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RANDOM ATTRACTOR FOR FRACTIONAL GINZBURG-LANDAU
EQUATION WITH MULTIPLICATIVE NOISE

Hong Lu and Shujuan Lü*

Abstract. In this paper, we consider the asymptotic behavior of solutions to the
stochastic fractional complex Ginzburg-Landau equation with multiplicative noise
in one spatial dimensions. We first transfer stochastic fractional Ginzburg-Landau
equation into random equation which solutions generate a random dynamical sys-
tem. Then, we consider the existence of a random attractor for the random dynam-
ical system. At last we estimate the Hausdorff dimension of the random attractor
by using linearization and Lyapunov exponents.

1. INTRODUCTION

The fractional differential equation is called an equation that contains fractional
derivatives or fractional integrals. The physical background of fractional differential
equations is profound. At present, the fractional derivative and fractional integral have
a wide range of applications in physics, biology, chemistry and other fields of sci-
ence, such as kinetic theories of systems with chaotic dynamics ([1, 2]); pseudochaotic
dynamics ([3]); dynamics in a complex or porous media ([4]); random walks with
a memory and flights ([5, 7]); and many other aspects. In recent years, fractional
partial differential equations have been proposed in many fields of fluid mechanics,
mechanics of materials, biology, plasma physics, finance, chemistry, etc., and are being
studied, including the fractional Schrödinger equation ([8, 9, 10]), fractional Landau-
Lifshitz equation ([11]), fractional Landau-Lifshitz-Maxwell equation ([12]) and frac-
tional Ginzburg-Landau equation ([13]).

The fractional Ginzburg-Landau equation can be used to describe the dynamical
processes in a medium with fractal dispersion. The fractional generalization of the
Ginzburg-Landau equation from the variational Euler-Lagrange equation for the fractal
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media is derived in [13]. However, some perturbations may neglect in the derivation
of this ideal model (such as molecular collisions in gases and liquids and electric
fluctuations in resistors [14]). When considering the perturbations of each microscopic
units to the models, which will lead to a very large complex system, people usually
represent the micro effects by random perturbations in the dynamics of the macro
observable. So stochastic partial differential equation and its application is becoming
more and more interesting and important in mathematical physics recently.

One of the most important problems of modern mathematical physics is the asymp-
totic behavior of random dynamical systems. One way to attack the problem for
dissipative random dynamical systems is to study its random attractor. The theory of
random attractors developed by Crauel, Flandoli ([15, 16]), which closely parallels
the deterministic case ([17]), is becoming very useful for the study of the asymptotic
behavior of dissipative random dynamical systems. The random attractor is a random
invariant compact set that attracts any orbit starting from −∞. Its geometry is very
complicated and it can reflect the complexity of the long-time behavior of the random
dynamical systems. However it seems that the asymptotic behavior of the random
dynamical systems is governed by a finite number of degrees of freedom. Debussche
([18]) proved that the Hausdorff dimension of the random attractor could be estimated
by using global Lyapunov exponents. In this paper, we obtain an upper bound on the
Hausdorff dimension by using linearization and Lyapunov exponents.

In this paper, we consider the following stochastic fractional Ginzburg-Landau
equation with multiplicative noise of Itô form in R:

(1.1) du+
(
(1 + iν)(−�)αu+ (1 + iμ)|u|2u) dt = ρudt+βudW (t), x ∈ R, t > 0

with the initial condition and the periodic boundary condition:

(1.2) u(x, 0) = u0, x ∈ R,

(1.3) u(x+ 2π, t) = u(x, t), x ∈ R, t > 0,

u(x, t) is a complex-valued function on R× [0,+∞). In (1.1), i is the imaginary unit,
ν, μ, ρ > 0, β > 0 are real constants, and α ∈ (1/2, 1). The white noise described by
a two-sided Wiener process W (t) on a complete probability space results from the fact
that small irregularity has to be taken account in some circumstances.

For the deterministic fractional complex Ginzburg-Landau equation, in [19], the
authors obtained the well-posedness with the semigroup method under the condition

1
2
≤ σ ≤ 1√

1 + μ2 − 1
.(1.4)

The existence of global attractor in L2 is obtained also under the condition σ = 1.
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In this paper, we arrange as follows. In section 2, some preliminaries and nota-
tions are shown and the random attractors theory for the random dynamical system
are recalled. In section 3, we define a continuous random dynamical system for the
stochastic fractional complex Ginzburg-Landau equation. In section 4, the existence of
the random attractor for the stochastic Ginzburg-Landau equation is proved. In section
5, we prove that the random attractor has a finite Hausdorff dimension.

2. PRELIMINARIES AND NOTATIONS

In this section, we first review some basic concepts related to random attractors for
stochastic dynamical systems. The reader may refer to [15, 16] for more details.

Let (X, || · ||X) be a separable Hilbert space with Borel σ-algebra B(x), and {θt :
Ω −→ Ω, t ∈ R} be a family of measure preserving transformations of a probability
space (Ω,F , P) such that (t, ω) �−→ θtω is measurable, θ0 = I, θt+s = θt ◦ θs for all
t, s ∈ R. Thus (θt)t∈R is a flow, and (Ω,F , P, (θt)t∈R) is a (measurable) dynamical
system. We also denote the mappings S(t, s;ω) : X → X, −∞ < s ≤ t < ∞, with
explicit dependence on ω ∈ Ω.

Definition 2.1. For any invariant set A, if P (A) = 0 or P (A) = 1, we call
measure preserving transformation θt : Ω −→ Ω, t ∈ R or metric dynamical system
(Ω,F , P, (θt)t∈R) is ergodic.

Definition 2.2. Given t ∈ R, and ω ∈ Ω, K(t, ω) ⊂ X is called an attracting set,
if for all bounded sets B ⊂ X ,

d(S(t, s;ω)B,K(t, ω)) → 0 as s→ −∞,

where d(Y, Z) = supy∈Y infz∈Z ‖y − z‖X , for any Y, Z ⊆ X.

Definition 2.3. A set valued map A(ω) : Ω → 2X taking valued in the closed
subsets of X is called to be measurable, if for all x ∈ X , the mapping ω �→ d(A(ω), x)
is measurable.

Definition 2.4. The random omega limit set of a bounded set B ⊂ X at time t by

A(B, t, ω) =
⋂
T≤t

⋃
s≤T

S(t, s;ω)B.

Definition 2.5. Let S(t, s;ω)t≥s,ω∈Ω be a stochastic dynamical system, A random
set A(ω) is called a random attractor if the following conditions are satisfied, for P-a.e.
ω ∈ Ω,

• It is the minimal closed set such that, for t ∈ R, B ⊂ X ,

d(S(t, s;ω)B,A(ω)) → 0 as s→ −∞,
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A(ω) attracts B (B is a deterministic set);
• A(ω) is the largest compact measurable set, which is invariant in the sense that

S(t, s;ω)A(θsω) = A(θtω), s ≤ t.

According to [15], we have the following theorem about existence of random at-
tractors.

Theorem 2.1. Let S(t, s;ω)t≥s,ω∈Ω be a stochastic dynamical system satisfying
the following conditions:
• S(t, r;ω)S(r, s;ω) = S(t, s;ω)x, for all s ≤ r ≤ t and x ∈ X;
• S(t, s;ω) is continuous in X, for all s ≤ t;
• for all s < t and x ∈ X , the mapping ω �→ S(t, s;ω)x from (Ω,F ) to (X,B(x))

is measurable;
• for all t, x ∈ X and P-a.e. ω, the mapping s �→ S(t, s;ω)x is right continuous at

any point.

Assume that there exists a group θt, t ∈ R, of measure preserving mapping, such
that

S(t, s;ω)x= S(t− s, 0; θsω)x, P − a.e.

holds, and for P-a.e. ω, there exists a compact attracting set K(ω) at time 0, for
P-a.e. ω ∈ Ω, we set A(ω) =

⋃
B⊂X

A(B, ω), where the union is taken over all the

bounded subsets of X, and A(B, ω) is given by

A(B, t, ω) =
⋂
T≤0

⋃
s≤T

S(t, s;ω)B.

Then, A(ω) is the random attractor.

Although the random attractor is not uniformly bounded, it is expected that the
theory on the Hausdorff dimension of a global attractor of a deterministic dynamical
system can be generalized to the stochastic case under some assumption ([18]). Due
to [18], we have the following conclusion.

Theorem 2.2. Let A(ω) be a compact measurable set which is invariant under a
random map S(ω), ω ∈ Ω, for some ergodic metric dynamical system (Ω,F , P, (θt)t∈R).
Assume the following conditions are satisfied.

(1) S(ω) is almost surely uniformly differentiable on A(ω), that is, for every u, u+
h ∈ A(ω) there exists DS(ω, u) in L(X), the space of the bounded linear
operator from X to X , such that

‖S(ω)(u+ h) − S(ω)u−DS(ω, u)h‖ ≤ k̄(ω)‖h‖1+δ,

where δ > 0, k̄(ω) is a random variable satisfying k̄(ω) ≥ 1, E(log k̄) <∞,
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(2) ωd(DS(ω, u)) ≤ ω̄d(ω) for u ∈ A(ω) and some random variable ω̄d(ω) satis-
fying E(log(ω̄d)) < 0, where

ωd(DS(ω, u)) = α1(DS(ω, u)) · · ·αd(DS(ω, u)),

αd(DS(ω, u)) = sup
G⊂X,

dimG≤d

inf
ϕ∈G,

‖ϕ‖X=1

‖DS(ω, u)ϕ‖,

(3) α1(DS(ω, u)) ≤ ᾱ1(ω), for u ∈ A(ω) and a random variable ᾱ1(ω) ≥ 1 with
E(log ᾱ1) <∞.

Then the Hausdorff dimension dH(A(ω)) of A(ω) is less than d almost surely.

In what follows, we redefine some concepts and notations to the fractional derivative
and fractional Sobolev space.

Since u is a periodic function, it can be expressed by a Fourier series u =∑
k∈Z

uke
i〈k,x〉. Then, we have ux =

∑
k∈Z

ikuke
i〈k,x〉. So (−�)α is defined by

(−�)αu =
∑
k∈Z

|k|2αuke
i〈k,x〉,

where � = ∂2/∂x2. Let Hα denote the complete Sobolev space of order α under the
norm:

‖u‖Hα =

(∑
k∈Z

|k|2α|uk|2 +
∑
k∈Z

|uk|2
) 1

2

.

Let D = [0, 2π] ⊂ R. Throughout this paper, we denote by (·, ·) the usual inner
product of L2(D), ‖ · ‖Hm the norm of Sobolev spaces Hm(D), and ‖ · ‖m = ‖ ·
‖Lm(D)(m = 1, 2, · · · ,∞). Let L2

p(D) = {ϕ ∈ L2(D)|ϕ(x+ 2π) = ϕ(x)} with the
norm defined just as that of L2(D). Let Hm

p (D) = {ϕ ∈ Hm(D)|ϕ(x+ 2π) = ϕ(x)}
with the norm defined just as that of Hm(D). In the forthcoming discussions, we use
T to denote any arbitrary positive constant, and use cj(j = 1, 2, · · ·) denote different
positive constants which depend only on the constants ρ, ν, μ, α, σ. In this paper, we
denote

∫
D fdx by the notation

∫
f . In addition, the following Gagliardo-Nirenberg

inequality([20]) is frequently used.

Lemma 2.1. Let u belong to Lq and its derivatives of order m, Dmu, belong to
Lr, 1 ≤ q, r ≤ ∞. For the derivatives Dju, 0 ≤ j < m, the following inequalities
hold

‖Dju‖Lp ≤ c‖u‖θ
Wm,r‖u‖1−θ

Lq .(2.1)

where
1
p

=
j

n
+ θ(

1
r
− m

n
) + (1 − θ)

1
q
,
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for all θ in the interval
j

m
≤ θ ≤ 1

(the constant c depending only on n,m, j, q, r, θ), with the following exceptional case

1. If j = 0, rm < n, q = ∞ then we make the additional assumption that either u
tends to zero at infinite or u ∈ Lq̃ for some finite q̃ > 0.

2. If 1 < r <∞, and m− j − n/r is a nonnegative integer then (2.1) holds only
for θ satisfying
j/m ≤ θ < 1.

The following lemma ([21]) is also needed in this paper.

Lemma 2.2. Suppose that s > 0 and p ∈ (1,+∞). If f, g ∈ S, the Schwartz class,
then

‖(−�)
s
2 (fg)‖p ≤ C(‖f‖p1‖g‖Hs,p2 + ‖f‖Hs,p3‖g‖p4)

with p2, p3 ∈ (1,+∞) such that

1
p

=
1
p1

+
1
p2

=
1
p3

+
1
p4
.

3. STOCHASTIC FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATION

In this section, we discuss the existence of a continuous random dynamical system
for the stochastic fractional complex Ginzburg-Landau equation perturbed by a multi-
plicative white noise in the Itô sense. Thanks to the special linear multiplicative noise,
the stochastic fractional Ginzburg-Landau equation can be reduced to an equation with
random coefficients by a suitable change of variable. The process

z(t) = e−βW (t)

satisfies the stochastic differential equation:

dz(t) =
1
2
β2zdt− βzdW (t).

We translate the unknown v(t) = z(t)u(t) to obtain the following random differential
equation:

vt = −(1 + iν)(−�)αv + (ρ+
1
2
β2)v − (1 + iμ)z−2|v|2v, t > s,(3.1)

with the initial data at time s

v(x, s) = vs, x ∈ R,(3.2)
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and the periodic boundary condition:

v(x+ 2π, t) = v(x, t), x ∈ R,(3.3)

In what follows, we construct a random dynamical system modeling the stochastic
fractional Ginzburg-Landau equation. First, we consider the set of continuous functions
with value 0 at 0,

Ω = {ω ∈ C(R,R) : ω(0) = 0}.
Let W (t, ω) = ω(t). A family of measure preserving and ergodic transformations of
(Ω,F , P, (θt)t∈R) can be defined by

θtω(s) = ω(t+ s) − ω(t), s, t ∈ R.

The existence and uniqueness of the solution for the problem (3.1)-(3.3) can be obtained
(see Theorem 3.3 in [19], for example), which defines a stochastic dynamical system
(S(t, s;w))t≥s,ω∈Ω by

S(t, s;w)us = u(t, ω; s, us) = v(t, ω; s, usz(s, ω))z(t, ω).

4. A PRIORI ESTIMATES AND THE EXISTENCE OF A RANDOM ATTRACTOR

In this section, we make some a priori estimates of the solution, which can prove
the existence of a compact absorbing set. Then applying the Theorem 2.1, the existence
of random attractor is obtained. First, we obtain the following lemmas to prove the
existence of a compact absorbing set.

Lemma 4.1. There exists a random radius r1(ω), r2(ω) > 0 such that, for any
given R > 0, there exists s̄1(ω) ≤ −1 such that for all s ≤ s̄1(ω), us ∈ L2

p(D)
satisfying ‖us‖ ≤ R, the following inequalities

‖v(t)‖2 ≤ r21(ω), ∀ t ∈ [−1, 0],(4.1)

and ∫ 0

−1

(
‖(−�)

α
2 v(τ)‖2 + z−2(τ)‖v(τ)‖4

4

)
dτ ≤ r22(ω).(4.2)

where
r22(ω) = C′

0

∫ 0

−1
z2(τ)dτ + r21(ω).

Proof. Taking the inner product in L2 of (1.1) with v and taking the real part, we
obtain

1
2
d

dt
‖v‖2 + ‖(−�)

α
2 v‖2 + z−2

∫
|v|4 = (ρ+

1
2
β2)‖v‖2.(4.3)
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By Young’s inequality, we obtain

(3ρ+ β2)‖v‖2 = (3ρ+ β2)
∫

|v|2 ≤ z−2

∫
|v|4 + πz2 · (3ρ+ β2)2

2
.

Then (4.3) can be rewritten as

(4.4)
d

dt
‖v‖2 + 2‖(−�)

α
2 v‖2 + z−2‖v‖4

4 + ρ‖v‖2 ≤ πz2 · (3ρ+ β2)2

2
= z2 ·C′

0,

which implies that, for any t ≥ s,

‖v(t)‖2 ≤ e−ρt

(
eρs‖vs‖2 + C′

0

∫ t

s
eρτz2(τ)dτ

)

= e−ρt

(
eρsz2(s)‖us‖2 +C′

0

∫ t

s
eρτz2(τ)dτ

)
.

Thanks to
lim

s→−∞
W (s)
s

= 0, P − a.s. ,

it is easy to check it,

eρsz2(s) = eρs−2βW (s) −→ 0, P − a.s. as s −→ −∞,(4.5)

Then we infer that, for any us ∈ L2
p(D) with ‖us‖ ≤ R, there exists a time s1(ω) ≤ −1

such that
eρsz2(s)‖us‖2 ≤ eρsz2(s)R2 ≤ 1

hold P-a.s. for any s ≤ s1(ω). We also obtain that

∀ ε > 0, ∃ s′1(ω) ≤ −1, as s(ω) < s′1(ω), we have
∣∣∣∣W (s)

s

∣∣∣∣ < ε,

then we have
e−2βW (s) < e−2βεs.

So we deduce that

C′
0

∫ t

s

eρτz2(τ)dτ ≤ C′
0

∫ 0

−∞
eρτe−2βW (s)dτ ≤ C′

0

∫ 0

−∞
eρτe−2βετdτ.

Let ε be small enough such that ε < ρ
2β , and s̄1(ω) = min{s1(ω), s′1(ω)}, hence we

deduce that

‖v(t)‖2 ≤ e−ρt

(
1 +C′

0

∫ t

−∞
eρτz2(τ)dτ

)

≤ e−ρt

(
1 +C′

0

∫ 0

−∞
eρτz2(τ)dτ

)
≤ r21(ω), t ∈ [−1, 0],
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and∫ 0

−1

(
‖(−�)

α
2 v(τ)‖2 + z−2(τ)‖v(τ)‖4

4

)
dτ ≤ C′

0

∫ 0

−1
z2(τ)dτ + ‖v(−1)‖2

≤ C′
0

∫ 0

−1
z2(τ)dτ + r21(ω) = r22(ω).

Lemma 4.2. There exists a random radius r3(ω) > 0 such that, for any given
R > 0, there exists s̄1(ω) ≤ −1 such that for all s ≤ s̄1(ω), us ∈ L2

p(D) satisfying
‖us‖ ≤ R, the following inequalities

‖(−�)
α
2 v(t)‖2 ≤ r23(ω), ∀ t ∈ [−1, 0],(4.6)

where
r23(ω) = e

√
1+μ2·r2

2(ω)+2ρ+β2+c
√

1+μ2·∫ 0
−1 z−2(τ )dτ · r22(ω).

Proof. Taking the inner product in L2 of (1.1) with (−�)αv and taking the real
part, we obtain

(4.7)

1
2
d

dt
‖(−�)

α
2 v‖2 + ‖(−�)αv‖2

= (ρ+
1
2
β2)‖(−�)

α
2 v‖2 − z−2Re(1 + iμ)(|v|2v, (−�)αv).

Integrating by parts, using Hölder inequality and Young inequality, we infer that

(4.8)

∣∣−2 · z−2Re(1 + iμ)(|v|2σv, (−�)αv)
∣∣

= 2 · z−2

∣∣∣∣Re(1 + iμ)
∫

(−�)
α+ε

2 v̄(−�)
α−ε

2 (|v|2v)
∣∣∣∣

≤ 2 · z−2
√

1 + μ2‖(−�)
α+ε

2 v‖p‖(−�)
α−ε

2 (|v|2v)‖q

≤ z−2
√

1 + μ2
(
‖(−�)

α+ε
2 v‖2

p + ‖(−�)
α−ε

2 (|v|2v)‖2
q

)
,

where any ε satisfies 0 < ε < α, and p < ∞ which satisfies 1/p + 1/q = 1 is
sufficiently large. Let ε = 1/p, applying Gagliardo-Nirenberg inequality and Young
inequality, we deduce that

‖(−�)
α+ε

2 v‖2
p ≤ c(‖(−�)αv‖ 1

α ‖(−�)
α
2 v‖2− 1

α + ‖(−�)
α
2 v‖2)

≤ ξ‖(−�)αv‖2 + (c+ c(ξ))‖(−�)
α
2 v‖2.

Applying Lemma 2.2 twice, we deduce that

‖(−�)
α−ε

2 (|v|2v)‖q ≤ c(‖(−�)
α−ε
2 |v|2‖s‖v‖4 + ‖(−�)

α−ε
2 v‖r‖|v|2‖)

≤ c‖(−�)
α−ε

2 v‖r‖v‖2
4

≤ c‖(−�)
α
2 v‖‖v‖2

4,
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for 1/q = 1/s+ 1/4 = 1/r+ 1/2. Let ξ = z2/
√

1 + μ2. Then (4.7) can be rewritten
as

d

dt
‖(−�)

α
2 v‖2 + ‖(−�)αv‖2 ≤ λ‖(−�)

α
2 v‖2,(4.9)

where λ = 2ρ + β2 + z−2
√

1 + μ2(c + c(ξ) + ‖v‖4
4). Integrating (4.9) from t to s,

−1 ≤ s ≤ t ≤ 0, we deduce that

(4.10) ′‖(−�)
α
2 v(t)‖2 ≤ e

∫ t
s λdτ · ‖(−�)

α
2 v(s)‖2 ≤ e

∫ 0
−1 λdτ · ‖(−�)

α
2 v(s)‖2.

After integration with respect to s on [−1, 0], we obtain that

‖(−�)
α
2 v(t)‖2

(4.11) ≤ e
∫ 0
−1 λdτ ·

∫ 0

−1
‖(−�)

α
2 v(s)‖2

≤ e
√

1+μ2·r2
2(ω)+2ρ+β2+c

√
1+μ2·∫ 0

−1 z−2(τ )dτ · r22(ω) = r23(ω).

By the Lemma 4.2, we deduce that, for given R > 0, there exists an s̄1(ω) ≤ −1
such that for any s ≤ s̄1(ω),

‖(−�)
α
2 v(0)‖ = ‖(−�)

α
2 u(0)‖ ≤ r3(ω)

holds P-a.e.. Let K(ω) be the ball in Hα
p (D) of radius r3(ω). It is shown that, for

any B bounded in L2
p(D), there exist an s̄1(ω) such that, for any s ≤ s̄1(ω),

S(0, s;ω)B ⊂ K(ω) holds P − a.e..

This clearly implies that K(ω) ia an attracting set at time 0 since it is compact in
L2

p(D), and applying Theorem 2.1 we obtain the following results.

Theorem 4.1. The stochastic dynamical system associated with the fractional
Ginzburg-Landau equation with multiplicative noise has a compact stochastic attractor
in L2

p(D).

5. HAUSDORFF DIMENSION OF THE RANDOM ATTRACTOR A(ω)

In this section, we show that the Hausdorff dimension of the maximal attractor A
is finite. Let

S(ω) = S(1, 0;ω), T (ω) = T (1, 0;ω)

and
u(t) = S(t, 0;ω)u0 = eβW (t)T (t, 0;ω)v0.

Hence, it is easy to check that, if T (ω) ia almost surely uniformly differentiable with
the Fréchet derivative DT (w), then S(ω) is also almost surely uniformly differentiable
with the Fréchet derivative DS(w) = eβW (1)DT (w)
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Lemma 5.1. The mapping T is almost surely uniformly differentiable on A(ω) and
there exist a linear operator DT (ω, v) in L(L2

p(D)), the space of continuous linear
operator from L2

p(D) to L2
p(D), such that if v and v + h are in A(ω):

‖T (ω)(v + h) − T (ω)(v)−DT (ω, v)h‖ ≤ K(ω)‖h‖1+χ,(5.1)

where K(ω) is random variable such that

K(ω) ≥ 1, E(lnK) <∞, ω ∈ Ω

and χ > 0 is a number such that χ > 0. For any v0 ∈ A(ω), DT (ω, v0)h = V (1)
where V is the solution of

dV

dt
= F ′(t, v)V,(5.2)

V (0) = h,(5.3)

where

v(t) = e−βW (t)S(t, 0;ω)u0,

F ′(t, v)V = (ρ+
1
2
β2)V − (1 + iν)(−�)αV − (1 + iμ)z−2f ′(v)V,

f ′(v)V = (|v|2σv)′t = 2|v|2V + v2V̄ .

Proof. Let e(t) = v1(t) − v2(t) − V (t), where vj(t)(j = 1, 2) be two solutions
of (3.1) with vj(0) = v0

j and V (t) satisfies (5.2)-(5.3) with F ′(t, v2) and h = v0
1 − v0

2 .
Then e(t) satisfies the equation

(5.4)
de

dt
= (ρ+

1
2
β2)e− (1 + iν)(−�)αe

−(1 + iμ)z−2(f(v1) − f(v2) − f ′(v2)(v1 − v2 − e)).

where

Φ = −(1 + iμ)z−2
(|v1|2v1 − |v2|2v2 − 2|u|2(v1 − v2)− v2

2(v̄1 − v̄2)
)
,

and
Ψ = −(1 + iμ)z−2

(
2|v2|2e + v2

2 ē
)
.

Applying Taylor’s formula for function G(v1, v̄1) = |v1|2v1 at the point (v2, v̄2), we
deduce that

|Φ| ≤ c|v1 − v2|2.
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Taking the inner product in L2 of (5.4) with e(t) and taking the real part, we obtain

(5.5)
d

dt
‖e‖2 + 2‖(−�)

α
2 e‖2 − (2ρ+ β2)‖e‖2 = −2Re

∫
Φ · ē − 2Re

∫
Ψ · ē.

For the first term on the right-side of (5.5), using Hölder inequality and Young inequal-
ity, we estimate that

−2Re
∫

Φ · ē ≤ β2‖e‖2 +
c

2β2

√
1 + μ2 · z−2 · ‖v1 − v2‖4.(5.6)

For the second term on the right-hand side of (5.5), applying Gagliardo-Nirenberg
inequality and Lemma 4.1 and 4.2, we deduce that

−2Re
∫

Ψ · ē ≤ 6
√

1 + μ2 · z−2 · ‖v2‖2
∞‖e‖2

≤ 6c
√

1 + μ2 · z−2 · (‖(−�)
α
2 v2‖2 + ‖v2‖2)‖e‖2

≤ C(ω)‖e‖2.(5.7)

Put (5.6) and (5.7) into (5.5), we obtain that

d

dt
‖e‖2 ≤ C(ω)‖e‖2 +

c

2β2

√
1 + μ2 · z−2 · ‖v1 − v2‖4.(5.8)

By Gronwall’s inequality, we infer that

‖e(1)‖2 ≤ C(ω) · c

2β2

√
1 + μ2

∫ 1

0
z−2‖v1 − v2‖4dt.(5.9)

vj(t)(j = 1, 2) be two solutions of (3.1) with vj(0) = v0
j , so we have

(5.10)
(v1 − v2)t = −(1 + iν)(−�)α(v1 − v2) + (ρ+

1
2
β2)(v1 − v2)

−(1 + iμ)z−2(|v1|2v1 − |v2|2v2).
Taking the inner product in L2 of (5.10) with v1 − v2 and taking the real part, we
obtain

(5.11)

d

dt
‖v1 − v2‖2 ≤ (2ρ+ β2)‖v1 − v2‖2

−2Re(1 + iμ)z−2

∫
(|v1|2v1 − |v2|2v2)(v̄1 − v̄2).

From Taylor’s formula, we deduce that

|v1|2v1 − |v2|2v2 = 2|v2 + θ(v1 − v2)|2(v1 − v2) + (v2 + θ(v1 − v2))2(v̄1 − v̄2)

≤ 3|v2 + θ(v1 − v2)|2|v1 − v2| θ ∈ (0, 1).
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Then the second term on the right-hand side of (5.11) is bounded by

(5.12) −2Re(1 + iμ)z−2

∫
(|v1|2v1 − |v2|2v2)(v̄1 − v̄2) ≤ C(ω)‖v1 − v2‖2.

Combining (5.11) and (5.12), we obtain that

d

dt
‖v1 − v2‖2 ≤ C(ω)‖v1 − v2‖2.(5.13)

Applying Gronwall’s inequality, we infer that

‖v1 − v2‖2 ≤ C(ω)‖v0
1 − v0

2‖2.(5.14)

Hence, (5.9) can be written as

‖e(1)‖2 ≤ C(ω) · c

2β2

√
1 + μ2 · sup

0≤t≤1
z−2(t) · h4.(5.15)

Let
sup

0≤t≤1
z−2(t) = M, K2

1(ω) = C(ω) · c

2β2

√
1 + μ2 ·M,

and chose K(ω) = max{K1(ω), 1}, which satisfies E(logK(ω)) < ∞. Hence, we
complete the proof of Lemma 5.1.

In what follows, we check the conditions (2), (3) of Theorem 2.2.
From (5.2), we obtain that

d

dt
‖V ‖2 + 2‖(−�)

α
2 V ‖2 = (2ρ+ β2)‖V ‖2 − 2Re(1 + iμ)z−2

∫
f ′(v)|V |2.

The second term of the right-side is bounded by

−2Re(1 + iμ)z−2

∫
f ′(v)|V |2 ≤ 6

√
1 + μ2 ·M ·

∫
|v|2|V |2

≤ 6
√

1 + μ2 ·M · ‖v‖2
∞‖V ‖2

≤ 6 · C(ω)
√

1 + μ2 ·M · ‖V ‖2.

Hence, we deduce that ‖V (t)‖≤‖V (0)‖·e(2ρ+β2+6·C(ω)
√

1+μ2·M )t. Since α1(DT (ω, v))
is equal to the norm of DT (ω, v) ∈ L(X), it is not difficult, choosing

ᾱ1(ω) = max{eβW (1)+2ρ+β2+6·C(ω)
√

1+μ2·M , 1},

to get
α1(DS(ω, v))≤ ᾱ1(ω),
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and E(log ᾱ1) <∞.

Note that we can write

DT (ω, v) = exp
{∫ 1

0
F ′(s, v(s))ds

}

and
DS(ω, u) = exp

{
βW (1) +

∫ 1

0

F ′(s, v(s))ds
}
.

By 2.3 of Chapter V [17], we obtain that

ωd(DS(ω, u)) = sup
ηi∈L2,

‖ηi‖≤1,i=1,2,··· ,d

exp
{
βW (1) +

∫ 1

0

ReTr(F ′(s, v(s)) ◦Qd(s))ds
}
,

where Qd(s) is the orthogonal projector in L2 onto the space spanned by V1(s),
· · · , Vd(s), and Vi(s) is the solution of (5.2) with Vi(0) = ηi.

Let ψi(s), i ∈ N be an orthonormal basis of L2 such that Qd(s)L2 = span{ψ1(s),
· · · , ψd(s)}, then we obtain

ReTr(F ′(s, v(s)) ◦Qd(s))

=
d∑

i=1

Re
(
F ′(s, v(s))ψi(s), ψi(s)

)

≤
(
ρ+

1
2
β2 + 3

√
1 + μ2 ·M · ‖v‖2

∞

) d∑
i=1

‖ψi‖2 −
d∑

i=1

‖(−�)
α
2 ψi‖2.

Since {ψi}(i = 1, 2, · · · , d) ia an orthonormal basis in L2, we have

d∑
i=1

‖ψi‖2 = d.

It follows from the Sobolev-Lieb-Thirring inequality([17]) that

d∑
j=1

‖(−�)
α
2 ψj‖2 ≥ κ(2π)αd1+α − d,

where constant κ is independent of the family ψi, d and the parameters of the equation.
So we infer that

ReTrF ′(u(τ)) ◦Qm(τ)

≤
(

1 + ρ+
1
2
β2 + 3

√
1 + μ2 ·M · ‖v‖2

∞

)
d− κ(2π)αd1+α = κ1d− κ2d

1+α,
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where κ1 = 1 + ρ+ 1
2β

2 + 3
√

1 + μ2 ·M · ‖v‖2∞, κ2 = κ(2π)α. Denoting

ω̄d(ω) = exp{βW (1) + κ1d− κ2d
1+α}

and choosing

d =

[(
κ1

κ2

) 1
α

]
+ 1.

Then we have ωd(DS(ω, u)) ≤ ω̄d(ω) and E(log(ω̄d)) < 0.
Hence, by the Theorem 2.2, we obtain our main results as follows:

Theorem 5.1. Let A(ω) be the random attractor of (1.1)-(1.3) which is invari-
ant under a random map S(ω), ω ∈ Ω, for some ergodic metric dynamical system
(Ω,F , P, (θt)t∈R). Then the Hausdorff dimension dH(A(ω)) of A(ω) is less than d
almost surely.
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