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IMPULSIVE CONTROLLABILITY OF MULTI-VALUED FUNCTIONAL
DIFFERENTIAL SYSTEMS

Zhi-Qiang Zhu

Abstract. This paper is concerned with the study of controllability for a class of
multi-valued functional differential systems with impulses and delayed control. By
making use of fixed point theorem for multi-valued maps, we prove that our system
is completely controllable. The result is obtained in the sense of Carathéodory,
and without the requirement that the linear part is controllable.

1. INTRODUCTION

Since the impulse phenomenon is a universal one in nature, the differential equations
with impulses, including impulsive differential equations and inclusions, have become
an important model described the real processes in population dynamics, economics,
physics and so on, and have been holding the scholars’ interests, see, e.g., [1, 2, 7,
9, 10, 11, 12] and the references contained therein. We remark that the perturbed
or impulsive effect can make a noncontrollable system to be a controllable one (see,
[11, 12]). Motivated by the papers mentioned above, the present paper will consider a
class of impulsive controllable multi-valued functional differential systems with delayed
control.

Let us introduce some notations before entering our statements. Let R
n1 and R

n2

be, respectively, n1-dimension and n2-dimension real vector space, and P(Rn1) the set
of all nonempty subset of R

n1 . For a < b, let L1
ni

[a, b] := L1([a, b],Rni), i = 1, 2,
denote the Banach space of Lebesgue integrable functions v : [a, b] → R

ni with the
norm || · ||1 defined by

||v||1 =
∫ b

a
|v(s)|ds,
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where |·| stands for a norm in R
ni . In particular, byL∞[a, b] := L∞([a, b],Rn1×n2 ) we

denote the Banach space of essentially bounded matrix functions V : [a, b] → R
n1×n2

with the norm || · ||∞ defined by

||V ||∞ = lim
p→∞

(∫ b

a
|V (s)|pds

) 1
p

,

where |V (·)| indicates the matrix norm derived by the vector norm | · | mentioned above.
For given r > 0, by D1 we denote the set of functions φ : [−r, 0] → R

n1 with φ
continuous everywhere except for finite number of points θ at which φ(θ−) and φ(θ+)
exist and φ(θ) = φ(θ+). Further, we let D2 := L1([−r, 0],Rn2).

For a given τ > 0, set 0 = t0 < t1 < t2 < ... < tn < τ . Now consider the
impulsive control problem described by

(1)

{
x′(t) ∈ F (t, xt, ut) +B(t)u(t), t ∈ [0, τ ] and t �= tk,

x(tk) = x(t−k ) + Ik(x(t−k )), k = 1, 2, 3, · · · , n,
where B(·) ∈ L∞[0, τ ], u(·) ∈ L1

n2
[−r, τ ], F : [0, τ ] × D1 × D2 → P(Rn1) is a

multi-valued map, Ik : R
n1 → R

n1 is continuous and

x(tk) = x(t+k ) = lim
t→t+k

x(t) , x(t−k ) = lim
t→t−k

x(t).

As usual, the delay function xt ∈ D1 (likewise for ut ∈ D2) is defined by xt(θ) =
x(t+ θ) for θ ∈ [−r, 0].

Set J = [−r, τ ] \ {tk : k = 1, 2, 3, ..., n}. By PC[−r, τ ] we denote the set{
x : [−r, τ ] → R

n1 : x ∈ C(J), x(t−k ) and x(t+k ) exist and x(tk) = x(t+k )
}
.

Endowed with the norm
||x|| = sup

t∈[−r,τ ]
|x(t)|,

PC[−r, τ ] is a Banach space. The norm of D1 can be defined accordingly.

For given ϕ ∈ D1 and u ∈ L1
n2

[−r, τ ] with u0(θ) = 0 for θ ∈ [−r, 0), by a solution
of (1) we mean that, there exists a function x ∈ PC[−r, τ ] such that

(2)

⎧⎪⎪⎨
⎪⎪⎩

x′(t) = v(t) +B(t)u(t) a.e. t ∈ [0, τ ]\{t1, t2, . . . , tn},
x(tk) = x(t−k ) + Ik(x(t−k )), k = 1, 2, 3, · · · , n,
x0(θ) = ϕ(θ) for θ ∈ [−r, 0],

where v ∈ L1
n1

[0, τ ] satisfying v(t) ∈ F (t, xt, ut) on [0, τ ]. For clarity, we will denote
by x(t, ϕ, u) the solution of (1) corresponding to the initial value x0 ≡ ϕ and the
control u.
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System (1) is said to be controllable if, for any given ϕ ∈ D1 and x1 ∈ R
n1 , there

exists a control u ∈ L1
n2

[−r, τ ] with u0(θ) = 0 for θ ∈ [−r, 0) such that the solution
x(t, ϕ, u) of (1) satisfies x(τ, ϕ, u) = x1.

2. PRELIMINARIES

We now recall some concepts, which will be used in the sequel. For the details we
refer to [1, 2, 3, 5].

Let (X, || · ||) be a Banach space and P(X) be the set of all nonempty subset of
X . A multi-valued map G : X → P(X) is said to be closed if G(x) is a closed subset
of X for each x ∈ X . The convex and compact G can be defined accordingly. G is
said to be upper semi-continuous (u.s.c. for short) if G(x) is a nonempty and closed
subset of X for each x ∈ X and if, for each open subset N ⊆ X containing G(x),
there exists a neighborhood M of x such that G(M) ⊆ N .

G is said to be bounded on bounded sets if for each bounded subset Δ of X , G(Δ)
is bounded, i.e.,

sup
x∈Δ

{sup ||y|| : y ∈ G(x)} <∞.

G is said to be relatively compact on bounded sets if G(Δ) is relatively compact for
each bounded subset Δ of X . G is said to be completely continuous if G is upper
semi-continuous and G is relatively compact on bounded subsets. G has a closed graph
if

xn → x0, yn → y0, yn ∈ G(xn) imply y0 ∈ G(x0).

It is well known that if G is relatively compact on bounded sets with nonempty and
compact-values, then G is upper semi-continuous if and only if G has a closed graph.

To meet the needs of discussions in what follows, we give the total assumptions as
follows:

(A1) The multi-valued map F in (1) has compact and convex values for each (t, ϕ1, ϕ2) ∈
[0, τ ]× D1 × D2.

(A2) There exist ai ∈ L1([0, τ ], [0,∞)) for i = 0, 1, 2, and a constant α ∈ (0, 1] such
that

(3)

||F (t, ϕ1, ϕ2)|| = sup{|v| : v ∈ F (t, ϕ1, ϕ2)}
≤ a0(t) + a1(t)||ϕ1||α + a2(t)||ϕ2||α1

for all ϕ1 ∈ D1, ϕ2 ∈ D2 and a. e. t ∈ [0, τ ].

Furthermore, F satisfies that
(i) t→ F (t, ϕ1, ϕ2) is measurable for each ϕ1 ∈ D1 and ϕ2 ∈ D2, and
(ii) (ϕ1, ϕ2) → F (t, ϕ1, ϕ2) is upper semi-continuous for almost all t ∈ [0, τ ].
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(A3) For the functions Ik in (1), there exist constants b(k)
i ≥ 0 for i = 1, 2, and

αk ∈ (0, 1] for k = 1, 2, 3, ..., n, such that

|Ik(x)| ≤ b
(k)
1 + b

(k)
2 |x|αk for x ∈ R

n1.

For x ∈ PC[−r, τ ] and u ∈ L1
n2

[−r, τ ] the set SF (x, u) of selection functions is
defined by

SF (x, u) = {v ∈ L1
n1

[0, τ ] : v(t) ∈ F (t, xt, ut) for t ∈ [0, τ ]}.
Let CC(X) denote the set of nonempty compact and convex subset of the Banach
space X . We remark that F is L1- Carathéodory under the assumption (A2)( see [2]).
Hence, referring to [6] we have the following results.

Lemma 1. Under the assumptions (A1) and (A2), it follows that
(i) SF (x, u) �= ∅ for each x ∈ PC[−r, τ ] and u ∈ L1

n2
[−r, τ ]; and

(ii) if K : L1
n1

[0, τ ] → C[0, τ ] × L1
n2

[0, τ ] is a linear continuous mapping, then

K ◦ SF : PC[−r, τ ] × L1
n2

[−r, τ ] → CC(C[0, τ ] × L1
n2

[0, τ ])

is a closed graph operator.

Next conclusion is due to Martelli [8].

Lemma 2. Let X be a Banach space and Ψ : X → CC(X) be a completely
continuous multi-valued map. If the set

E = {x ∈ X : x ∈ λΨ(x) for some 0 < λ < 1}
is bounded, then Ψ has a fixed point.

3. MAIN RESULTS

Now we are in a position to consider our main result. By the fundamental theorem
for the Lebesgue integral we know that, (2) is equivalent to the following formula:

(4)

⎧⎪⎨
⎪⎩

x(t) = ϕ(0) +
∫ t

0
[v(s)+B(s)u(s)] ds+

∑
k: tk∈(0, t)

Ik(x(t−k )), t ∈ [0, τ ],

x0(θ) = ϕ(θ) and u0(θ) = 0 for θ ∈ [−r, 0).

Next we consider the controllability of (1). To do this, we will require the condition

(5) B(t)BT (t) = E0 on [0, τ ],

where T represents the transpose of matrices and E0 an identity matrix. Usually one
transforms the controllability problem to the existence of fixed point, see, for example,
the references [1, 2, 4, 9, 11]. In what follows we will keep on the approach.
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Theorem 1. Suppose that the assumptions (A1)–(A3) and (5) are fulfilled. Then
system (1) is controllable if one of the following conditions holds:

(i) max
k

{α, αk} < 1;

(ii) α = 1, max
k

{αk} < 1 and (2 + ||BT ||∞)
∫ τ
0 [a1(s) + a2(s)]ds < 1;

(iii) α < 1, max
k

{αk} = 1 and (2 + ||BT ||∞)
∑

k: αk=1 b
(2)
k < 1;

(iv) α = 1, max
k

{αk} = 1 and (2 + ||BT ||∞)
∫ τ
0 [a1(s) + a2(s)]ds

+ (2 + ||BT ||∞)
∑

k: αk=1 b
(2)
k < 1.

Proof. For any given ϕ ∈ D1 and x1 ∈ R
n, let the multi-valued map Ψ :

PC[−r, τ ]× L1
n2

[−r, τ ] → P(PC[−r, τ ]× L1
n2

[−r, τ ]) be defined by

(6) Ψ(x, u) =
{
(ψ1, ψ2) : ψ1 ∈ PC[−r, τ ] and ψ2 ∈ L1

n2
[−r, τ ]} ,

where, for v ∈ SF (x, u), ψ1 and ψ2 are defined, respectively, by

(7)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ1(x, u)(t) = ϕ(0) +
∫ t

0
[v(s) +B(s)ψ2(x, u)(s)] ds

+
∑

k: tk∈(0, t)

Ik(x(t−k )), t ∈ [0, τ ],

ψ1(x, u)(t) = ϕ(t), t ∈ [−r, 0),

(8)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψ2(x, u)(t) =
1
τ
BT (t)

(
x1 − ϕ(0)−

∫ τ

0
v(s)ds

)

−1
τ
BT (t)

n∑
k=1

Ik(x(t−k )), t ∈ [0, τ ],

ψ2(x, u)(t) = 0, t ∈ [−r, 0).

Note that, equipped with the norm ||(x, u)||= ||x||+||u||1 for (x, u) ∈ PC[−r, τ ]×
L1

n2
[−r, τ ], then PC[−r, τ ]×L1

n2
[−r, τ ] becomes a Banach space. Note further that ψi

defined by (7) and (8) make sense by Lemma 1(i), so Ψ(x, u) �= ∅. Now if we can find
a fixed point (x, u) ∈ Ψ(x, u), then, from (4) we learn that x(t) = [ψ1(x, u)](t) is a
solution of (1) with the initial condition x0 ≡ ϕ and, by the straightforward verification,
have x(τ) = x1. For the proof, we proceed in steps.

Assertion 1: Ψ(Δ) is bounded in PC[−r, τ ]× L1
n2

[−r, τ ] for any bounded subset
Δ of PC[−r, τ ]×L1

n2
[−r, τ ]. It is enough to show that ψi(Δ) are bounded for i = 1, 2.

Indeed, we may assume that

max
a.e. t∈[0,τ ]

{
1,

1
τ
|BT (t)|

}∫ τ

0

ai(s)ds ≤M for i = 0, 1, 2
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and

max
a.e. t∈[0,τ ]

{
1,

1
τ
|BT (t)|

} n∑
k=1

|Ik(x(t−k ))| ≤M,

where (x, u) ∈ Δ. By the assumptions above we have from (7) and (8) that
{ |ψ1(x, u)(t)| ≤ 2|ϕ(0)|+ |x1| + 4M + 2M(||x||α + ||u||α1 ), t ∈ [0, τ ],

|ψ1(x, u)(t)| = |ϕ(t)|, t ∈ [−r, 0)

as well as⎧⎨
⎩ |ψ2(x, u)(t)| ≤ 1

τ
|BT (t)(x1 − ϕ(0))|+ 2M +M(||x||α + ||u||α1 ), a.a. t ∈ [0, τ ],

|ψ2(x, u)(t)| = 0, t ∈ [−r, 0),

which produce that ψ1(x, u)(t) and ψ2(x, u)(t) are bounded on Δ.

Assertion 2: Ψ defined as (6) is relatively compact for each bounded subset Δ of
PC[−r, τ ] × L1

n2
[−r, τ ]. As a matter of fact, it is sufficient to show that ψi maps Δ

into a relatively compact subset of PC[−r, τ ] for i = 1 and of L1
n2

[−r, τ ] for i = 2.
To achieve our objective, we first note that ψi(Δ) is bounded for i = 1, 2. Now for
any given ε > 0 we take δ = δ(ε) such that when |t(2) − t(1)| < δ,∣∣∣∣∣

∫ t(2)

t(1)
[v(s) + B(s)ψ2(x, u)(s)] ds

∣∣∣∣∣ < ε.

On the other hand, it is clear that∑
k: tk∈(0, t(2))

Ik(x(t−k )) −
∑

k: tk∈(0, t(1))

Ik(x(t−k )) = 0

provided t(1), t(2) ∈ [tk−1, tk), k = 1, 2, . . . , n, or t(1), t(2) ∈ [tn, τ ].
Hence from (7) we have when t(1), t(2) ∈ [tk−1, tk), k = 1, 2, . . . , n, or t(1), t(2) ∈

[tn, τ ],

|ψ1(x, u)(t(2)) − ψ1(x, u)(t(1))| < ε for |t(2) − t(1)| < δ and (x, u) ∈ Δ,

which, together with Ascoli-Azela theorem, means that ψ1(Δ) is a relatively compact
subset of PC[−r, τ ].

For the Banach space ((L1
n2

[−r, τ ], || · ||1), we have
∑

k: tk∈(0, t(2))

Ik(x(t−k )) −
∑

k: tk∈(0, t(1))

Ik(x(t−k )) = 0
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for almost all t(1), t(2) ∈ [−r, τ ] with |t(2)− t(1)| < δ. Therefore, by similar arguments
we can readily show that ψ2(Δ) is a relatively compact subset of L1

n2
[−r, τ ]. Thus Ψ

transforms any bounded subset Δ ⊆ PC[−r, τ ]×L1
n2

[−r, τ ] into a relatively compact
subset of PC[−r, τ ] × L1

n2
[−r, τ ].

Assertion 3: Ψ has a closed graph. For this end, we suppose that

(9) (x(n), u(n))→(x∗, u∗), (y(n), z(n))→(y∗, z∗) and (y(n), z(n)) ∈ Ψ(x(n), u(n)).

Now consider an operator K : L1
n1

[0, τ ] → C[0, τ ]× L1
n2

[0, τ ], v → Kv = (K1v,K2v),
here K1 and K2 are defined, respectively, by

(K1v)(t) =
∫ t

0

v(s)ds

and
(K2v)(t) = −1

τ
BT (t)

∫ τ

0
v(s)ds.

Then K is linear and continuous. Furthermore, according to Lemma 1(ii) it follows
that K ◦ SF is a closed graph operator.

Now that (y(n), z(n)) ∈ Ψ(x(n), u(n)), from (7) and (8) there exists a v(n)(t) ∈
SF (x(n), u(n)) such that

(10)

y(n)(t) = ψ1(x(n), u(n))(t)

= ϕ(0) +
∫ t

0

[
v(n)(s) +B(s)ψ2(x(n), u(n))(s)

]
ds

+
∑

k: tk∈(0, t)

Ik(x(n)(t−k )), t ∈ [0, τ ]

and

(11)

z(n)(t) = ψ2(x(n), u(n))(t)

=
1
τ
BT (t)

(
x1 − ϕ(0)−

∫ τ

0
v(n)(s)ds

)

−1
τ
BT (t)

n∑
k=1

Ik(x(n)(t−k )), t ∈ [0, τ ].

From (10) and (11) we have, respectively, that

(12)
Y(n)(t) := y(n)(t)−ϕ(0)−

∫ t

0
B(s)ψ2(x(n), u(n))(s)ds

−
∑

k: tk∈(0, t)

Ik(x(n)(t−k )) ∈ K1(SF (x(n), u(n)))
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and

(13)
Z(n)(t) := z(n)(t)+

1
τ

⎛
⎝−BT (t)

(
x1−ϕ(0)

)
+BT (t)

∑
k: tk∈(0, τ )

Ik(x(n)(t−k ))

⎞
⎠

∈ K2(SF (x(n), u(n))).

Let

Y∗(t) := y∗(t) − ϕ(0)−
∫ t

0
B(s)ψ2(x∗, u∗)(s)ds−

∑
k: tk∈(0, t)

Ik(x∗(t−k ))

and

Z∗(t) := z∗(t) +
1
τ

⎛
⎝−BT (t)

(
x1 − ϕ(0)

)
+ BT (t)

∑
k: tk∈(0, τ )

Ik(x∗(t−k ))

⎞
⎠ .

Then, together with (9), (12) and (13), we attain

||Y(n) − Y∗|| → 0 as n→ ∞
and

||Z(n) − Z∗||1 → 0 as n→ ∞,

which, together with the fact that K ◦ SF is a closed graph operator, result in

(Y∗, Z∗) ∈ K(SF (x∗, u∗)).

That is, there exists a v∗(t) ∈ SF (x∗, u∗) such that, when the symbol “(n)” in (10)
and (11) is replaced by “ ∗ ”, y∗ and z∗ satisfy, respectively, (10) and (11). Therefore
Assertion 3 holds.

Assertion 4: Ψ is completely continuous. In fact, since F is compact, from Asser-
tion 2 we see that Ψ is a multi-valued map with nonempty and compact values, Hence,
with the aid of Assertion 3, Ψ is upper semi-continuous. Invoking Assertion 2 again
we obtain our desired conclusion.

Assertion 5: Ψ has a fixed point. Note first that F is a multi-valued map with
convex values, it is easy to show Ψ defined as (6) is convex. Thus Ψ maps PC[−r, τ ]×
L1

n2
[−r, τ ] into CC(PC[−r, τ ] × L1

n2
[−r, τ ]). Next we show that Ψ satisfies Lemma

2. To do this, we assume that (x, u) ∈ PC[−r, τ ] × L1
n2

[−r, τ ] such that

(x, u) ∈ λΨ(x, u) for some λ ∈ (0, 1).

Let
E = {(x, u) : (x, u) ∈ λΨ(x, u) for some λ ∈ (0, 1)}.
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Then, by (6)–(8) there exists a v ∈ SF (x, u) so that

(14) x(t) = λψ1(x, u)(t) and u(t) = λψ2(x, u)(t) for t ∈ [0, τ ].

Now from (7) and (8) we have

(15) ||ψ1(x, u)|| ≤ m1 +2||x||α
∫ τ

0
a1(s)ds+2||u||α1

∫ τ

0
a2(s)ds+2

n∑
k=1

b
(2)
k ||x||αk

and

(16)
||ψ2(x, u)||1

≤ m2+||BT ||∞
(
||x||α

∫ τ

0
a1(s)ds+||u||α1

∫ τ

0
a2(s)ds+

n∑
k=1

b
(2)
k ||x||αk

)
,

where mi are constant for i ∈ {1, 2}, and independent of (x, u). For simplicity we let

M1 = m1 +m2, M2 =
∫ τ

0

[a1(s) + a2(s)]ds and M3 =
n∑

k=1

b
(2)
k .

Next we discuss in steps.
(i) in case max

k
{α, αk} < 1, without loss of generality we may assume that ||(x, u)|| ≥

1 and α ≥ αk for all k. Then it follows from (15) and (16) that

(17) ||(x, u)|| ≤M1 +M2(2 + ||BT ||∞)||(x, u)||α +M3(2 + ||BT ||∞)||(x, u)||α.
Note that α < 1, from (17) we learn that ||(x, u)|| have a same bound for all
(x, u) ∈ λΨ(x, u). In other words, ||(x, u)|| is bounded on E .

(ii) For the case α = 1, max
k

{αk} < 1 and

(2 + ||BT ||∞)
∫ τ

0
[a1(s) + a2(s)]ds < 1,

we let max
k

{||(x, u)||αk} = ||(x, u)||β. Then from (15) and (16) it holds that

[1 − (2 + ||BT ||∞)M2]||(x, u)|| ≤M1 + (2 + ||BT ||∞)M3||(x, u)||β,
which shows again that ||(x, u)|| have a same bound for all (x, u) ∈ λΨ(x, u).

(iii) Corresponding to the case α < 1, maxk{αk} = 1 and

((2 + ||BT ||∞))
∑

k: αk=1

b
(2)
k < 1,

for simplicity we may only consider the special case that αk = 1 for all k. Then
it follows that

[1− (2 + ||BT ||∞)M3]||(x, u)|| ≤M1 + (2 + ||BT ||∞)M2||(x, u)||α.
Analogously, in this case ||(x, u)|| is bounded on E .
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(iv) For the fourth case the boundedness of ||(x, u)|| on E can be shown similarly.

In summary, as long as one of the conditions (i)–(iv) holds, Lemma 2 will implies
that there exists a point (x∗, u∗) ∈ PC[−r, τ ] × L1

n2
[−r, τ ] such that (x∗, u∗) ∈

Ψ(x∗, u∗). Subsequently, there exists a v∗ ∈ SF (x∗, u∗) so that

x∗(t) = ψ1(x∗, u∗)(t) and u∗(t) = ψ2(x∗, u∗)(t) for t ∈ [0, τ ],

and x∗(t) = ϕ(t) and u∗(t) = 0 for t ∈ [−r, 0). Immediately, by the definitions
of ψ1 and ψ2 as in (7) and (8), it holds that x∗(t) solves the system (4) and satisfies
x∗(τ) = x1. In other words, we have found a solution x(t, ϕ, u∗) of (1), which satisfies
x(τ, ϕ, u∗) = x1. The proof is complete.

Finally, we give an example to end our discussions.

Example 1. Suppose in (1) that

B(t) ≡
[

1 0
0 1

]
,

F (t, ϕ1, ϕ1) =
{
v(t) : v(t) =

a1(t)ϕ1(t− r) + a2(t)ϕ2(t− r)
1 + ||ϕ1|| + ||ϕ2||1

+
(
kt

kt

)
, k ∈ [0, 1]

}
,

as well as

I1(x) =
x

6
, I2(x) =

(
x

1
3
1

x
1
3
2

)
for x = (x1, x2)T ∈ R

2,

where ai are defined as in assumption (A2), i = 1, 2. Then F satisfies the assumptions
(A1)–(A2) and ||BT ||∞ = 1. Hence, if we let∫ τ

0
(a1(s) + a2(s))ds <

1
6
,

then Theorem 1 implies that system (1) is controllable.
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4. L. Górniewicz, S. K. Ntouyas and D. O’Regan, Controllability of semilinear differential
equations and inclusions via semigroup theory in Banach spaces, Rep. Math. Phys., 56
(2005), 437-470.

5. Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer,
Dordecht, Boston, London, 1997.

6. A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of
ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys.,
13 (1965), 781-786.

7. X. Liu and A. R. Willms, Impulsive controllability of linear dynamic systems with
applications to maneuvers of spacecraft, Math. Probl. in Eng., 2(4) (1996), 277-299.

8. M. Martelli, A Rothes type theorem for non-compact acyclic-valued map, Boll. Un.
Mat. Ital., 4(3) (1975), 70-76.

9. S. K. Ntouyas, Existence results for impulsive partial neutral functional differential in-
clusions, Electron, J. Differential Equations, 2005(30) (2005), 11 pp.

10. J. J. Nieto and D. O’Regan, Variational approach to impulsive differential equations,
Nonlinear Anal.: Real Word Appl., 10(2) (2009), 680-690.

11. J. J. Nieto and C. C. Tisdell, On exact controllability of first-order impulsive differential
equations, Adv. Difference Equ. 2010, (2010), Article ID 136504, 9 papges, doi
10.1155/2010/136504.

12. Z. Q. Zhu and Q. W. Lin, Exact controllability of semilinear systems with impulses,
Bull. Math. Anal. Appl., 4(1) (2012), 157-167.

Zhi-Qiang Zhu
Department of Computer Science
Guangdong Polytechnic Normal University
Guangzhou 510665
P. R. China
E-mail: Z3825@163.com

ZQ.Zhu@yahoo.com


