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HOMOCLINIC ORBITS OF NONPERIODIC SUPERQUADRATIC
HAMILTONIAN SYSTEM

Jian Zhang, Xianhua Tang* and Wen Zhang

Abstract. In this paper, we study the following first-order nonperiodic Hamilto-
nian system

ż = JHz(t, z),

where H ∈ C1(R × R
2N , R) is the form H(t, z) = 1

2L(t)z · z + R(t, z). Under
weak superquadratic condition on the nonlinearitiy. By applying the generalized
Nehari manifold method developed recently by Szulkin and Weth, we prove the
existence of homoclinic orbits, which are ground state solutions for above system.

1. INTRODUCTION AND MAIN RESULTS

We study the following first-order Hamiltonian system

(HS) ż = JHz(t, z),

where z = (p, q) ∈ R
N×R

N = R
2N , J =

(
0 IN

−IN 0

)
, and H ∈ C1(R×R

2N , R)

is the form

(1.1) H(t, z) =
1
2
L(t)z · z + R(t, z)

with L(t) ∈ C(R, R
4N2

) being a 2N × 2N symmetric matrix valued function, and
R ∈ C1(R×R

2N , R) is superquadratic at infinity. In this paper, we are concerned with
the existence of homoclinic orbits, which are ground state solutions of system (HS),
i.e., solutions corresponding to the least energy of the energy functional of system
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(HS). Here by a homoclinic orbit of system (HS) we mean a solution of the equation
satisfying z(t) �≡ 0 and z(t) → 0 as |t| → ∞.

Establishing the existence of homoclinic orbits for system like (HS) is one of the
most important problems in the theory of Hamiltonian systems. In very recent years,
many authors devoted to the existence of homoclinic orbits for Hamiltonian systems via
critical point theory. For example, see [2, 4, 6, 14, 16, 24] for the second order systems,
and [1, 3, 5, 7-11, 13, 15, 17-21] for the first order systems. Coti-Zelati, Ekeland
and Séré first considered the system (HS) in [1]. Under the Ambrosetti-Rabinowitz
growth condition, they proved the existence and multiplicity of homoclinic orbits for
strictly convex Hamiltonian system. The existence of infinitely many homoclinic orbits
was established in Séré [3], which generalized the result in [1]. Subsequently, Hofer
and Wysocki [13] removed the convexity assumption and obtained the existence of
homoclinic orbits. Using a subharmonic approach, Tanaka [19] also removed the
convexity assumption, and proved that the system (HS) has at least one homoclinic
orbit. Later, suppose that R(t, z) and L(t) depend periodically on t, the existence of
homoclinic orbit for system (HS) was considered in [5, 7, 11, 18, 15] and [20].

Without assumption of periodicity the problem is quite different in nature, and
the main difficulty of such type problem is the lack of compactness of the Sobolev
embedding theorem. In [9], Ding and Li first obtained one homoclinic orbits for
the nonperiodic system (HS) with the compactness conditions. Recently, Ding and
Jeanjean [8] imposed a control on the size of R(t, z) with respect to the behavior of
L(t) at infinity in t to recover sufficient compactness, and obtained certain existence
and multiplicity results for system (HS) when R(t, z) is asymptotically quadratic in
z at infinity. Soon after, Ding and Lee [10] studied superquadratic case and obtained
the existence of homoclinic orbit for system (HS) by considering certain auxiliary
problem related to the ”limit equation”. For other results about nonperiodic case, we
refer readers to [21] and references therein.

To continue the discussion, we define some notations. For any real function U(x)

will be regarded as a symmetric matrix U(x)I2N×2N and J0 :=
(

0 IN

IN 0

)
, for

two given matrix valued functions M1(t) and M2(t), we say that M1(t) ≤ M2(t) if
and only if

max
ξ∈R2N ,|ξ|=1

(M1(t) − M2(t))ξ · ξ ≤ 0,

and M1(t) > M2(t) if and only if M1(t) ≤ M2(t) does not hold. Here we will
mention the recent work of Chen and Ma [15]. Based on the main ideas of [25] and
[29], they obtained the existence of ground state solutions by using variant generalized
weak linking theorem for a strongly indefinite problem developed by Schechter and
Zou [30] for the periodic case. Motivated by the above fact, in this paper our aim
is to consider the nonperiodic case, i.e, L(t) and R(t, z) are nonperiodic with respect
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to t, and also establish the existence of ground state solutions by generalized Nehari
manifold method developed recently by Szulkin and Weth [25](see also [27]). To our
knowledge, there is no work focused on this case. Compared to the periodic case,
the nonperiodic case becomes more complex, there are some difficulties to overcome.
Firstly, the main difficulty of such type problem is the lack of compactness of the
Sobolev embedding theorem. In order to overcome this difficulty, we assume that L(t)
satisfies
(L0) L(t) ∈ C(R, R

2N×2N), there exists r0 > 0 such that, for any h > 0,

meas ({t ∈ R : |t − t1| ≤ r0, J0L(t) < h}) → 0, as |t1| → ∞,

where meas(·) denotes the Lebesgue measure. Secondly, since the energy functional
associated to system (HS) is strongly indefinite under the assumption (L0). Therefore,
the usual Nehari manifold method cannot be applied directly (see [27]). To overcome
the strongly indefiniteness of the energy functional, we will use the generalized Nehari
manifold method.

More Precisely, we make the following assumptions:
(R1) R ∈ C1(R × R

2N , [0,∞)) and R(t, z) > 0 for all z �= 0;
(R2) |Rz(t, z)| ≤ C(1 + |z|p−1) for some C > 0, p > 2 and Rz(t, z) = o(|z|) as

|z| → 0 uniformly in t;

(R3) R(t,z)
|z|2 → ∞ as |z| → ∞ uniformly in t, and R̂(t, z) := 1

2Rz(t, z)·z−R(t, z) > 0
for all z �= 0;

(R4) (Rz(t, z) ·w)(z ·w) ≥ 0 uniformly in t for all z, w ∈ R
2N , where z ·w denotes

the usual Euclidean scalar product;

(R5) R(t, z) = R(t, w) and Rz(t, z) · w ≤ Rz(t, z) · z uniformly in t if |z| = |w|, if
in addition z �= w, then Rz(t, z) ·w < Rz(t, z) · z;

(R6) Rz(t, z) · w �= Rz(t, w) · z uniformly in t if |z| �= |w| and z ·w �= 0.

For the nonlinearity R(t, z), there are some functions satisfy (R1)-(R6), for exam-
ple:
Ex. 1. Let R(t, z) = f(t)|z|p, where p > 2 and f(t) > 0.
Ex. 2. Let R(t, z) = g(t)

(
|z|p + (p − 2)|z|p−ε sin2( |z|

ε

ε )
)

, where g(t) > 0, 0 < ε <

p − 2. Note that

Rz(t, z)=g(t)z
[
(p−2)(p−ε)|z|p−ε−2 sin2(

|z|ε
ε

)+
(

p+(p−2) sin(
2|z|ε

ε
)
)
|z|p−2

]
.

It is easy to show that R(t, z) does not satisfy the Ambrosetti-Rabinowitz superquadratic
condition.

Our main result is the following:
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Theorem 1.1. Let (L0), (R1) − (R6) be satisfied, the system (HS) has at least
one homoclinic orbit, which is a ground state solution.

It is well known that without Ambrosetti-Rabinowitz condition, such problems
become quite difficult and complex. There are some papers considered the existence of
ground states for other problems, e.g., the Schrödinger equation, the elliptic system and
the second-order Hamiltonian system. Szulkin and Weth [25] first obtained a ground
state solutions via generalized Nehari manifold under the stronger Nehari condition.
Later, Liu [23] generalized the result in [25] by relaxing the Nehari condition. Also,
note that some authors have studied several different problems by a variant generalized
weak linking theorem and monotonicity trick developed by Schechter and Zou [30].
Among these problems are the Schrödinger equation with spectrum zero in Yang et al.
[28], the Schrödinger equation without spectrum zero in Yang [29], the elliptic system
in Zhao et al. [22] and the second-order Hamiltonian system in Chen and Ma [24].

The remainder of this paper is organized as follows. In section 2, the variational
setting and the method of the generalized Nehari manifold are briefly presented. The
existence of a ground state solution is proved in section 3.

2. VARIATIONAL SETTING AND GENERALIZED NEHARI MANIFOLD METHOD

Below by | · |q we denote the usual Lq- norm, (·, ·)2 denote the usual L2 inner prod-
uct, ci, C, Ci stand for different positive constants. For convenience, let Hamiltonian
operator

A = −(J d

dt
+ L(t)),

and let σ(A), σd(A) be the spectrum of A, the discrete spectrum of A, respectively.
Observe that, since we have assumed (L0) about L(t), A is a selfdajoint operater on
L2 := L2(R, R

2N) with D(A) ⊂ H1(R, R
2N). In order to establish a variational

setting for the system (HS), we have the following Lemmas due to [21].

Lemma 2.1. ([21], Lemma 2.2). Suppose (L0) holds. Then σ(A) = σd(A).
From Lemma 2.1, we know that the Hamiltonian operator A has a sequence of

eigenvalues
· · ·λ−k ≤ · · · ≤ λ−1 ≤ 0 < λ1 ≤ · · · ≤ λk · · ·

with λ±k → ±∞ as k → ∞, and corresponding eigenfunctions {e±k}k∈N form an
orthogonal basis in L2. Observe that we have an orthogonal decomposition

L2 = L− ⊕ L0 ⊕ L+, and z = z− + z0 + z+,

such that A is negative definite on L− and positive definite on L+ and L0 = kerA. Let
P 0 : L2 → L0 be the projection. Set E := D(|A| 12 ) be the domain of the selfadjoint
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operator |A| 12 which is a Hilbert space equipped with the inner product

〈z, w〉 = (|A| 12 z, |A| 12 w)2 + (P 0z, P 0w)2

and norm ‖z‖ = 〈z, z〉 1
2 . Let E± := span{e±k}k∈N

, E0 = kerA. Clearly, E−, E0

and E+ are orthogonal with respect to the products (·, ·)2 and 〈·, ·〉. Hence

E = E− ⊕ E0 ⊕ E+

is an orthogonal decomposition of E . Moreover, it is easy to prove the following
embedding theorem by Lemma 2.1.

Lemma 2.2. ([21], Lemma 2.3). E embeds continuously into H
1
2 := H

1
2 (R, R

2N).
Moreover, E embeds compactly into Lp := Lp(R, R

2N) for all p ∈ [2,∞), where H
1
2

is fractional order Sobolev spaces.

Next, On E we define the following functional

(2.1) Φ(z) =
1
2
(‖z+‖2 − ‖z−‖2) − Ψ(z),

where Ψ(z) =
∫

R
R(t, z). Lemma 2.1 implies that Φ is strongly indefinite, and our

hypotheses imply that Φ ∈ C1(E, R), and a standard argument shows that critical
points of Φ are solutions of system (HS)(see [12]).

Now, we introduce the generalized Nehari manifold method. From above argument,
we know E is a Hilbert space with norm ‖ · ‖, and have an orthogonal decomposition

E = E− ⊕ E0 ⊕ E+

and dim E± = ∞, dimE0 < ∞. We denote by S+ the unit sphere in E+, that is

S+ :=
{
z ∈ E+ : ‖z‖ = 1

}
.

For z = z+ + z0 + z− ∈ E , where z± ∈ E±, z0 ∈ E0, we define

E(z) := Rz ⊕ (E− ⊕ E0) ≡ Rz+ ⊕ (E− ⊕ E0),

and
Ê(z) := R

+z ⊕ (E− ⊕ E0) ≡ R
+z+ ⊕ (E− ⊕ E0).

We make the following assumptions on Φ defined in (2.1):
(A1) Ψ(0) = 0, 1

2 〈Ψ′(z), z〉 > Ψ(z) > 0 for all z �= 0 and Ψ is weakly lower
semicontinuous.
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(A2) For each z ∈ E\(E0 ⊕ E−), there exists a unique nontrivial critical point of
m̂(z) of Φ|Ê(z). Moreover, m̂(z) is the unique global maximum of Φ|Ê(z).

(A3) There exists δ > 0 such that ‖m̂(z)+‖ ≥ δ for all z ∈ E\(E0 ⊕ E−), and for
each compact subset K ⊂ E\(E0 ⊕ E−) there exists a constant CK such that
‖m̂(z)‖ ≤ CK.

We consider the following set introduced by Pankov [26]:

M :=
{
z ∈ E\(E0 ⊕ E−) : 〈Φ′(z), z〉 = 0 and 〈Φ′(z), v〉 = 0 ∀v ∈ E0 ⊕ E−}

.

Following Szulkin and Weth [27], we will call the set M the generalized Nehari
manifold. Note that, if z �= 0 and Φ′(z) = 0, then Φ(z) = Φ(z) − 1

2 〈Φ′(z), z〉 =
1
2〈Ψ′(z), z〉−Ψ(z) > 0 while Φ(·) < 0 on E0⊕E−. Hence M contains all nontrivial
critical points of Φ, and Ê(z) ∩M = {m̂(z)} whenever z ∈ E\(E0 ⊕ E−) by (A2).

To prove our result, we define the mappings:

m̂ : E\(E0 ⊕ E−) → M, z �→ m̂(z) and m := m̂|S+.

The following three results are due to Proposition 4.1, 4.2 and Corollary 4.3 of Szulkin
and Weth. The proofs are given in Szulkin and Weth [27], here we omit the details.

Lemma 2.3. Assume that (A1), (A2) and (A3) are satisfied. Then
(a) m̂ is continuous.
(b) m is a homeomorphism between S+ and M.

Let
Î : E+\{0} → R, Î(z) := Φ(m̂(z)) and I := Î |S+.

Lemma 2.4. Assume that (A1), (A2) and (A3) are satisfied. Then Î is of class
C1 and

〈Î ′(z), w〉 :=
‖m̂(z)+‖

‖z‖ 〈Φ′(z), w〉, for all z, w ∈ E+, z �= 0.

Corollary 2.5. Assume that (A1), (A2) and (A3) are satisfied. Then
(a) I ∈ C1(S+, R) and

〈Î ′(z), w〉 := ‖m̂(z)+‖〈Φ′(z), w〉 for all w ∈ Tz(S+),

where Tz(S+) is the tangent space of S+ at z.
(b) If {zn} is a Palais-Smale sequence for I , then {m(zn)} is a Palais-Smale

sequence for Φ. If {zn} ⊂ M is a bounded Palais-Smale sequence for Φ, then
{m−1(zn)} is a Palais-Smale sequence for I .

(c) z is a critical point of I if and only if m(z) is a nontrivial critical point of Φ.
Moreover, the corresponding critical values coincide and infS+ I = infM Φ.
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3. THE PROOF OF THEOREM

Before giving the proof of the main theorem, we need some preliminary results.

Lemma 3.1. Assume that (R1), (R2) and (R3) are satisfied. Then (A1) is satisfied.

Proof. Observe that, by (R1) − (R3) we have Ψ(0) = 0 and
1
2
〈Ψ′(z), z〉 > Ψ(z) > 0, ∀z �= 0.

Let zn ⇀ z in E , Lemma 2.2 implies zn → z in L2, hence zn → z a.e. on R. By
Fatou’s lemma we obtain

Ψ(z) =
∫

R

R(t, z) =
∫

R

lim
n→∞ R(t, zn)

≤ lim inf
n→∞

∫
R

R(t, zn) = lim inf
n→∞ Ψ(zn).

This proves that Ψ is weakly lower semicontinuous.

Lemma 3.2. Let (L0), (R1), (R2) and (R3) be satisfied. Then there exists R > 0
such that Φ(·) ≤ 0 on E(z)\BR(0) for every z ∈ E+\{0}.

Proof. We modify the proof of [25] since E0 �= {0}. For the completeness,
we give the details here. Since E(z) = E(z/‖z‖), we may assume that ‖z‖ = 1
for every z ∈ E+\{0} . Suppose to the contradiction that there exists a sequence
zn ∈ E+\{0} and wn ∈ E(zn) such that Φ(wn) > 0 for all n and ‖wn‖ → ∞ as
n → ∞. Passing to a subsequence, we may assume that zn → z ∈ E+, ‖z‖ = 1. Set
vn = wn

‖wn‖ = snzn + v−n + v0
n, then 1 = ‖vn‖2 = s2

n + ‖v−n ‖2 + ‖v0
n‖2 and

(3.1) 0 <
Φ(wn)
‖wn‖2

=
1
2
(s2

n − ‖v−n ‖2) −
∫

R

R(t, wn)
|wn|2 |vn|2.

By (R1), we know R(t, z) ≥ 0 and have

‖v−n ‖2 ≤ s2
n = 1 − ‖v−n ‖2 − ‖v0

n‖2.

If sn → s > 0, going to a subsequence if necessary, we may assume vn ⇀ v and
vn(x) → v(x) a.e. on R. Hence v = sz + v− + v0 �= 0, therefore |wn| = ‖wn‖|vn| →
∞. By (R1), (R3) and Fatou’s lemma, we have

(3.2)

0 ≤ lim
n→∞

Φ(wn)
‖wn‖2

= lim
n→∞

(
1
2
(s2

n − ‖v−n ‖2) −
∫

R

R(t, wn)
|wn|2 |vn|2

)

≤ 1
2
− lim inf

n→∞

∫
R

R(t, wn)
|wn|2 |vn|2

≤ 1
2
−

∫
R

lim inf
n→∞

R(t, wn)
|wn|2 |vn|2

= −∞,
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which implies a contradiction. If sn → 0, so up to a subsequence, v−n → 0 and
v0
n → v0 �= 0. hence v = v0 �= 0. Then (3.2) follows again, which implies a

contradiction.

Lemma 3.3. Suppose that (R1) − (R6) be satisfied. Let s ∈ R, s ≥ −1 and
z, u ∈ R

2N with w := sz + u �= 0 and let t ∈ R. Then

Rz(t, z) ·
(
s(

s

2
+ 1)z + (s + 1)u

)
+ R(t, z)− R(t, w + z) < 0.

Proof. We modify the proof of [25] and give the details for the completeness (see
also [24]). We fix t ∈ R and z, u ∈ R

2N . Let s ≥ −1 and y = w + z = (s + 1)z + u,

f(s) := Rz(t, z) ·
(
s(

s

2
+ 1)z + (s + 1)u

)
+ R(t, z)− R(t, y).

We need to show f(s) < 0 whenever w = sz + u �= 0. We first consider the case
z = 0, then y �= 0 by w �= 0, hence f(s) = −R(t, y) < 0 by (R1). We may therefore
assume z �= 0 from now on. If z · y ≤ 0, from (R3) and (R4), we have

(3.3)

f(s) = Rz(t, z) ·
(
s(

s

2
+ 1)z + (s + 1)(y − (s + 1)z)

)
+ R(t, z) − R(t, y)

= −(
s2

2
+ s + 1)Rz(t, z) · z + (s + 1)Rz(t, z) · y + R(t, z)− R(t, y)

≤ −1
2
(s + 1)2Rz(t, z) · z + (s + 1)Rz(t, z) · y − R(t, y) < 0.

Next we note that (R1) implies

f(−1) = −1
2
Rz(t, z) · z + R(t, z)− R(t, y) < −R(t, y) ≤ 0.

By (R3), it is easy to see that

lim
s→∞ f(s) = −∞.

Moreover,

(3.4) f ′(s) = Rz(t, z) · y − Rz(t, y) · z.

Suppose that f(s) must attain its maximum on [−1,∞) at some point s0 with f(s0) ≥
0. Then f ′(s0) = 0, and z · y > 0 by (3.3). Thus, by (3.4) and (R6), we have
|z| = |y|, which together with w �= 0, (R3) and (R5) imply

f(s0) = Rz(t, z) ·
(
s0(

s0

2
+ 1)z + (s0 + 1)(y − (s0 + 1)z)

)
+ R(t, z)− R(t, y)

= (s0 + 1)Rz(t, z) · y − (
s2
0

2
+ s0 + 1)Rz(t, z) · z

< (s0 + 1 − s2
0

2
− s0 − 1)Rz(t, z) · z

= −1
2
s2
0Rz(t, z) · z ≤ 0,
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which contradicts with f(s0) ≥ 0. Therefore, f(s0) < 0 whenever w = sz + u �= 0.

Lemma 3.4. Suppose that (R1) − (R6) be satisfied. Then
(i) for z ∈ M, we have Φ(z+w) < Φ(z), where w �= 0, w = sz+u, u ∈ E0⊕E−

and s ≥ −1, and z is the unique global maximum of Φ|Ê(z);
(ii) for each z ∈ E\(E0 ⊕E−), the set Ê(z) ∩M consists of precisely one point

m̂(z) which is unique global maximun of Φ|Ê(z).

Proof. (i) For z ∈ M, let z +w ∈ Ê(z) with w �= 0. Then z +w = (1+s)z +u,
where s ≥ −1 and u = u0 + u− ∈ E0 ⊕ E−. By (2.1) we have

Φ(z + w) − Φ(z)

=
1
2

(
((1 + s)2−1)〈Az, z〉+2(1+s)〈Az, u〉+ 〈Au, u〉)+

∫
R

R(t, z)−R(t, z + w)

= −‖u−‖2

2
+ 〈Az, s(

s

2
+ 1)z + (1 + s)u〉 +

∫
R

R(t, z)− R(t, z + w)

= −‖u−‖2

2
+

∫
R

[
Rz(t, z) ·

(
s(

s

2
+ 1)z + (s + 1)u

)]
+ R(t, z)− R(t, z + w).

In the last step we have used the fact that z ∈ M and φ := s( s
2 +1)z+(s+1)u ∈ E(z),

therefore
0 = 〈Φ′(z), φ〉 = 〈Az, φ〉 −

∫
R

Rz(t, z) · φ.

Since w is nonzero on a set of positive measure, the last integral above is negative
according to Lemma 3.3 and hence Φ(z + w) < Φ(z).

(ii) Similar to the proof of Lemma 2.6 of Szulkin and Weth [25]. It is easy to
prove the above conclusion (ii) by conclusion (i) and Lemma 3.2. Here we omit the
details of proof.

From the preceding Lemma, we have the following Lemma.

Lemma 3.5. Suppose that (R1) − (R6) be satisfied. Then (A2) is satisfied.

Lemma 3.6. Suppose that (R1) − (R6) be satisfied. Then (A3) is satisfied.

Proof. Obviously, (R2) implies Ψ′(z) = o(‖z‖) as |z| → 0, which together with
(A1) imply that for any ε > 0 and z ∈ E+, Ψ(z) ≤ ε

2‖z‖2 when |z| < δ for some δ >

0. Hence we can find ρ, η > 0 such that Φ(z) ≥ η for any z ∈ {z ∈ E+ : ‖z‖ = ρ}.
By (A2), Φ(m̂(z)) ≥ η for any z ∈ E\(E0⊕E−). Since Ψ(·) ≥ 0, by (2.1) we have

η ≤ Φ(m̂(z)) =
1
2
(‖m̂(z)+‖2−‖m̂(z)−‖2)−Ψ(m̂(z)) ≤ 1

2
(‖m̂(z)+‖2−‖m̂(z)−‖2).

Hence ‖m̂(z)+‖ ≥ √
2η.
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Now let K be a compact subset of E\(E0 ⊕ E−). We want to show that there
exists a constant CK such that ‖m̂(z)‖ ≤ CK, ∀z ∈ K. Since m̂(z) = m̂(z+/‖z+‖)
∀z ∈ K, we may assume that K ⊂ S+. Suppose by contradiction that there exists
a sequence {zn} ⊂ K such that ‖m̂(zn)‖ → ∞. Since m̂(zn) ∈ Ê(zn), let vn =
m̂(zn)

‖m̂(zn)‖ = snzn + v−n + v0
n, then 1 = ‖vn‖2 = s2

n + ‖v−n ‖2 + ‖v0
n‖2. Similar to (3.1)

we have
‖v−n ‖2 ≤ s2

n = 1 − ‖v−n ‖2 − ‖v0
n‖2.

Hence, by the same fashion as the last part of the proof of Lemma 3.2, we get a
contradiction.

Lemma 3.7. Under the assumptions of Theorem 1.1. Then Φ satisfies the Palais-
Smale condition on M.

Proof. Let {zn} ⊂ M a sequence such that Φ(zn) ≤ c for some c > 0 and
Φ′(zn) → 0. If {zn} is unbounded, we set wn = zn

‖zn‖ . Passing to a subsequence, we
may assume ‖zn‖ → ∞ and wn ⇀ w. If w �= 0, it follows from (2.1) that

(3.5) 0 ≤ Φ(zn)
‖zn‖2

=
1
2
(‖w+

n ‖2 − ‖w−
n ‖2) −

∫
R

R(t, zn)
|zn|2 |wn|2.

By w �= 0, then |zn| → ∞. By (R1), (R3) and Fatou’s lemma we have
∫

R

R(t, zn)
|zn|2 |wn|2 → ∞,

which implies 0 ≤ −∞. Hence w = 0. By (3.5) and (R1), we have ‖w+
n ‖ ≥ ‖w−

n ‖.
If w+

n → 0, then also w−
n → 0 and therefore

‖w0
n‖2 = 1 − ‖w+

n ‖2 − ‖w−
n ‖2 → 1.

Hence w0
n → w0 because dim E0 < ∞. So w �= 0, a contradiction. Therefore w+

n � 0
and ‖w+

n ‖ ≥ α for all n and some α > 0. It is clear that sw+
n ∈ Ê(zn) for all s > 0.

By Lemma 3.4 or (A2), we have

c ≥ Φ(zn) ≥ Φ(sw+
n ) ≥ 1

2
s2α2 − Ψ(sw+

n ).

Since w+
n ⇀ 0, we deduce from the Lemma 2.2 that w+

n → 0 in Lp for p ≥ 2.
Therefore, by (R2) we deduce that Ψ(sw+

n ) → 0. It then follows that c ≥ 1
2s2α2 for

all s > 0. This gives another contradiction if we take s large enough. Hence {zn} is
bounded.

By taking a subsequence if necessary we have zn ⇀ z in M. It follows from the
Lemma 2.2 that zn → z in Lp for p ≥ 2. Now we easily obtain from (R2)
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∫
R

(Rz(t, zn) − Rz(t, z))(z+ − z+
n )

≤
∫

R

|Rz(t, zn) − Rz(t, z)||z+ − z+
n |

≤
∫

R

(ε(|z| + |zn|) + Cε(|z|p−1 + |zn|p−1))|z+ − z+
n |

for any ε > 0 and some Cε > 0. By Hölder inequality we have
∫

R

(ε(|z|+ |zn|) + Cε(|z|p−1 + |zn|p−1))|z+ − z+
n | → 0.(3.6)

By (3.6) we have

o(1) = 〈Φ′(z) − Φ′(zn), z+ − z+
n 〉

= ‖z+ − z+
n ‖2 +

∫
R

(Rz(t, zn) − Rz(t, z))(z+ − z+
n )

= ‖z+ − z+
n ‖2 + o(1),

this implies z+
n → z+ as n → ∞. Similarly, we can prove that z−n → z− as n → ∞.

Since dim E0 < ∞, z0
n → z0 as n → ∞. So zn → z as n → ∞ in M.

We also need the following consequence of the Ekeland variational principle due
to [31]:

Lemma 3.8. Let E be a Banach space and let ϕ ∈ C1(E, R) be bounded below.
If ϕ satisfies the Palais-Smale condition at level c := infE ϕ, then there exists u ∈ E

such that ϕ′(u) = 0 and c = ϕ(u).

Proof of Theorem 1.1. We already know from Lemmas 3.1, 3.5 and 3.6 that
(A1) − (A3) are satisfied. By Corollary 2.5-(a) I ∈ C1(S+, R).

First, we show that I satisfies the Palais-Smale condition on S+. Let {zn} be a
Palais-Smale sequence for I . By Corollary 2.5-(b) {m(zn)} is a Palais-Smale sequence
for Φ on M. By Lemma 3.7 we have m(zn) → z up to a subsequence. Since m−1 is
continuous, it follows that zn → m−1(z). Hence I satisfies the palais-Smale condition
on S+. Particularly, I satisfies the Palais-Smale condition at level c = infS+ I . By
Corollary 2.5-(c) infS+ I = infM Φ > 0 and I is bounded below. By Lemma 3.8
infS+ I is a critical value of I . There then exists z0 ∈ S+ such that I(z0) = infS+ I

and I ′(z0) = 0. It follows from Corollary 2.5-(c) that m(z0) is a critical point of Φ
and Φ(m(z0)) = infM Φ. Hence m(z0) is a ground state solution of system (HS).
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