in t. We assume that g satisfies the following semilinear condition: there exist
T -periodic functions φ, Φ ∈ L1(0, T ) such that

(1.2) φ(t) ≤ gx(t, x) ≤ Φ(t), uniformly in t ∈ [0, T ].

During the past three decades, the existence and stability of periodic solutions
of (1.1) or more general types of nonlinear second-order differential equations have

Received November 2, 2013, accepted May 21, 2015.
Communicated by Eiji Yanagida.
2010 Mathematics Subject Classification: Primary: 34C25; Secondary: 34D20.
Key words and phrases: Duffing equation, Periodic solution, Existence, Uniqueness, Stability.
The authors would like to show his great thanks to Professor Jifeng Chu for his careful reading and useful
suggestions, which have deeply influenced the final form of the manuscript. Feng Wang was supported
by the National Natural Science Foundation of China (Grant No. 11171090 and No. 11401166). Hailong
Zhu was supported by the National Natural Science Foundation of China (Grant No. 11301001) and the
Excellent Youth Scholars Foundation and the Natural Science Foundation of Anhui Province of China
(Grant No. 2013SQRL030ZD)

1457



1458 Feng Wang and Hailong Zhu

been studied by many authors (see [1, 2, 3, 4, 5, 8, 9, 12, 17] and the references
therein) since Ortega initiated the study of the stability of periodic solutions of (1.1)
with h(t) = 0 using the relation between topological degree and stability [13, 14, 15].
Besides topological degree, the method of upper and lower solutions is also successfully
used to investigate stability properties. For example, it was shown in [12] that for
(1.1), the solution lying between the well ordering lower- and upper-solution is usually
unstable, but the solution lying between the reversed ordering lower- and upper-solution
is stable when the derivative of the restoring force g with respect to x is small or the
fractional constant c is large.

Recently, Chen and Li established the following theorems in [3, 4] for problem
(1.1). In particular, bounds for the derivative of the restoring force are given that
ensure the existence and uniqueness of a periodic solution. Furthermore, the stability
of the unique periodic solution was analyzed and the sharp rate of exponential decay
was determined for a solution that is near to the unique periodic solution. Recall that
we say that the periodic solution x0 of (1.1) is asymptotically stable if there exist
constants C > 0 and α > 0 such that if x is another solution with

|x(0)− x0(0)|+ |x′(0)− x′
0(0)| = d

sufficiently small, then

|x(t)− x0(t)|+ |x′(t) − x′
0(t)| < Cde−αt.

The super exponent α is called the rate of decay of x0.

Theorem 1.1. Suppose that g ∈ C1(R × R) satisfies the following conditions

α(t) < gx(t, x) <
π2

T 2
+

c2

4
,(1.3)

with α > c2

4 , here α denotes the average of α(t) over a period. Then (1.1) has a
unique T -periodic solution which is asymptotically stable with the rate of decay of c

2
for c > 0.

Theorem 1.2. Suppose that g ∈ C1(R × R) satisfies the following condition

n2π2

T 2
+

c2

4
≤ gx(t, x) ≤ (n + 1)2π2

T 2
+

c2

4
,(1.4)

for some n ≥ 1. Then (1.1) has a unique T -periodic solution which is asymptotically
stable with the rate of decay of c

2 for c > 0.

We call (1.3), (1.4) the first stable condition, nth stable condition because the
corresponding linear equation lies in the first (nth) stable intervals when (1.3), (1.4)
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holds. See [18]. As remarked in [3, 4] that conditions (1.3), (1.4) in Theorems 1.1 and
1.2 are optimal in the following sense: for any ε > 0, there are unstable differential
equations (1.1) in which

α(t) < gx(t, x) <
π2

T 2
+

c2

4
+ ε, α >

c2

4
or

n2π2

T 2
+

c2

4
− ε ≤ gx(t, x) ≤ (n + 1)2π2

T 2
+

c2

4
+ ε.

However, we observe that the above stable conditions have some disadvantages:
(1) they have no persistence, which means that when gx(t, x) has small perturbations,
(1.3) and (1.4) may be no longer satisfied, because gx(t, x) − ε and gx(t, x) + ε may
not satisfy conditions (1.3) and (1.4) for ε > 0; (2) conditions (1.3) and (1.4) naturally
imply that gx(t, x) ∈ L∞(0, T ), which can not deal with L1-Carathéodory functions.
For example, Theorem 1.2 cannot be applicable to the following simple equation

(1.5) x′′ + cx′ + μ(1 + cos t)x + f(t, x) = h(t), t ∈ [0, 2π],

where f satisfies fx(t, x) = 0.
The purpose of this paper is to present a generalization of Theorems 1.1 and 1.2,

and our new results can deal with examples such as (1.5). The tools include Leray-
Schauder type existence theorem, Floquet theory, Lyapunov stability theory and some
analytic techniques. In particular, periodic and antiperiodic eigenvalues of equation
x′′ + (λ + q(t))x = 0 play the important role in Theorems 2.3 and 2.6.

2. PRELIMINARIES

Let X, Z be real Banach spaces, L : domL ⊂ X → Z be a Fredholm map of
index zero, there exist continuous projectors P : X → X, Q : Z → Z such that Im
P = Ker L, Ker Q = Im L, and X = Ker L ⊕ Ker P, Z = ImL ⊕ Im Q. It follows
that LdomL∩KerP : dom L ∩ Ker P → Im L is invertible, and we denote its inverse
by KP . If Ω is an open bounded subset of X such that dom L ∩ Ω 	= ∅, then the
continuous map N : X → Z will be called L-compact on Ω when QN (Ω) is bounded
and KP (I − Q)N : Ω → X is compact.

In order to prove the main results of this paper, we need the following existence
result of Leray-Schauder type.

Lemma 2.1. [11, Theorem IV.5] Let A : X → Z be L-compact and such that
(1) Ker(L + A) = {0},
(2) for every (x, λ) ∈ (domL ∩ ∂Ω)× (0, 1),

Lx + (1 − λ)Ax + λNx 	= 0,

and assume that 0 ∈ Ω. Then Lx = Nx has at least one solution in domL∩Ω.
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Now we recall some facts on eigenvalues of Hill equations. Let q(t) be a T -periodic
potential such that q ∈ L1(0, T ). Consider the eigenvalue problems

x′′ + (λ + q(t))x = 0(2.1)

subject to the periodic boundary condition

x(0)− x(T ) = x′(0)− x′(T ) = 0,(2.2)

or to the anti-periodic boundary condition

x(0) + x(T ) = x′(0) + x′(T ) = 0.(2.3)

We use
λD

1 (q) < λD
2 (q) < · · · < λD

n (q) < · · ·
to denote all eigenvalues of (2.1) with the Dirichlet boundary condition x(0) = x(T ) =
0.

Theorem 2.2. [10] There exist two sequences {λn(q) : n ∈ N} and {λn(q) : n ∈
Z

+} of the reals such that
(P1) they have the following order:

−∞ < λ0(q) < λ1(q) ≤ λ1(q) < · · · < λn(q) ≤ λn(q) < · · ·

and λn(q) → +∞, λn(q) → +∞ as n → ∞.
(P2) λ is an eigenvalue of (2.1)-(2.2) if and only if λ = λn(q) or λn(q) for some even

integer n; λ is an eigenvalue of (2.1)-(2.3) if and only if λ = λn(q) or λn(q)
for some odd integer n.

(P3) λD
n (q), λn(q), and λn(q) are continuous functions of q with respect to the L1-

metric on q’s: d(q1, q2) =
∫ T
0 |q1(t) − q2(t)|dt.

(P4) the eigenvalues λn(q) and λn(q) can be recovered from the Dirichlet eigenvalues
in the following way: for any n ∈ N,

λn(q) = min{λD
n (qt0) : t0 ∈ R}, λn(q) = max{λD

n (qt0) : t0 ∈ R},

here qt0(t) ≡ q(t + t0) denotes the translation of q(t).
(P5) the comparison results hold for all of these eigenvalues. If q1 ≥ q2 then

λn(q1) ≤ λn(q2), λn(q1) ≤ λn(q1), λD
n (q1) ≤ λD

n (q2),(2.4)

for any n ∈ N. If q1(t) ≥ q2(t) for all t, and q1(t) > q2(t) for t in a subset of
positive measure, then all of the inequalities in (2.4) are strict.
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Our first main result reads as follows.

Theorem 2.3. Suppose that g ∈ C1(R × R) satisfies the semilinearity condition
(1.2). Assume further that

φ >
c2

4
, λ1(Φ) +

c2

4
> 0.(2.5)

Then (1.1) has a unique T -periodic solution which is asymptotically stable with the
rate of decay of c

2 .

Let Φ+ = max{Φ, 0} denote the positive part of a function Φ. It was proved in
[18] that

λ1(Φ) ≥
( π

T

)2(
1 − ‖Φ+‖p

K(2p∗)

)
,

if there exists p ∈ [1, +∞] such that

‖Φ+‖p ≤ K(2p∗), p∗ = p/(p− 1),

here K(q) is the best Sobolev constant in the following inequality:

C‖x‖2
q ≤ ‖x′‖2

2, x ∈ H1
0 (0, T ).

Explicitly,

K(q) =

⎧⎪⎪⎨
⎪⎪⎩

2π

qT 1+2/q

( 2
2 + q

)1−2/q( Γ( 1
q )

Γ( 1
2 + 1

q )

)2
, if 1 ≤ q < ∞,

4
T

, if q = ∞.

See Talenti [16]. Now the following result is a direct consequence of Theorem 2.3 and
the above fact.

Corollary 2.4. Suppose that g ∈ C1(R × R) satisfies the semilinearity condition
(1.2). Assume further that φ > c2

4 and there exists p ∈ [1, +∞] such that

‖Φ+‖p <
(
1 +

(cT

2π

)2)
K(2p∗).

Then (1.1) has a unique T -periodic solution which is asymptotically stable with the
rate of decay of c

2 . In particular, when p = +∞, we arrive at the usual criterion

‖Φ+‖∞ <
(
1 +

(cT

2π

)2)
K(2) =

π2

T 2
+

c2

4
,(2.6)

which was used in [3, 4].



1462 Feng Wang and Hailong Zhu

Example 2.5. Consider the equation

x′′ + cx′ + a(t)
(

x − 1
2

arctanx

)
= h(t),(2.7)

where a, h are 2π-periodic functions. It is easy to verify that (1.2) holds with

φ(t) =
a(t)
2

, Φ(t) = a(t).

Theorem 1.1 shows that equation (2.7) has a unique asmptotically stable 2π-periodic
solution when

c2

2
< a(t) <

1
4

+
c2

4
,(2.8)

which can also be improved as

c2

2
< a(t) <

2
π

+
2c2

π
≈ 0.6367 + 0.6367c2,

if we apply Theorem 2.3.

The following result is our second main result, which deal with the case when n

stable condition holds.

Theorem 2.6. Suppose that g(t, x) satisfies the semilinearity condition (1.2).
Assume further that there exists n ∈ N such that

λn(φ) +
c2

4
< 0 and λn+1(Φ) +

c2

4
> 0.(2.9)

Then (1.1) has a unique T -periodic solution which is asymptotically stable with the
rate of decay of c

2 for c > 0.

Example 2.7. Consider the equation (1.5). Obviously, (1.5) satisfies (1.2) with
φ(t) = Φ(t) = �(t), where �(t) = μ(1 + cos t). As explained in Section 1, Theorem
1.2 is not applicable to this example since �(t) has zeros in t. However, by Theorem
2.6, we can obtain higher asymptotically stable results if 0 ∈ (λn(�)+ c2

4 , λn+1(�)+
c2

4 ) for some n ∈ N.

3. PROOF OF MAIN RESULTS

In this section we present the proof of Theorem 2.3 and omit the proof of Theo-
rem 2.6 since it can be proved by the same method.

To prove the existence of solutions of (1.1), we will apply Lemma 2.1. To do this,
we consider the following equation

x′′ + cx′ + Φ(t)x = 0.(3.1)
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Lemma 3.1. Assume that

Φ >
c2

4
and λ1(Φ) +

c2

4
> 0.(3.2)

Then problem (3.1)-(2.2) has only the trivial T -periodic solution.

Proof. On the contrary, suppose that (3.1)-(2.2) has a nontrivial T -periodic solution
x. Let

x(t) = e−
1
2
ctu(t).

Then u satisfies the equation

u′′(t) +
[
Φ(t) − c2

4

]
u(t) = 0.(3.3)

First we claim that there exists t0 ∈ [0, T ] such that

u′(t0) = 0.(3.4)

On the contrary, suppose that (3.4) does not hold. Then x does not change sign in R,
neither does u. Dividing (3.3) by u(t) and integrating it from 0 to T , and noting that

u′(T )
u(T )

=
u′(0)
u(0)

,

we have that ∫ T

0

u′(t)2

u(t)2
dt +

∫ T

0

[
Φ(t) − c2

4

]
dt = 0,

which is impossible by the hypothesis of lemma and therefore (3.4) holds. Then u is
a nontrivial solution of the following Dirichlet boundary value problem⎧⎪⎨

⎪⎩
u′′ + [Φ(t)− c2

4 ]u = 0,

u(t0) = u(t0 + T ) = 0,
(3.5)

which implies that there exists an n such that λD
n (Φ − c2

4 ) = 0. By (3.2) and [(P5),
Theorem 2.2], we obtain that

λD
n (Φ− c2

4
) = λD

n (Φ) +
c2

4
≥ λn(Φ) +

c2

4
≥ λ1(Φ) +

c2

4
> 0,

which is a contradiction.
Next we recall a principle of linearized stability for periodic systems [6]. Consider

the periodic boundary value problem⎧⎨
⎩

x′ = F (t, x),

x(0) = x(T ),
(3.6)
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where F : [0, T ] × R
n → R

n is a continuous function that is T -periodic in t, and
has continuous first-order partial derivative with x. Let x0 be a T -periodic solution of
(3.6), consider the linearized equation associated to x0

y′ = Fx(t, x0)y.(3.7)

Lemma 3.2. [6] If the characteristic exponents associated with (3.7) all have
negative real parts, then the T -periodic solution x0 of (3.6) is asymptotically stable.

Let x0(t) be the unique T -periodic solution of (1.1), it is easy to see that the
linearized equation of (1.1) is

x′′(t) + cx′(t) + gx(t, x0(t))x(t) = 0.(3.8)

Lemma 3.3. Under the conditions of Theorem 2.3, equation (3.8) does not admit
real Floquet multipliers.

Proof. On the contrary, suppose that there exist a real Floquet multiplier ρ and a non-
trivial solution x such that x(t + T ) = ρx(t). Combining [(P5), Theorem 2.2] with
conditions (1.2) and (2.5), we have that

gx(t, x0(t)) ≥ φ >
c2

4
,(3.9)

λ1(gx(t, x0(t))) +
c2

4
≥ λ1(Φ) +

c2

4
> 0.(3.10)

In the same way as in the proof of Lemma 3.1, we can show that (3.9) and (3.10) imply
that problem (3.8)-(2.2) has only the trivial T -periodic solution, which is a contraction.
Thus the result is proved.

Proof of Theorem 2.3. The proof will be divided into three steps.

Step 1. Existence. Let X = Z = C[0, T ] with the supremum norm ‖x‖ =
max

t∈[0,T ]
|x(t)|. We shall use the following notations:

dom L = {x : [0, T ] → R is C1 on [0, T ] and satisfies (2.2)},

L : domL ⊂ X → Z, x → x′′ + cx′,

A : X → Z, x → Φ(t)x,

N : X → Z, x → g(t, x)− h(t).

One may check that A and N are well defined and L-compact on bounded subsets of
X , and that L is a linear Fredholm map of index zero. By the linearity of the operator
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L+A and Lemma 3.1, we have Ker(L+A) = {0}. Thus condition (1) of Lemma 2.1
is satisfied.

Without loss of generality, we may assume that g(t, 0) = 0, otherwise we can
reduce both sides of (1.1) by g(t, 0). This leads to the following homotopy H :
domL × [0, 1] → Z defined by

H(x, λ) = x′′(t) + cx′(t) + gλ(t, x)− λh(t),(3.11)

where gλ(t, x) = λg(t, x)+ (1− λ)Φ(t)x.
In order to apply Lemma 2.1 with Ω = {x ∈ X : ‖x‖ < R}, we have only to show

that there exists R > 0 for which H(x, λ) 	= 0 when λ ∈ [0, 1] and x ∈ dom L with
‖x‖ ≥ R. On the contrary, suppose that there exist sequences xn ∈ X and λn ∈ [0, 1]
such that

x′′
n(t) + cx′

n(t) + gλn(t, xn) = λnh(t)(3.12)

and
max

t
xn(t) → ∞ as n → ∞.

Let zn(t) = xn(t)
‖xn‖ , n = 1, 2, . . .. Dividing (3.12) by ‖xn‖, then multiplying by

ϕ(t) ∈ C2
T and integrating by parts, we get∫ T

0

(
znϕ′′ − cznϕ′ +

gλn(t, xn)
‖xn‖ · znϕ

)
dt = λn

∫ T

0

ϕh(t)
‖xn‖ dt.(3.13)

Observe that the right-hand side of (3.13) converges to zero. Let us study the left-hand
side. The condition of Theorem 2.3 implies that

ωn(t) =
gλn(t, xn)

‖xn‖
is bounded. It is pre-compact in the weak∗ topology in L1(0, T ). Thus { g(t,xn)

xn
}

contains a subsequence which converges weakly to α(t) and λn → λ. Taking the limit
in (3.13), one obtains that∫ T

0
(zϕ′′ − czϕ′ + zω(t)ϕ)dt = 0,

where ω(t) = λα(t) + (1− λ)Φ(t) satisfying the conditions of Lemma 3.1. It follows
from Lemma 3.1 that z(t) ≡ 0, which contradicts ‖z(t)‖ = 1, which is a contradiction.
Now we have proved the existence.

Step 2. Uniqueness. Suppose that x1(t) and x2(t) are two T -periodic solutions of
(1.1). Then

(3.14) [x1(t) − x2(t)]′′ + c[x1(t)− x2(t)]′ + [g(t, x1(t)) − g(t, x2(t))] = 0.
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Setting x̃(t) = x1(t) − x2(t), we obtain, from (3.14), that

x̃′′(t) + cx̃′(t) + β(t)x̃(t) = 0,(3.15)

where β(t) = g(t,x1)−g(t,x2)
x1−x2

. It follows from Lemma 3.1 that x̃ ≡ 0, which implies
that x1(t) ≡ x2(t) for all t ∈ R.

Step 3. Asymptotic stability. Consider the planar system associated with equation
(1.1) ⎧⎪⎨

⎪⎩
x′ = y − cx,

y′ = h(t) − g(t, x).
(3.16)

Let X0(t) = (x0(t), y0(t))T be the unique T -periodic solution determined by the
initial condition X0(0) = (x0, y0)T . Then X0 corresponds to the unique fixed point of
the Poincaré mapping PX = U(T, X), here U(T, X) is the initial value solution of
(3.16) with U(0, X) = X .

Next, we show that the characteristic exponents associated with (3.8) all have
negative real parts. To this end we consider a system equivalent to (3.8)

X ′(t) = A(t)X(t),(3.17)

where the column vector function X(t) = (x(t), x′(t))T and A(t) is the matrix function

A(t) =
[

0 1
−gx(t, x0(t)) −c

]

Let ρ1 = eTμ1 and ρ2 = eTμ2 be the Floquet multipliers of (3.17) and μ1 and μ2 be
the characteristic exponents associate with ρ1 and ρ2. Then it follows from the above
claim that ρ1 and ρ2 are a pair of complex conjugates. Thus the eigenvectors that are
associate with different eigenvalues are linearly independent. Therefore xi = pi(t)eμit

(for i = 1, 2) form the fundamental solutions of equation (3.17). On the other hand,
by applying the Jacobi-Liouville formula, we have

|ρ1|2 = ρ1ρ2 = e
∫ T
0 trace A(t)dt = e−cT(3.18)

and
Re(μ1) = Re(μ2) =

1
2

Re(μ1 + μ2) =
1

2T
ln(ρ1ρ2) = − c

2
< 0.

Applying Lemma 3.2, we obtain that x0(t) is asymptotically stable. Since every solu-
tion is linear combination of x1(t) and x2(t), pi(t) is T -periodic, hence it is bounded.
Therefore every nonzero solution of the equation (3.17) decays at the same exponential
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rate of c
2 . Let M(t) be the fundamental matrix solution of (3.17). By the differentia-

bility of X(t) with respect to the initial value, the Poincaŕe mapping can be expressed
in terms of the initial value X by the following formula:

PX − X0 = M(T )(X − X0) + o(X − X0).

Using (3.18), we have that M(T ) has a pair of conjugate eigenvalues ρ1, ρ2 with
|ρ1| = |ρ2| = e−cT/2. Thus PX is a contraction mapping. According to the Hartman-
Grobman theorem [7], there is a C1 diffeomorphism ϕ is near enough to the identity
that PX −X0 is conjugate equivalent to M(T ). There is an invertible constant matrix
C such that

C−1M(T )C =
[

ρ1 0
0 ρ2

]
= D(ρ),

and we may suppose that

1
2
|X − X0| < |ϕ(X)− ϕ(X0)| < 2|X − X0|,

for X − X0 small, since ϕ is near the identity. Therefore, the Lyapunov exponent is
given by

lim
n→∞

1
nT

ln |PnX − X0|

= lim
n→∞

1
nT

ln |ϕ ◦ Mn(T ) ◦ ϕ−1(X)− ϕ ◦ Mn(T ) ◦ ϕ−1(X0)|

= lim
n→∞

1
nT

ln |CD(ρ)nC−1[ϕ−1(X)− ϕ−1(X0)]| = − c

2
.

Hence the rate of decay of the solution to the unique T -periodic solution x0 is c
2 ,

independently of the initial value X . This completes the proof of Theorem 2.3.
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