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AN INEXACT PROXIMAL POINT ALGORITHM FOR NONMONOTONE
EQUILIBRIUM PROBLEMS IN BANACH SPACES

Guo-ji Tang* and Xing Wang

Abstract. In this paper, we continue to investigate the inexact hybrid proximal
point algorithm proposed by Mashreghi and Nasri for equilibrium problems in
Banach spaces. Under some classes of generalized monotone conditions, we
prove that the sequence generated by the method is strongly convergent to a
solution of the problem, which is closest to the initial iterate, in the sense of
Bregman distance. As an application, we obtain some analogues for some classes
of generalized monotone variational inequalities. The results presented in this
paper generalize and improve some recent results in literatures.

1. INTRODUCTION

Let B be a reflexive Banach space and K ⊂ B a nonempty, closed and convex set.
Given f : K × K → R such that
P1: f(x, x) = 0 for all x ∈ K,
P2: f(x, ·) : K → R is convex and lower semicontinuous for all x ∈ K ,
P3: f(·, y) : K → R is upper semicontinuous for all y ∈ K,
the equilibrium problem, denoted by EP(f, K), consists of finding x∗ ∈ K such that

(1.1) f(x∗, y) ≥ 0, ∀y ∈ K.

Such an x∗ is called a solution of EP(f, K). The set of solutions of EP(f, K) will be
denoted by S.
Equilibrium problem theory has emerged as an interesting branch of applicable

mathematics. This theory has become a rich source of inspiration and motivation
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for the study of a large number of problems arising in economics, optimization and
operations research in a general and unified way.
The equilibrium problem has been rather widely studied. Many researchers consider

computational methods for the problem (see, for example, [1, 2, 7, 15-17, 20, 23, 25,
26]) as well as some researchers concentrate on dealing with conditions for the existence
of solutions (see, for example, [4, 5, 6, 9, 10, 13, 14]). Among these methods, some
researchers study the problem in finite dimensional spaces [1, 2, 20]; some researchers
require the problem to be monotone [25, 26]. In terms of the nonmonotone and infinite
dimensional settings, only a few references can be found. Recently, Iusem et al. [17]
and Mashreghi and Nasri [23] proposed inexact proximal point algorithms, whose
origins can be traced back to [21, 24], attained its basic formulation in the work of
Rockafellar [28], for some classes of generalized monotone equilibrium problems in
Banach spaces. If the equilibrium problem has solutions, then the sequence {xj}
generated by the method is shown to be weakly (strongly) convergent to a solution of
the problem under the assumptions that f satisfies A2 and any one of A3, A4’ and
A4* (see Section 2 for their definitions), and f(·, y) is weakly upper semicontinuous
for all y ∈ K. In these settings, f is not necessarily monotone. However, if we would
get rid of the weak upper semicontinuity of f(·, y) for y ∈ K, then f is asked to be
monotone again on K (see Section 6 of [17] and Section 4 of [23]).
Motivated and inspired by the research work mentioned above, in this paper, we

continue to study the inexact hybrid proximal Bregman projection method proposed by
Mashreghi and Nasri [23]. Under some classes of generalized monotone conditions, we
prove that the sequence generated by the method is strongly convergent to a solution
of the problem in Banach spaces, which is closest to the initial iterate, in the sense of
Bregman distance. We would like to point out that the techniques used in this paper
are very different from those presented in the related references [15, 17, 23].
The main contribution of this paper lies in the following aspects:

(i) Compared with [23], we get rid of the condition that f(·, y) is weakly upper
semicontinuous for all y ∈ K;

(ii) Compared with [17], not only the strong convergence is obtained, but also the
condition that f(·, y) is weakly upper semicontinuous for all y ∈ K is removed;

(iii) As an application, we obtain some analogues for some classes of generalized
monotone variational inequalities.

Therefore, the results presented in this paper generalize, extend and improve some
known results in Mashreghi and Nasri [23], Iusem et al. [17] and Farouq [8].

2. PRELIMINARIES

From now on, B is a reflexive real Banach space.We will use the notation 〈v, x〉 for
the duality product v(x) of x ∈ B and v ∈ B

∗. Convergence in the weak (respectively
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strong) topology of a sequencewill be indicated by⇀ (respectively→ ). Let g : B → R

be a strictly convex, lower semicontinuous and G-differentiable function. The Bregman
distance associated to g is defined as Dg : B × B → R,

(2.1) Dg(x, y) = g(x)− g(y)− 〈g′(y), x− y〉.
From this definition, it is straightforward to verify that Dg satisfies the three-point
equality (see, e.g., [27]):

(2.2) Dg(x, y) = Dg(z, y) + Dg(x, z) + 〈g′(y) − g′(z), z − x〉.
for any x, y, z ∈ B. As g is strictly convex, the function Dg(·, y) is nonnegative,
strictly convex and Dg(x, y) = 0 if and only if x = y.
The modulus of convexity of g at x is the function νg : B × R+ → R, defined as

(2.3) νg(x, t) = inf{Dg(y, x) : ‖y − x‖ = t}.
A function g is totally convex if νg(x, t) > 0 for all x ∈ B and t > 0. Additionally, if
infx∈C νg(x, t) > 0 for each bounded subset C ⊂ B then g is called uniformly totally
convex. If g is totally convex, then

(2.4) νg(x, st) ≥ sνg(x, t), ∀s ≥ 1, t ≥ 0, x ∈ B.

The assumptions on g to be considered in the sequel are the following:

H1: The level sets of Dg(x, ·) are bounded for all x ∈ B.

H2: g is uniformly totally convex.

H3: g′ is uniformly continuous on bounded subsets of B.

H4: g′ is onto, i.e., for all y ∈ B
∗, there exists x ∈ B such that g′(x) = y.

H5: lim
‖x‖→∞

[g(x)− ρ‖x− z‖] = +∞ for all z ∈ K and ρ ≥ 0.

It is important to check that functions satisfying these properties are available in a
wide class of Banach spaces. We have the following result.

Proposition 2.1. [17]. If B is a uniformly smooth and uniformly convex Banach
space, then g(x) = r‖x‖s satisfies H1-H5 for all r > 0 and all s > 1.

The next result deals with Bregman projections onto closed and convex sets.

Proposition 2.2. [17]. If g satisfies H1-H2 and C ⊂ B is closed and convex, then
for all x̄ ∈ B there exists a unique solution x̂ of the problem min Dg(x, x̄) s.t. x ∈ C,
which satisfies

(2.5) 〈g′(x̄) − g′(x̂), y − x̂〉 ≤ 0, ∀y ∈ C.
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The point x̂ is said to be the Bregman projection of x̄ onto C, denoted by Πg
C(x̄).

Proposition 2.3. [18]. Assume that g satisfies H2. Let {xk}, {yk} ⊂ B be two
sequences such that at least one of them is bounded. If lim

k→∞
Dg(yk, xk) = 0, then

lim
k→∞

‖xk − yk‖ = 0.

Proposition 2.4. [18]. If g satisfies H3, then g and g′ are bounded on bounded
subsets of B.

We recall some monotonicity properties of the bifunction f , which will be used in
the sequel.

Definition 2.1. Let B be a reflexive Banach space and K ⊂ B be a nonempty
closed and convex set. f : K × K → R is a bifunction. f is said to be

A1: monotone, if

(2.6) f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ K;

A2: undermonotone, if there exists θ > 0 such that

(2.7) f(x, y) + f(y, x) ≤ θ〈g′(x)− g′(y), x− y〉, ∀x, y ∈ K,

where θ is called the undermonotonicity constant of f ;

A3: pseudomonotone, if

(2.8) f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0, ∀x, y ∈ K;

A4: properly quasimonotone, if for all x1, · · · , xn ∈ K and all λ1, · · · , λn ≥ 0 such

that
n∑

i=1
λi = 1 it holds that

(2.9) min
1≤i≤n

f(xi,

n∑
j=1

λjx
j) ≤ 0;

We will consider also the following two variants of properly quasimonotonicity:

A4’: f satisfies A4, with strict inequality in (2.9) if the xis are pairwise distinct and
the λis are all strictly positive;

A4*: For all x1, · · · , xn ∈ K and all λ1, · · · , λn ≥ 0 such that
n∑

i=1
λi = 1 it holds

that

(2.10)
n∑

i=1

λif(xi,

n∑
j=1

λjx
j) ≤ 0.
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Remark 2.1. (i) In A2, if B is a Hilbert space and g = 1
2‖ · ‖2, then (2.7)

reduces to

(2.11) f(x, y) + f(y, x) ≤ θ‖x − y‖2, ∀x, y ∈ K.

(ii) The condition A1 is widely used in proving the convergence results of most
algorithms for solving (1.1) (see, for example, [25, 26]).

(iii) It is not hard to check that both A2 (i.e., undermonotonicity) and A3 (i.e., pseu-
domonotonicity) are weaker than A1 (i.e., monotonicity).

(iv) As mentioned by Iusem et al. in [13], A4 (i.e., proper quasimonotonicity) was
introduced by Zhou and Chen [30]. In the case of variational inequalities, it is
stronger than quasimonotonicity, as defined, for example, in [19]. In the general
case, as considered here A4, it neither implies quasimonotonicity nor is implied
by it (approximate examples are given in [4]).

(v) A4’ and A4* as variants of A4 were introduced by Iusem et al. in [13]. Both
A4’ and A4* are weaker than A1 (i.e., monotonicity), for example, [17].

(vi) Some examples were given in [13] showing that A4’, A4* and A3 (i.e., pseu-
domonotonicity) are mutually independent in the sense that none of them implies
any of the remaining ones.

In this paper, we will use any one of three combination conditions: A2-A3, A2-A4’
and A2-A4*, instead of A1. As discussed above, we conclude that the function set
with A1 is properly contained in the one with any one among of A2-A3, A2-A4’ and
A2-A4*.
Under the condition that f satisfies A2, the authors of [17] proved the unique

existence of the proximal subproblem.

Proposition 2.5. [17]. Consider f satisfying P1-P3 and A2. Fix x̄ ∈ B, e ∈ B
∗

and γ > θ, where θ is the undermonotonicity constant in A2. Take g : B → R

satisfying H1-H2 and H5. If f̃ : K × K → R is defined as

(2.12) f̃ (x, y) = f(x, y) + γ〈g′(x) − g′(x̄), y − x〉 − 〈e, y − x〉,
then EP(f̃ , K) has a unique solution.

In order to prove the convergence result of our method, we need to show that the
solution set of (1.1) is a closed and convex subset of B. For this purpose, we are
interested now in the following dual equilibrium problem (to be denoted DEP(f, K))
and relation with EP(f, K).
DEP(f, K)) consists of finding x∗ ∈ K such that

(2.13) f(y, x∗) ≤ 0, ∀y ∈ K.

The set of solutions of DEP(f, K)) will be denoted by Sd.



2122 Guo-ji Tang and Xing Wang

Proposition 2.6. [17]. Assume that any one among A3, A4’ and A4* holds. If P2
is satisfied, then f(y, x∗) ≤ 0 for all y ∈ K and all x∗ ∈ S.

Proposition 2.7. If f satisfies P1-P3 and any one among A3, A4’ and A4*, then
the solution sets of EP(f, K) and DEP(f, K)) coincide, i.e., S = Sd.

Proof. S ⊂ Sd is immediate by Proposition 2.6. On the other inclusion relation,
let x∗ ∈ Sd, and take any w ∈ K . For each t ∈ (0, 1), define wt := tw + (1 − t)x∗.
Since K is convex, wt belongs to K. Since x∗ solves (2.13), we get f(wt, x

∗) ≤ 0
for all t ∈ (0, 1). Adding tf(x∗, w) to two sides of this inequality and using P1, we
obtain

(2.14) f(wt, x
∗) + tf(x∗, w)− 1

1− t
f(wt, wt) ≤ tf(x∗, w).

By P2, f(wt, ·) is convex, it follows that f(wt, wt) = f(wt, tw + (1 − t)x∗) ≤
tf(wt, w) + (1 − t)f(wt, x

∗). Thus,

tf(x∗, w)

≥ f(wt, x
∗) + tf(x∗, w)− 1

1 − t
[tf(wt, w) + (1 − t)f(wt, x

∗)]

= tf(x∗, w)− t

1 − t
f(wt, w).

By dividing t from the leftmost and rightmost hand side, we get

f(x∗, w) ≥ f(x∗, w)− 1
1− t

f(wt, w).

Taking limits as t → 0+, we conclude, using P3, that f(x∗, w) ≥ 0 for all w ∈ K.
This implies that Sd ⊂ S. Therefore, the desired result follows.
From Proposition 2.7, the solution set S will be characterized as

S = Sd =
⋂
y∈K

{x∗ ∈ K : f(y, x∗) ≤ 0}.

Note that for each y ∈ K, the set {x∗ ∈ K : f(y, x∗) ≤ 0} is a nonempty, closed and
convex subset of K, because f(y, y) = 0 for all y ∈ K, K is closed and convex, and
f is lower semicontinuous and convex in the second argument. Thus, S is closed and
convex set if it is nonempty.

3. ALGORITHM

We restate the algorithm of [23] as follows:
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Algorithm 3.1.

Step 0. Choose any x0 ∈ K.

Step j. For xj ∈ K, find a pair x̃j ∈ K, ej ∈ B
∗ such that x̃j solves EP(fe

j , K) with

(3.1) fe
j (x, y) = f(x, y) + γj〈g′(x)− g′(xj), y − x〉 − 〈ej, y − x〉,

i.e.,
(3.2) fe

j (x̃j, y) ≥ 0, ∀y ∈ K,

and ej satisfies

‖ej‖ ≤
⎧⎨
⎩

σγjDg(x̃j, xj), if ‖xj − x̃j‖ < 1,

σγjνg(xj, 1), if ‖xj − x̃j‖ ≥ 1.

(3.3)

Let
(3.4) vj = γj[g′(xj)− g′(x̃j)] + ej.

If vj = 0 or x̃j = xj , then stop. Otherwise, take

(3.5) Hj = {x ∈ B : 〈vj, x− x̃j〉 ≤ 0},

(3.6) Wj = {x ∈ B : 〈g′(x0) − g′(xj), x− xj〉 ≤ 0},
and define
(3.7) xj+1 = argminx∈Hj∩Wj∩KDg(x, x0) = Πg

Hj∩Wj∩K(x0).

In order to show the well-definedness of the algorithm, we just need to ensure
existence of solution for the proximal subproblems (i.e., (3.2)-(3.3)) and nonemptyness
of the closed and convex set Hj ∩ Wj ∩ K . Proposition 2.5 ensures the existence of
a unique solution for EP(fe

j , K), say x̃j . That is to say (3.2)-(3.3) is feasible. The
following proposition says that, if the solution set is nonempty, then S ⊂ Hj ∩Wj ∩K .

Proposition 3.1. If S �= ∅, then S ⊂ Hj ∩ Wj ∩ K , thus Hj ∩ Wj ∩ K �= ∅.
Proof. Since S �= ∅, take any arbitrary x∗ ∈ S. It follows that

f(x∗, y) ≥ 0, ∀y ∈ K.

From (3.2), we have fe
j (x̃j, y) ≥ 0 for all y ∈ K , i.e.,

(3.8) f(x̃j, y)− 〈vj, y − x̃j〉 ≥ 0, ∀y ∈ K.

Thus, we have
〈vj, x∗ − x̃j〉 ≤ f(x̃j, x∗) ≤ 0,
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where the first inequality follows from (3.8) by taking y = x∗, the second from Propo-
sition 2.6. So, x∗ ∈ Hj by the definition of Hj , thus, S ⊂ Hj by the fact that x∗ is
arbitrary in S.
From the analysis above, it is sufficient to prove that S ⊂ Wj for all j ≥ 0. The

proof will be given by induction.
Obviously,

S ⊂ W0 = B.

Suppose that S ⊂ Wj , thus S ⊂ Hj ∩Wj ∩K. For any x∗ ∈ S, using Proposition 2.2
and the fact that xj+1 = ΠHj∩Wj∩K(x0), it holds that

〈g′(x0) − g′(xj+1), x∗ − xj+1〉 ≤ 0,

and thus S ⊂ Wj+1. This shows that S ⊂ Wj for all j ≥ 0 and the desired result
follows.

Proposition 3.2. [17]. Let {xj}, x̃j , {γj} and σ be in Algorithm 3.1 and assume
that g satisfies H2. For all j, it holds that

(3.9) ‖ej‖‖xj − x̃j‖ ≤ σγjDg(x̃j, xj) ≤ γjDg(x̃j, xj).

4. CONVERGENCE ANALYSIS

First we settle the issue of finite termination of Algorithm 3.1.

Theorem 4.1. Suppose that Algorithm 3.1 stops after j steps. Then x̃j generated
by Algorithm 3.1 is a solution of (1.1).

Proof. Algorithm 3.1 stops at jth iteration in two cases: if vj = 0, in which case,
by (3.1), (3.2) and (3.4), x̃j solves (1.1), or if x̃j = xj , in which case, by (3.3), ej = 0,
which in turn implies, by (3.4), vj = 0 and we are back to the first case. Consequently,
x̃j is a solution of (1.1).
From now on we assume that the sequence {xj} is infinite.
Theorem 4.2. Let x0 ∈ K and Wj be defined as in (3.6). Suppose that the

algorithm, starting from x0, reaches iteration j. Then

(a) For any w ∈ Wj it holds

(4.1) Dg(w, x0) ≥ Dg(w, xj) + Dg(xj, x0).

(b) xj is the Bregman projection, associated to g, of x0 over Wj , i.e.,

(4.2) xj = Πg
Wj

(x0) = argminx∈Wj
Dg(x, x0).
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Proof. To prove item (a), take any w ∈ Wj . From (3.6),

〈g′(x0) − g′(xj), w− wj〉 ≤ 0.

Using also the three-point property (see (2.2)), it follows that

Dg(w, x0)

= Dg(w, xj) + Dg(xj, x0) + 〈g′(x0) − g′(xj), xj − w〉
≥ Dg(w, xj) + Dg(xj, x0),

which proves item (a).
Item (b) follows (a) and nonnegativity and strict convexity of Dg(·, xj). Just note

that, in view of (3.6), xj ∈ Wj .

Theorem 4.3. Consider EP(f, K). Assume that f satisfies P1-P3, A2 and also
any one among A3, A4’ and A4*. Take g : B → R satisfies H1-H5 and an exogenous
sequence {γj} ⊂ (θ, γ̄], where θ is the undermonotonicity constant in A2 and γ̄ > θ
is a some constant. Let {xj} be the sequence by Algorithm 3.1. If EP(f, K) has
solutions, then

(a) {Dg(xj, x0)} is nondecreasing and convergent.
(b) {xj} is bounded.
(c) {xj+1 − xj} converges strongly to 0.
(d) {γ−1

j ej} is bounded.
(e) {xj+1 − x̃j} and {x̃j − xj} converge strongly to 0.
(f) {vj} converges strongly to 0.

Proof. (a) Since xj+1 ∈ Wj (see (3.7)), from item (a) of Theorem 4.2 and
nonnegativity of Dg(·, xj) we have

(4.3) Dg(xj+1, x0) ≥ Dg(xj+1, xj) + Dg(xj, x0) ≥ Dg(xj, x0)

which shows that {Dg(xj, x0)} is nondecreasing. From (3.7) we know that
(4.4) Dg(xj+1, x0) ≤ Dg(x, x0)

for all x ∈ Hj ∩ Wj ∩ K, particularly, for all x∗ ∈ S(⊂ Hj ∩ Wj ∩ K). So, it holds

(4.5) Dg(xj, x0) ≤ Dg(x∗, x0),

and hence the sequence {Dg(xj, x0)} is convergent.
The remainder of the proof is similar to that of Proposition 4.2 of [23].
We remind that a sequence {zj} ⊂ K is an asymptotically solving sequence for

EP(f, K) if lim inf
j→∞

f(zj , y) ≥ 0 for all y ∈ K .
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Theorem 4.4. Consider EP(f, K). Assume that f satisfies P1-P3, A2 and also
any one among A3, A4’ and A4*. Take g : B → R satisfies H1-H5 and an exogenous
sequence {γj} ⊂ (θ, γ̄], where θ is the undermonotonicity constant in A2 and γ̄ > θ

is a some constant. Let {xj} be the sequence by Algorithm 3.1. If EP(f, K) has
solutions, then

(a) {x̃j} is an asymptotically solving sequence for EP(f, K).
(b) all weak cluster points of {xj} solve EP(f, K).
(c) {Dg(xj, x0)} converges to inf

z∈S
Dg(z, x0) and {xj} converges strongly to x̂ =

Πg
S(x0) = arg minz∈S Dg(z, x0).

Proof. (a) Fix y ∈ K. Because {x̃j} solves EP(fe
j , K), by the definition of fe

j and
Cauchy-Schwartz inequality, we have that

(4.6)

0 ≤ fe
j (x̃j, y)

= f(x̃j, y) + 〈γj[g′(x̃j) − g′(xj)] − ej, y − x̃j〉
= f(x̃j, y) + 〈−vj, y − x̃j〉
≤ f(x̃j, y) + ‖vj‖‖y − x̃j‖.

By item (b)and (e) of Theorem 4.3 , we know that {x̃j}, and therefore, the sequence
{y− x̃j}, are bounded for each fixed y. Consequently, taking limits in (4.6) as j → ∞
and using Theorem 4.3 (f), we get

(4.7) 0 ≤ lim inf
j→∞

f(x̃j, y),

for all y ∈ K.
(b) By Theorem 4.3 (b) and (e), {xj} has weak cluster points, all of which are

also weak cluster points of {x̃j}. These weak cluster points belong to K, which, being
closed and convex, is weakly closed. Let x̃ be a weak cluster point of {x̃j}, say the
weak limit of the subsequence {x̃jk} of {x̃j}. By our assumptions, we investigate the
property of x̃ being a solution of (1.1) in three cases as follows.

The case of A3: By (4.7), it follows that

(4.8) 0 ≤ lim inf
k→∞

f(x̃jk , y), ∀y ∈ K.

By the definition of lower limit, for each y ∈ K, there is a subsequence {x̃jki }, which
also converges weakly to x̃, of {x̃jk} such that lim

i→∞
f(x̃jki , y) = lim inf

k→∞
f(x̃jk , y).

Using (4.8), we have 0 ≤ lim
i→∞

f(x̃jki , y), that is to say, there is a positive integer N ,
such that

(4.9) f(x̃jki , y) ≥ 0, ∀i > N.
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By A3, we get f(y, x̃jki ) ≤ 0 for all i > N . Because f , being convex and lower
semicontinuous in the second argument, is weakly lower semicontinuous in the same
one, using x̃jki ⇀ x̃, we obtain

f(y, x̃) ≤ lim inf
i→∞

f(y, x̃jki ) ≤ 0.

Observe that y is arbitrary in K. Consequently, x̃ is a solution of (2.13), by Proposition
2.7, x̃ also solves (1.1).

The case of A4’: For each y ∈ K, similar to the proof of item (a), substituting x̃j

by x̃jk , ej by ejk and y by 1
ky + (1 − 1

k )x̃jk (∈ K) in (4.6), we get

(4.10) 0 ≤ f(x̃jk ,
1
k
y + (1 − 1

k
)x̃jk ) + ‖vjk‖‖1

k
(y − x̃jk )‖,

thus, (4.7) is replaced by

(4.11) 0 ≤ lim inf
k→∞

f(x̃jk ,
1
k
y + (1− 1

k
)x̃jk).

By again the definition of lower limit, there is a subsequence {ki} such that

(4.12) lim
i→∞

f(x̃jki ,
1
ki

y + (1 − 1
ki

)x̃jki ) = lim inf
k→∞

f(x̃jk ,
1
k
y + (1 − 1

k
)x̃jk)

and there must be 1
ki

y +(1− 1
ki

)x̃jki ⇀ x̃ as i → ∞. Replacing (4.12) into (4.11), we
conclude that there is a positive integer N such that

(4.13) f(x̃jki ,
1
ki

y + (1 − 1
ki

)x̃jki ) ≥ 0, ∀i > N.

If y does not belong to {x̃jki : i > N}, then it follows from the property A4’ and
(4.13) that

(4.14) f(y,
1
ki

y + (1 − 1
ki

)x̃jki ) < 0, ∀i > N.

Since 1
ki

y + (1 − 1
ki

)x̃jki ⇀ x̃ as i → ∞ and f is weakly lower semicontinuous in
second argument, by taking limits as i → ∞, we have

f(y, x̃) ≤ lim inf
i→∞

f(y,
1
ki

y + (1− 1
ki

)x̃jki ) ≤ 0.

Otherwise, for each i > N , we consider

f(x̃jki , x̃) ≤ lim inf
i→∞

f(x̃jki , x̃jki ) = 0,
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where the inequality follows from x̃jki ⇀ x̃ and the weakly lower semicontinuity of f

in the second argument, the equality follows from the assumption P1. Thus, we can
conclude that

f(y, x̃) ≤ 0, ∀y ∈ K.

Consequently, by Proposition 2.7, x̃ solves (1.1).

The case of A4*: We copy some steps from the start point of the proof of the case
A4’ to (4.13). Now we continue to the proof. It follows from A4* that

1
ki

f(y,
1
ki

y + (1 − 1
ki

)x̃jki ) + (1− 1
ki

)f(x̃jki ,
1
ki

y + (1 − 1
ki

)x̃jki ) ≤ 0.

By (4.13) and 1
ki

> 0, we conclude that

f(y,
1
ki

y + (1 − 1
ki

)x̃jki ) ≤ 0, ∀i > N,

Since 1
ki

y + (1 − 1
ki

)x̃jki ⇀ x̃ as i → ∞ and f is weakly lower semicontinuous in
second argument, by taking limits as i → ∞, we have

f(y, x̃) ≤ lim inf
i→∞

f(y,
1
ki

y + (1− 1
ki

)x̃jki ) ≤ 0.

Consequently, x̃ is a solution of (2.13), by again Proposition 2.7, x̃ solves (1.1).
(c) Note that the Bregman projection of the initial iterate x0 over S, x̂ = ΠS(x0),

exists because the solution set is closed, convex and we assumed it to be nonempty and
g is totally convex. By taking x∗ = x̂ in (4.5), we have

(4.15) Dg(xj, x0) ≤ Dg(x̂, x0).

Because {Dg(xj, x0)} is nondecreasing and convergent (see Theorem 4.3 (a)), we can
let

(4.16) α = lim
j→∞

Dg(xj, x0) = sup
j

Dg(xj, x0),

and choose any weakly convergent subsequence xjk ⇀ x∞. Then, from the above
discussion, x∞ ∈ S. On the other hand, since g is convex and lower semicontinuous,
so is Dg(·, x0). Consequently, Dg(·, x0) is weakly lower continuous. This implies

(4.17) Dg(x̂, x0) ≤ Dg(x∞, x0) ≤ lim inf
k→∞

Dg(xjk , x0) = α,

where the first inequality follows from the the fact that x̂ = Πg
S(x0). From (4.15)-

(4.17), we get

(4.18) α = Dg(x̂, x0) = Dg(x∞, x0).
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Consequently, it follows that

0 ≤ Dg(x∞, x̂) (by nonnegativity)
= Dg(x∞, x0) − Dg(x̂, x0) + 〈g′(x0) − g′(x̂), x∞ − x̂〉 (by (2.2))
= 〈g′(x0)− g′(x̂), x∞ − x̂〉 (by (4.18))
≤ 0. (by x̂ = Πg

S(x0) and (2.5))

So, Dg(x∞, x̂) = 0, thus, x∞ = x̂. This implies that {xj} has a unique weak cluster
point and converges weakly to x̂. Moreover, from (4.1) with w = x̂ ∈ Wj , and taking
limits, it follows

lim sup
j→∞

Dg(x̂, xj) ≤ lim sup
j→∞

[Dg(x̂, x0) − Dg(xj, x0)] = 0.

Thus, lim
j→∞

Dg(x̂, xj) = 0. Then, (H2) ensures xj → x̂, i.e., the convergence is strong.

Remark 4.1. We compare Theorem 4.4 with Theorem 5.5 of [17] in two folds:
First, the two conditions in Theorem 5.5 of [17] that f(·, y) is weakly upper semicon-
tinuous for all y ∈ K and either g satisfies H6 or EP(f, K) has a unique solution are
removed, where
H6: If {yj} and {zj} are sequences inK that converges weakly to y and z, respectively
and y �= z, then

lim inf
k→∞

|〈g′(yj) − g′(zj), y − z〉| > 0.

Second, we prove the strong convergence of {xj} to the solution of (1.1) which is
closest to the initial point x0 in the sense of Bregman distance by adapting the ideas
of [27] whereas the weak convergence is obtained in Theorem 5.5 of [17].

Remark 4.2. Compared with item (ii) of Proposition 4.3 and Theorem 4.4 in
[23], the condition that f(·, y) is weakly upper semicontinuous for all y ∈ K is
removed; Compared with item (iii) of Proposition 4.3 and Theorem 4.4 in [23], one of
combination conditions (A2 and A3, i.e., undermonotonicity and pseudomonotonicity)
used in Theorem 4.4 in this paper is weaker than monotonicity presented in [23].
Besides this, we also provide other combination conditions (A2 and A4’ or A2 and
A4*) that guarantee the results hold. Moreover, there is a slight difference between
Theorem 4.4 in this paper and Theorem 4.4 of [23], i.e., we do not directly make the
assumption that S = Sd.

5. APPLICATION TO VARIATIONAL INEQUALITY

The aim of this section is to apply the approach of the previous section to variational
inequality problem, denoted by VIP, consisting of finding x∗ ∈ K such that

(5.1) 〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ K,
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where F : K → B
∗ is a nonlinear mapping and K is a nonempty closed and convex

subset of B, which was considered by many researchers (see, for example, [22, 12]),
when F is monotone on K. However, rather few algorithms have been developed for
(5.1) when F is not monotone, see, for example, [3, 8, 29].
Let F : K → B

∗ be a nonlinear mapping with K a nonempty closed and convex
subset of B. If we set f(x, y) = 〈F (x), y − x〉, then all (generalized) monotonicity
concepts on bifunction f in Definition 2.1 reduce to the familiar ones on mapping F .
We recall them as follows:

Definition 5.1. Let B be a reflexive Banach space and K ⊂ B be a nonempty
closed and convex set. Let F : K → B

∗ be a nonlinear mapping. Then F is said to be

A1-F: monotone, if
〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ K,

A2-F: undermonotone, if there exists θ > 0 such that

〈F (x) − F (y), x− y〉 ≥ −θ〈g′(x)− g′(y), x− y〉, ∀x, y ∈ K,

where θ is called the undermonotonicity constant of F ,

A3-F: pseudomonotone, if

〈F (x), y − x〉 ≥ 0 ⇒ 〈F (y), y − x〉 ≥ 0, ∀x, y ∈ K,

A4-F: properly quasimonotone, if for all x1, · · · , xn ∈ K and all λ1, · · · , λn ≥ 0 such

that
n∑

i=1
λi = 1 it holds that

(5.2) min
1≤i≤n

〈F (xi),
n∑

j=1

λjx
j − xi〉 ≤ 0.

A4’-F: f satisfies A4-F, with strict inequality in (5.2) if the xis are pairwise distinct and
the λis are all strictly positive,

A4*-F: For all x1, · · · , xn ∈ K and all λ1, · · · , λn ≥ 0 such that
n∑

i=1
λi = 1 it holds

that
n∑

i=1

λi〈F (xi),
n∑

j=1

λjx
j − xi〉 ≤ 0.

If f(x, y) = 〈F (x), y − x〉 in Algorithm 3.1, then (3.2) with (3.1) reduces to
(5.3) 〈F (x̃j) + γj[g′(x̃j) − g′(xj)] − ej , y − x̃j〉 ≥ 0, ∀y ∈ K.

We denote the algorithm consisting of (5.3) and (3.3)-(3.7) as Algorithm 5.1.
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Remark 5.1. We compare Algorithm 5.1 with Algorithm 3.1 of [8] as follows:
If we xj+1 = x̃j in (5.3) instead of (3.4)-(3.7), in addition, ej = 0 in (5.3), then
Algorithm 5.1 reduces to Algorithm 3.1 of [8], which is known as exact proximal point
algorithm for VIP.

We present the convergence theorem of Algorithm 5.1 for VIP as follows.

Theorem 5.1. Consider VIP. Let F : K → B
∗ be a continuous mapping. Assume

that F satisfies A2-F and any one of A3-F, A4’-F and A4*-F. Take g : B → R satisfies
H1-H5 and an exogenous sequence {γj} ⊂ (θ, γ̄] for some γ̄ > θ, where θ is the
undermonotonicity constant in A2-F. Let {xj} be the sequence by Algorithm 5.1. If
VIP has solutions, then

(a) {x̃j} is an asymptotically solving sequence for VIP.
(b) all weak cluster points of {xj} solve VIP.
(c) {Dg(xj, x0)} converges to inf

z∈S(V IP )
Dg(z, x0) and {xj} converges strongly to

x̂ = argminz∈S(V IP )Dg(z, x0).

Proof. It is not hard to see that Algorithm 5.1 is deduced by applying Algorithm 3.1
to f(x, y) := 〈F (x), y − x〉. If F is continuous on K, then f(x, y) := 〈F (x), y − x〉
satisfies P1-P3. Thus, Theorem 4.4 ensures this theorem.

Remark 5.2. We compare Theorem 5.1 with Theorem 4.1 of [8] in the following
aspects:

(i) Strong convergence is obtained in Banach spaces in Theorem 5.1, while con-
vergence result of Theorem 4.1 of [8] is in the setting of finite dimensional
sapces.

(ii) The conditions on F are any one of three combination ones: (A2-F)-(A3-F), (A2-
F)-(A4’-F) and (A2-F)-(A4*-F) in Theorem 5.1. If B = R

n, the first combination
conditions (A2-F)-(A3-F) above reduce to the ones on mapping in Theorem 4.1
of [8]. That is, Theorem 5.1 shows that the convergence results also hold under
the one of other two assumptions (A2-F)-(A4’-F) and (A2-F)-(A4*-F) besides
(A2-F)-(A3-F). Thus, Theorem 5.1 generalizes and extends Theorem 4.1 of [8]
from finite dimensional spaces to reflexive Banach spaces.
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