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MAPS ACTING ON SOME ZERO PRODUCTS
Hung-Yuan Chen*, Kun-Shan Liu and Muzibur Rahman Mozumder

Abstract. Let R be a prime ring with nontrivial idempotents. Assume x is an
involution of R. In this note we characterize the additive map §: R — R such that
d(z)y* +xd(y)* = 0 whenever zy* = 0 and ¢: R — R such that ¢(z)é(y)* =0
whenever zy* = 0.

1. INTRODUCTION

Throughout, R denotes a prime ring with center Z, right (resp. left) Martindale
quotient ring Q.. (resp. @), and symmetric Martindale quotient ring Q. The overrings
Q, Q¢ and Q, of R are also prime rings. The center C of Q is a field, which is called
the extended centroid of R. We refer the reader to the book [1] for details.

By a derivation of R, we mean an additive map d: R — R such that d(xy) =

d(z)y+xd(y) forall z,y € R. Fora € R,themap ad(a): z € R — [a, x] ® wr—za
is a derivation of R, which is called the inner derivation induced by the element a. An
additive map g: R — R is called a generalized derivation if there exists a derivation
d of R such that g(zy) = g(x)y + zd(y) for any =,y € R. The simplest example of
generalized derivation is a map of the form g(x) = ax + xb, for some a,b € R.

In what follows, x denotes an involution of R, that is, an anti-automorphism of
period 2. An ideal 7 of R is called a x-ideal of R if I = I*. It is well-known that any
involution of R can be uniquely extended to an involution of @ (see [4]). A derivation
d of R is called symmetric if d(z*) = d(x)* for any « € R and is called anti-symmetric
if d(z*) = —d(x)* for any =z € R. Analogously, a homomorphism ¢ of R is called
symmetric if ¢(z*) = ¢(z)* for any =z € R. With some easy modifications, one can
slightly extend the above definitions to (symmetric) derivations from an ideal I (with
I=T1%toR.
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For a € R, let £, denote the left multiplication map by a. For a derivation d of R,
it is clear that d(x)y+zd(y) = 0 whenever zy = 0. More generally, if an additive map
¢ is of the form ¢, + d, where o € Z and d is a derivation, then ¢(z)y + z¢(y) = 0
whenever zy = 0. In [3], Chebotar, Ke and Lee proved that the converse is true if
R has an identity and possesses a nontrivial idempotent. Lee removed the assumption
that R has an identity ([8, Corollary 1.2]).

In the vein, our goal is to characterize the additive map ¢ such that §(z)y* +
xd(y)* = 0 whenever xy* = 0. Precisely, in Section 3 we show the following.

Theorem 3.4. Let R be a prime ring with an involution x. Assume R has
nontrivial idempotents. If §: R — R is an additive map such that §(x)y*+z6(y)* =0
whenever zy* = 0. Then there exists a symmetric derivation ¢g: Q — @ such that
d(zy) = 0(x)y + xg(y) for any z,y € R.

Clearly, homomorphisms are also preserving zero products. If ¢ is a homomorphism
of R, then ¢(z)¢(y) = 0 whenever zy = 0. In [3], Chebotar, Ke and Lee considered the
converse. They showed that if R has an identity and possesses a nontrivial idempotent,
¢: R — R is a bijective additive map such that ¢(x)¢(y) = 0 whenever zy = 0,
then ¢(xy)o(2) = ¢(x)p(yz) for any x,y, z € R. Moreover, if 1 € R, then ¢(zy) =
Ap(z)d(y) for any z,y € R, where A = ¢(1)~! € C ([3, Theorem 3]).

Recently, Swain considered the result for involutions. He considered a bijective
additivemap ¢: R — R such that ¢(x)¢(y)* = 0 whenever zy* = 0, and ¢(x)*¢(y) =
0 whenever z*y = 0. He proved that if R contains nontrivial idempotents, then the
map ¢ must be of the form ¢(x) = tg(z), where t € Q with ¢t* € C and g: R — Q
is a symmetric monomorphism ([9, Theorem 6]). One can check that if ¢(z) = ag(z),
where a € @ and g: R — @ is a symmetric homomorphism, then ¢(z)¢(y)* = 0
whenever zy* = 0, but we can not conclude that the map must be of this form if
only one-sided condition is assumed. However, Swain considered a special case of this
situation and showed that: If R is generated by all idempotents, then ¢(zy) = ¢(x)g(y)
for any x,y € R, where g: R — @ is a symmetric homomorphism. In particular, if
1 € R, then ¢(x) = tg(x), where t = ¢(1) ([9, Theorem 4]). In Section 4, we extend
Swain’s theorem by removing the assumption that R is generated by all idempotents.

2. PRELIMINARIES

In the following, we will always assume that R is a prime ring with nontrivial
idempotents. Let £ be the additive subgroup generated by idempotents of R, and E
be the subring generated by E. We begin with a useful result for maps acting on zero
products.

Theorem 2.1. ([5, Theorem 2.3]). Let R be a prime ring with nontrivial idempo-
tents. If ®: R x R — R is a biadditive map such that ®(z, y) = 0 whenever zy = 0.
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Then ®(xa,y) = ®(x,ay) for any 2,y € R and any a € E. In particular, there exists
a nonzero ideal I of R such that ®(za,y) = ®(z,ay) forany z,y € Randany a € I.

We have the next lemma as a special case of [2, Lemma 4.5].

Lemma 2.2. ([2, Lemma 4.5]). Let R be a prime ring. If f,g: R — R are
additive maps such that f(z)y = zg(y) for any x,y € R. Then there exists ¢ € Q
such that f(x) = xq and g(z) = gz for any = € R.

3. SYMMETRIC DERIVATIONS
In this section, we always assume that 6: R — R is an additive map such that
(3.1) d(z)y" + xd(y)* = 0 whenever zy* = 0.
We will characterize such map ¢ by a series of lemmas.
Lemma 3.1. There exists a nonzero ideal I = I'* of R such that
(3.2) d(za)y + zad(y*)* = 0(x)ay + xé(y*a*)*
forany z,y € Rand any a € I.

Proof.  Define ®(z,y) = d(x)y + xd(y*)* for z,y € R. Then for zy = 0 we
have x(y*)* = 0, hence ®(z,y) = 0(z)(y*)* + xd(y*)* = 0 by (3.1). In view of
Theorem 2.1, there exists a nonzero ideal I of R such that ®(za,y) = ®(z, ay) for
any x,y € R and any a € I. This means, §(za)y + zad(y*)* = d(z)ay + z0(y*a*)*.
We may replace I by I N I* and just assume I* = 1. ]

In the following I denotes the specific ideal of R in Lemma 3.1.

Lemma 3.2. There exists a symmetric derivation g: I — @ such that é(xza) =
d(z)a+ xg(a) forall z € Rand a € I.

Proof. By Lemma 3.1 we have
(3.3) ((5(3:61,) — 5(x)a)y = x(d(y*a*)* — ad(y*)*)

forall x,y € R and a € I. Applying Lemma 2.2 to (3.3), there exists an additive map
g: I — @ such that

(3.4) d(za) —o0(x)a = zg(a)
and

(3.5) d(y*a”)" —ad(y*)" = g(a)y.
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Combining (3.4) and (3.5),

(3.6) d(za) = d(x)a+ zg(a) = 0(x)a + zg(a™)™.

So g(a*) = g(a)* for all a € I. Moreover, using (3.6) to expand d(xab) in two ways,
we have

d(z(ab)) = 6(x)ab+ xg(ab)
=0((za)b) = d(za)b+ zag(b) = §(z)ab+ zg(a)b+ zag(b)

forall ze R and a,b € I. Hence g(ab)=g(a)b+ag(b) for all a,b € I, as asserted. m

Lemma 3.3. g can be uniquely extended to a symmetric derivation on Q.

Proof. Note that from (3.4) and (3.5) we know Rg(I) and g(I)R are both
contained in R. Hence, if we set .J = I2, we have J* = J and g(.J) C g(I)I+Ig(I) C
R. This means, g restricted on J is a derivation from .J into R. Hence g can be uniquely
extended to a derivation on @ (see [6]). For any ¢ € @, choose W to be a nonzero
ideal of R such that W C I and ¢WW + Wq C R. Since g(a)* = g(a*) for all a € I,
we see

9(wq)" = (9(w)q + wg(q))* = ¢"g(w)" + g(q)"w
=9((wq)") = g(q"w") = g(¢")w" + ¢"g(w") = g(¢")w" + ¢"g(w)",
for all w € W2. So g(q*) = g(q)* for any q € Q. m
Now we are ready to characterize completely the map § satisfying (3.1).

Theorem 3.4. Let R be a prime ring with an involution x. Assume R has nontrivial
idempotents. If §: R — R is an additive map such that §(z)y* +zd(y)* = 0 whenever
xy* = 0. Then there exists a symmetric derivation g: Q — @Q such that é(zy) =
d(z)y + zg(y) for any =,y € R.

Proof. From Lemmas 3.2 and 3.3 we know there is a symmetric derivation
g: Q@ — @ and a nonzero ideal I of R with I* = I, such that §(za) = 6(z)a+ xg(a)
forany x € Rand a € I. Take z,y € R and a,b € I, from (3.2) we can compute
d(zya)b+ zyad(b*)* in two ways:

)
(

((zy)a)b+ (zy)ad(b*)* = d(xy)ab+ xyd(b*a™)*
=d(z(ya))b+ x(ya)d(b*)* = o(x)yab+ xzd(b*a*y*)*
=0(x)yab + z(6(b%)a*y* +b*g(a*y"))"
=6(x)yab+ x(6(b")a*y" + b*g(a”)y* + b a*g(y ))
=5(z)yab + z(6(b*a*)y* + b*a*g(y)*)"

=6(x)yab+ zyd(b*a™)* + xg(y)ab.
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So (6(xy) — 6(x)y — xg(y))I* = 0, and this implies that 6(zy) = d(x)y + zg(y) for
any x,y € R. This completes the proof of our theorem. ]

Recall that a derivation d of R is called anti-symmetric if d(z*) = —d(z)* for any
x € R. Analogous to Theorem 3.4, we have

Theorem 3.5. Let R be a prime ring with an involution x. Assume R has nontrivial
idempotents. If §: R — R is an additive map such that §(z)y* —zd(y)* = 0 whenever
xzy™ = 0. Then there exists a anti-symmetric derivation g: @ — @ such that §(zy) =
d(z)y + zg(y) for any =,y € R.

4, HomMoMORPHISM TYPE WITH INVOLUTIONS

The aim of this section is to generalize Swain’s result in [9, Theorem 4] by removing
the condition £ = R. Throughout this section, we always assume that ¢: R — R is a
bijective additive map such that

(4.1) o(x)o(y)* = 0 whenever zy* = 0.
Lemma 4.1. There exists a nonzero ideal 7 = I'* of R such that

(4.2) p(za)p(y*)" = o(x)¢(y*a”)"

forany z,y € Rand any a € I.

= oz
) =
at

) )( *)* for z,y € R. Then for zy = 0 = z(y*)*,
we have ®(z,y) = ¢(x)p(y 0 by (4.1). In view of Theorem 2.1, there exists a
nonzero ideal / of R such that <i>( ) ®(z,ay) forany z,y € Randany a € 1.
This means, ¢(za)p(y*)* = ¢(x)¢ ( *a*)*. We may replace I by I nI* and just
assume I* = 1. ]

Proof.  Define ®(z,y
(

In the following I denotes the specific ideal of R in Lemma 4.1.

Lemma 4.2. If r¢(J)* = 0 or ¢(J)r = 0 for some r € R and some nonzero ideal
J of R. Then r = 0.

Proof. ~ Assume r¢(J)* = 0. By replacing J by J N J*, we may assume J*
= J. Since ¢ is bijective, there exists ' € R such that ¢(r') = r. Now 0 =
ro(RY(INJ)")" = o(r)op(R(INJ)")" = ¢(r'(INJ)p(R)* = ¢(r'(INJ))R, so
r(INJ) =0, and hence ' = 0, implying » = 0. The other case can be shown
analogously. n

Lemma 4.3. There exists a symmetric monomorphismg: I — @ such that ¢(za) =
¢(x)g(a) forany z € Rand a € I.
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Proof. Set X = ¢(z)andY = ¢(y*)* in (4.2) for z, y € R. Since ¢ is surjective,
we obtain that

(4.3) $(¢~ (X)a)Y = X (¢~ (Y*)a")",

for any X,Y € R, and any a € I. Applying Lemma 2.2 to (4.3), there exists an
additive map ¢g: I — @ such that

(4.4) ¢(¢7!(X)a) = Xg(a)

and

(4.5) $(¢~ 1 (Y*)a*)" = g(a)Y,

forall X,Y € Rand a € I. Setting X = ¢() in (4.4), we get
(4.6) p(za) = d(x)g(a)

for any 2 € R and a € I. Similarly, (4.5) yields that

(4.7) p(za®) = ¢p(x)g(a)".

Replacing a by a* in (4.6), we see ¢(za*) = ¢(x)g(a*). Comparing with (4.7) we get
¢(z)(g(a*) — g(a)*) = 0 for all z € R. Hence g(a*) = g(a)* for all a € I. For any
x € Rand a,b e I we have

So g(ab) = g(a)g(b) for any a,b € I. Moreover, if g(a) = 0 for some a € I,
¢(x)g(a) = ¢p(xa) = 0 for any z € R. So Ra = 0 since ¢ is injective, and a = 0
follows. This means, g is a symmetric monomorphism on 1. ]

Lemma 4.4. If ¢- g(J) = 0 for some ¢ € Q, and some nonzero ideal .J of R, then
g = 0. Analogously, if g(J) - ¢ = 0 for some ¢’ € @, and some nonzero ideal .J of
R, then ¢ = 0.

Proof.  Assume ¢ - g(J) = 0. There exists a nonzero ideal M of R such that
Mg CR. Soforanyme M,0=mq-g(JNI)=¢(r)g(JNI)=¢(r(JNI)) for
some r € R with ¢(r) = mg, hence r(J N 1) =0, implying » = 0. That is, Mq =0,
so ¢ = 0 follows. The other case can be shown analogously. |

Recall that = can be extended to ( and an ideal I is called a x-ideal if I = I*.
Before stating the main result, we define a new notion.
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Definition. Let R be a prime ring with an involution . Assume g: R — @y is
a homomorphism. If there exists a nonzero x-ideal I of R such that g(I) C @ and
g(a)* = g(a*) for all a € I, then g is called partially symmetric on R.

Now we prove the main result of this section.

Theorem 4.5. Let R be a prime ring with an involution x. Assume R has nontrivial
idempotents. If ¢: R — R is a bijective additive map such that ¢(z)¢(y)* = 0
whenever xy* = 0. Then there exists a monomorphism g: R — Q, partially symmetric
on R such that ¢(zy) = ¢(z)g(y) for any z,y € R.

Proof.  Continuing with Lemma 4.3, we extend g: I — @ to a map from R to
Q¢ by the following:
For r € R, define g,: Rp(R) — R by the rule

gr(z rip(yi)) = Z z;p(yir),

where z;, y; € R. Note that R¢(R) is a nonzero ideal of R. It is clear that g, = g(a)
for every a € 1.
Claim the map g, is well-defined for » € R: If Y . 2;6(y;) = 0, then

0= Zwiqﬁ(yi)g(ﬂ) = Zwmﬁ(yﬂ)
= Z$i¢<yir>g<l>~

So by Lemma 4.4 we know . z;¢(y;r) = 0.

Since the map is a left R-module map, g, can be regarded as an element in Q.
Hence we extend g: I — Q to g: R — @y, and the extension is unique. Moreover, by
definition we have ¢(z)g(y) = ¢(zy) for any z,y € R.

For x,y, z € R, we expand ¢(zyz) in two ways:

Since ¢(R) = R, g(yz) = g(y)g(z) for any y, z € R.

If g(y) = 0 for y € R, then ¢(R)g(y) = ¢(Ry) =0, implying Ry =0, and y = 0
follows. Hence g: R — Q) is a partially symmetric monomorphism. This completes
the proof of the theorem. [ |

In the case when R is a simple ring, we see that T = R in the proof of Theorem
4.5. Therefore we have the following theorem.
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Theorem 4.6. Let R be a simple ring with an involution x. Assume R has nontrivial
idempotents. If ¢: R — R is a bijective additive map such that ¢(z)¢(y)* = 0
whenever zy* = 0. Then there is a symmetric monomorphism ¢g: R — @ such that
o(zy) = ¢(x)g(y) for any x,y € R. Moreover, if 1 € R, then ¢(y) = ¢(1)g(y) for
all y € R.

We remark that the above theorem can also be obtained by [9, Theorem 4] and [7,
Lemma 2].
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