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STOKES’ THEOREM ON MANIFOLDS:
A KURZWEIL-HENSTOCK APPROACH

Varayu Boonpogkrong

Abstract. In this paper, Stokes’ theorem is proved by the Kurzweil-Henstock
approach. Sufficient conditions for the existence of the exterior derivative of a
k-form in R

n are given. Concepts of strong differentiability are used in sufficient
conditions.

1. INTRODUCTION

In mathematics papers and books, the usual definition of the divergence divF of
a vector field F = (F1, F2, . . . , Fn) in R

n is given by
∑n

i=1 ∂Fi/∂xi, whereas in
physics papers and books, it is given by an exterior derivative

(divF )(p) = lim
diam(I)→0

1
|I |
∫

∂I
F · n̂ ds,

where I is an interval containing the point p with surface ∂I and n̂ is the exterior
normal to ∂I . Recently, this physical definition of the divergence has been used by
Acker, Macdonald, Hubbard and Boonpogkrong; see [1, 3, 5, 9].
In this paper, we shall use the physical definition of an exterior derivative and

k-forms to prove Stokes’ theorem by the Kurzweil-Henstock approach.

2. PRELIMINARIES

For any fixed positive integer n, R
n denotes the n-dimensional Euclidean space.

Let S ⊂ R
n; the boundary and outer Lebesgue measure of S are denoted by ∂S and

|S| respectively. Let x ∈ R
n with x = (x1, x2, . . . , xn); the norm ‖x‖ is defined by
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‖x‖ =
∑n

i=1 |xi|. Let η > 0; B(x, η) or Bη(x) denote {y | ‖x − y‖ < η}. Let
�u1, �u2, . . . , �uk be k linearly independent vectors in R

n, and Pa(�u1, �u2, . . . , �uk) be a
k-parallelogram spanned by �u1, �u2, . . . , �uk, where the point a is one of the corners.
We say Pa(�u1, �u2, . . . , �uk) is anchored at the point a. We may use P (�u1, �u2, . . . , �uk)
instead of Pa(�u1, �u2, . . . , �uk). Let E be a k-parallelogram P (�u1, �u2, . . . , �uk) in R

n.
A partition P of E is a finite family of non-overlapping k-subparallelogram {Ii}m

i=1

whose union is E . We should stress that if Ii = P (�w1, �w2, . . . , �wk), then �uj and �wj

are parallel for all j. In this paper, a parallelogram is called an interval. A division
D of E is a finite family of point-interval pairs {(xi, Ii)}m

i=1 such that {Ii}m
i=1 is a

partition of E . Let δ(x) be a positive function defined on E . A point-interval pair
(x, I) is said to be Henstock δ-fine if x ∈ I ⊂ B(x, δ(x)). We remark that we may
assume that the point x is one of the corners of k-subparallelogram. Suppose x may
not belong to I . Then (x, I) is said to be McShane δ-fine. A division D of E is said
to be Henstock δ-fine if each point-interval pair in D is Henstock δ-fine. Similarly we
can define McShane δ-fine divisions.
In this section, we only consider n-parallelograms inR

n. Let E be an n-parallelogram
in R

n and f : E → R. Let D = {(xi, Ii)}m
i=1 be a δ-fine division (Henstock or Mc-

Shane) of E . We denote the Riemann sum
∑m

i=1 f(xi) |Ii| by S(f, D, δ), where |Ii|
is the volume of Ii. In this paper, a division D = {(xi, Ii)}m

i=1 will often be written
as D = {(x, I)}, in which (x, I) represents a typical point-interval pair in D. The
corresponding Riemann sum will be written as (D)

∑
f(x) |I |.

Definition 2.1. Let f : E → R. Then f is said to be Kurzweil-Henstock integrable
to A ∈ R on E if for each ε > 0, there exists a positive function δ on E such that
whenever D = {(x, I)} is a Henstock δ-fine division of E , we have

|S(f, D, δ)− A| ≤ ε.

We denote A as
∫
E f .

Definition 2.2. In the above Definition 2.1, if “a Henstock δ-fine division” is
replaced by “a McShane δ-fine division”. Then f is said to be MsShane integrable on
E . We denote A as (L)

∫
E f .

It is known that (i) f is McShane integrable on E if and only if f is Lebesgue
integrable on E; (ii) if f is McShane integrable on E , then f is Kurzweil-Henstock
integrable on E; see [7].
In this paper, we only consider Kurzweil-Henstock integrals.

3. INTEGRATION OF k-FORMS IN R
n

Now we shall consider k-parallelograms in R
n. Let β be a function that maps

P (�u1, �u2, . . . , �uk) to the (xi1, xi2, . . . , xik) component of the signed k-dimensional
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volume of P (�u1, �u2, . . . , �uk), which is given by the determinant of the k × k matrix
formed by selecting rows i1, i2, . . . , ik of the matrix whose columns are the vectors
�u1, �u2, . . . , �uk. The function β is denoted by dxi1 ∧ dxi2 ∧ . . .∧ dxik , which is called
an elementary k-form on R

n. It is known, see [5], that

k∑
j=1

(−1)j−1dxij(�vj)(dxi1 ∧ . . .∧ d̂xij ∧ . . .∧ dxik)(P (�v1, . . . , �̂vj, . . . , �vk))

= (dxi1 ∧ dxi2 ∧ . . .∧ dxik)(P (�v1, �v2, . . . , �vk)).

We use the notation (�v1, . . . , �̂vj, . . . , �vk) for (�v1, . . . , �vj−1, �vj+1, . . . , �vk).
Let us have F : P (�u1, �u2, . . . , �uk) → R and P (�w1, �w2, . . . , �wk) a k-subparallelogram

of P (�u1, �u2, . . . , �uk). We assume that �uj and �wj are parallel for all j. Hence the
signed volumes of (dxi1 ∧dxi2 ∧ . . .∧dxik )P (�w1, �w2, . . . , �wk) and (dxi1 ∧dxi2 ∧ . . .∧
dxik)P (�u1, �u2, . . . , �uk) are of the same sign. Let

h(x, P (�w1, �w2, . . . , �wk)) = F (x) [(dxi1 ∧ dxi2 ∧ . . .∧ dxik)P (�w1, �w2, . . . , �wk)] .

Then h is a point-parallelogram function. Using the Kurzweil-Henstock approach, we
can define an integral of h over P (�u1, �u2, . . . , �uk),∫

P (�u1,�u2,...,�uk)
F (x)(dxi1 ∧ dxi2 ∧ . . .∧ dxik),

denoted by
∫
P (�u1,�u2,...,�uk) h, called the Kurzweil-Henstock integral of h. More precisely,

for every ε > 0, there exists δ(x) > 0 such that whenever {(xj, P (�uj
1, . . . , �u

j
k))}q

j=1 is
a Henstock δ-fine division of P (�u1, �u2, . . . , �uk), we have∣∣∣∣ q∑

j=1

F (xj)(dxi1 ∧ dxi2 ∧ . . .∧ dxik)P (�uj
1, . . . , �u

j
k)−

∫
P (�u1,�u2,...,�uk)

h

∣∣∣∣ ≤ ε.

We may assume that xj is one of the corners of P (�uj
1, �u

j
2, . . . , �u

j
k).

In the above, F (x)(dxi1 ∧dxi2 ∧ . . .∧dxik) or briefly F (dxi1 ∧ dxi2 ∧ . . .∧ dxik)
is also called an elementary k-form on R

n, denoted by ϕ in the following.
In the following, let I = {1, 2, . . . , k + 1}, Ij = I \ {j}, then V (I) denotes

(�v1, �v2, . . . , �vk+1) and V (Ij) denotes (�v1, . . . , �̂vj, . . . , �vk+1). Let I∗ = {i1, i2, . . . , ik},
then dX(I∗) denotes dxi1 ∧ dxi2 ∧ . . .∧ dxik and dX(I∗j ) denotes dxi1 ∧ . . .∧ d̂xij ∧
. . .∧ dxik .
The oriented boundary ∂Pa(V (I)) of an oriented (k + 1)-parallelogram Pa(V (I))
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is composed of its 2(k + 1) faces, each of the form Pa+�vi
(V (Ii)) or Pa(V (Ii)). Then∫

∂Pa(V (I))

ϕ

=
k+1∑
i=1

(−1)i−1

∫
Pa+�vi

(V (Ii))−Pa(V (Ii))
ϕ

=
k+1∑
i=1

(−1)i−1

∫
Pa(V (Ii))

(F (x + �vi) − F (x))(dxi1 ∧ dxi2 ∧ . . .∧ dxik).

(1)

In this paper, for convenience, x + �v T is always written as x + �v.

4. EXTERIOR DERIVATIVE OF A k-FORM IN R
n

To understand the exterior derivative, first we consider the directional derivative of
a function F : R

n → R, where F is called a 0-form. Let x ∈ R
n and �v a vector in R

n

be given. We define dF as follows:

(dF )(x, �v) = lim
h→0

F (x + h�v) − F (x)
h

.

It is well-known that if �v = (v1, v2, . . . , vn)T , then

lim
h→0

F (x + h�v)− F (x)
h

= [DF (x)] · �v =
n∑

j=1

(∂jF (x))vj.

We write

dF =
n∑

j=1

(∂jF )(dxj)

and (dF )(x, �v) =
∑n

j=1(∂jF (x))(dxj(�v)) =
∑n

j=1(∂jF (x))vj .
dF =

∑n
j=1(∂jF )(dxj) is called the exterior derivative of F and dF is called a

1-form.
Now we shall define the exterior derivative dϕ of an elementary k-form ϕ, which

is given by
ϕ = F (dxi1 ∧ dxi2 ∧ . . .∧ dxik) .

Note that ϕ is a point-parallelogram function ϕ(x, P (�w1, �w2, . . . , �wk)) =
F (x) [(dxi1 ∧ dxi2 ∧ . . . ∧ dxik)P (�w1, �w2, . . . , �wk)].
Let x ∈ R

n and a (k+1)-parallelogram P (�v1, �v2, . . . , �vk+1) be given. The exterior
derivative dϕ is defined as follows

dϕ = lim
Px(U (I))⊂B(x,δ(x))

δ(x)→0

∫
∂Px(U (I)) ϕ

SV (Px(U(I)))
,
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where �uj = hj�vj , U(I) = (�u1, �u2, . . . , �uk+1), I = {1, 2, . . . , k + 1}, SV (Px(U(I)))
is the signed (k+1)-dimensional volume of Px(U(I)) and Px(V (I)) = Px(�v1, �v2, . . . ,
�vk+1).

The exterior derivative dϕ is a point-parallelogram function and the parallelograms
here are (k + 1)-parallelograms. More precisely, for each ε > 0, there exists δ(x) > 0
such that for any (k + 1)-parallelogram Px(U(I)) ⊂ B(x, δ(x)), we have∣∣∣∣∣

∫
∂Px(U (I))

ϕ − (dϕ)(x, Px(U(I)))

∣∣∣∣∣< ε|SV (Px(U(I)))|.

Theorem 4.2 after Definition 4.1 shows that dϕ = dF ∧ dxi1 ∧ dxi2 ∧ . . .∧ dxik ,
which is a (k + 1)-form. The (k + 1)-form dϕ takes point-(k + 1)-parallelogram
(x, Px(U(I))) and returns a number.
The concept of strong differentiability used in [3] shall be used again in this section.

Definition 4.1. Let F : R
n → R. Then F is said to be strongly Henstock differen-

tiable at x with respect to a (k + 1)-parallelogram P (�v1, �v2, . . . , �vk+1) with derivative
A(x) if (i) F is classical (Fréchet) differentiable at x; (ii) for each ε > 0, there exists
δ(x) > 0 such that for every (k + 1)-parallelogram Px(U(I)) ⊂ B(x, δ(x)) and, for
i = 1, 2, . . . , k + 1, z ∈ Px(U(Ii)), we have

|F (z + �ui)− F (z) − A(x) · (�ui)| ≤ ε ‖�ui‖,
where Px(U(I)) is given in the definition of dϕ.

It is clear that
A = (∂1F, ∂2F, . . . , ∂nF ).

Suppose Px(V (I)) is replaced by P (V (I)), where P (V (I)) may not be anchored
at the point x. Then F is said to be strongly McShane differentiable at x.
An example given in [3, section 8, remark (viii)] shows that there exists a function

F which is strongly Henstock differentiable, but is not C1.

Theorem 4.2. Let F : R
n → R be continuous and ϕ = F (dxi1 ∧dxi2∧. . .∧dxik).

Suppose that F is strongly Henstock differentiable at x with respect to a (k + 1)-
parallelogram P (�v1, �v2, . . . , �vk+1). Then the exterior derivative dϕ exists and dϕ =
dF ∧ dxi1 ∧ dxi2 ∧ . . . ∧ dxik , which is a (k + 1)-form.

Proof. Let I = {1, 2, . . . , k + 1} and V (I) = (�v1, �v2, . . . , �vk+1). Let �uj = hj�vj ,
where 0 < hj ≤ 1, j = 1, 2, . . . , k + 1 and U(I) = (�u1, �u2, . . . , �uk+1). By definition,

dϕ = lim
Px(U (I))⊂B(x,δ(x))

δ(x)→0

∫
∂Px(U (I)) ϕ

SV (Px(U(I)))
.
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We may assume that SV (Px(U(I))) is always positive in this proof.
Now, we shall show that

lim
Px(U (I))⊂B(x,δ(x))

δ(x)→0

∫
∂Px(U (I)) ϕ

SV (Px(U(I)))
= dF ∧ dxi1 ∧ dxi2 ∧ . . .∧ dxik .

First, consider∫
Px(U (Ij))

(F (z + �uj) − F (z))(dxi1 ∧ dxi2 ∧ . . .∧ dxik),

whereU(Ij) = (�u1, . . . , �̂uj, . . . , �uk+1). By given, F is strongly Henstock differentiable
at x. Hence we have, for any z ∈ Px(U(Ij))

|F (z + �uj) − F (z) − A(x) · �uj | ≤ ε‖�uj‖,
where A = (∂1F, ∂2F, . . . , ∂nF ). Thus

|(F (z + �uj) − F (z))(dxi1 ∧ dxi2 ∧ . . . ∧ dxik)
− (A(x) · �uj)(dxi1 ∧ dxi2 ∧ . . . ∧ dxik)|

≤ ε‖�uj‖|(dxi1 ∧ dxi2 ∧ . . . ∧ dxik)|.
Hence∣∣∣∣ ∫

Px(U (Ij))
(F (z + �uj) − F (z))(dxi1 ∧ dxi2 ∧ . . .∧ dxik)

− (A(x) · �uj)
∫

Px(U (Ij))
(dxi1 ∧ dxi2 ∧ . . .∧ dxik)

∣∣∣∣
≤ ε ‖�uj‖

∫
Px(U (Ij))

|(dxi1 ∧ dxi2 ∧ . . .∧ dxik)|.

Note that if �uj = (uj1, . . . , ujn)T , then

A(x) · �uj =
n∑

l=1

∂lF (x)uj l
=

n∑
l=1

∂lF (x)(dxl)(�uj).

Thus
k+1∑
j=1

(−1)j−1(A(x) · �uj)(dxi1 ∧ dxi2 ∧ . . .∧ dxik)Px(U(Ij))

=
k+1∑
j=1

(−1)j−1

[
n∑

l=1

∂lF (x)(dxl)(�uj)

]
(dxi1 ∧ dxi2 ∧ . . .∧ dxik)Px(U(Ij))

=(dF ∧ dxi1 ∧ dxi2 ∧ . . .∧ dxik)Px(U(I)).
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Recall that dF ∧ dxi1 ∧ dxi2 ∧ . . . ∧ dxik is the wedge product of dF and dxi1 ∧
dxi2 ∧ . . .∧ dxik .
Similarly, we have

k+1∑
j=1

(−1)j−1‖�uj‖|(dxi1 ∧ dxi2 ∧ . . .∧ dxik)Px(U(Ij))|

=
k+1∑
j=1

(−1)j−1‖hj�vj‖|(dxi1 ∧ dxi2 ∧ . . . ∧ dxik)Px(U(Ij))|

=
k+1∑
j=1

(−1)j−1hj‖�vj‖|(dxi1 ∧ dxi2 ∧ . . . ∧ dxik)(h1h2 · · · ĥj · · ·hk+1)Px(V (Ij))|

=(h1h2 · · ·hk+1)
k+1∑
j=1

(−1)j−1‖�vj‖|(dxi1 ∧ dxi2 ∧ . . .∧ dxik)Px(V (Ij))|

= (h1h2 · · ·hk+1)Q(V (I))

= (h1h2 · · ·hk+1)|SV (Px(V (I)))| Q(V (I))
|SV (Px(V (I)))|

= |SV (Px(U(I)))|R(V (I)).

In the above, Q(V (I)) and R(V (I)) are defined accordingly and R(V (I)) is a fixed
value since Px(V (I)) is fixed. In the above, we use the fact that �uj = hj�vj and
h1h2 · · ·hk+1SV (Px(V (I))) = SV (Px(U(I))). Applying equation (1) with Pa(V (I))
replaced by Px(U(I)) and I = {1, 2, . . . , k + 1}, we have∣∣∣∣ ∫

∂Px(U (I))
ϕ − (dF ∧ dxi1 ∧ dxi2 ∧ . . .∧ dxik)Px(U(I))

∣∣∣∣
≤ε R(V (I))|SV (Px(U(I)))|

whenever Px(U(I)) ⊂ B(x, δ(x)).
Thus

dϕ = dF ∧ dxi1 ∧ dxi2 ∧ . . .∧ dxik .

5. STOKES’ THEOREM IN R
n

A similar proof of the following theorem is given in [3, 9]. The proof is intuitive
and natural.

Theorem 5.1. Let E = P (�v1, �v2, . . . , �vk+1) be a (k + 1)-parallelogram. Let ϕ be
a k-form in R

n. Suppose the exterior derivative dϕ exists on a (k + 1)-parallelogram
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E with respect to (k + 1)-parallelogram P (�w1, �w2, . . . , �wk+1) where �vi and �wi are
parallel for all i. Then dϕ is Kurzweil-Henstock integrable on E and∫

E
dϕ =

∫
∂E

ϕ.

Proof. Suppose the exterior derivative dϕ exists on E . Hence for each x ∈ E and
each ε > 0, there exists δ(x) > 0 such that whenever an (k + 1)-parallelogram I with
x ∈ I ⊂ B(x, δ(x)), we have ∣∣∣∣dϕ(I)−

∫
∂I

ϕ

∣∣∣∣ ≤ ε |I |.

In the above, I is of the form P (�w1, �w2, . . . , �wk+1) and more precisely, dϕ(I)
should be written as dϕ(x, I).
Let D = {(x, I)} be a Henstock δ-fine division of E . Then we have∣∣∣∣(D)

∑{
dϕ(I)−

∫
∂I

ϕ

}∣∣∣∣ ≤ ε (D)
∑

|I |.

Therefore ∣∣∣∣(D)
∑

dϕ(I)−
∫

∂E
ϕ

∣∣∣∣ ≤ ε |E|.

Consequently dϕ is Kurzweil-Henstock integrable on E and∫
E

dϕ =
∫

∂E
ϕ.

6. INTEGRAL ON MANIFOLDS

The Kurzweil-Henstock integration on Manifolds has been studied in [2, 3]. For
easy reference, we give a brief introduction here.
In this section, H

n denotes the upper half-space in R
n, which consists of those

(x1, x2, ..., xn) ∈ R
n for which xn ≥ 0. A non-empty subset M of R

n is said to be
a k-manifold if for each x ∈ M , there exist an open subset V of M containing x, an
open subset U of R

k (or H
k) and a homeomorphism mapping α : U → V , i.e., α is a

bijection and both α and α−1 are continuous, and Dα(y) has rank k for each y ∈ U ,

where Dα =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂α1

∂y1

∂α1

∂y2
· · · ∂α1

∂yk
∂α2

∂y1

∂α2

∂y2
· · · ∂α2

∂yk
...

... . . . ...
∂αn

∂y1

∂αn

∂y2
· · · ∂αn

∂yk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and α(y) = (α1(y), α2(y), . . . , αn(y)),
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y = (y1, y2, ..., yk). Such an α is called a chart. If the mapping α : U → V is a
C1-diffeomorphism, i.e., α is a bijection and both α and α−1 are of C1-class, then
M is said to be a differentiable k-manifold. Let M be a manifold. A finite collection
Θ = {αj}m

j=1 of charts, where αj : Uj → Vj , is said to be an atlas if the union
of all Vj is M . Let α : U → V be a chart and I ⊆ U be a k-parallelogram in
R

k. Let Iα = α(I), which is called a tile. Here Iα can be viewed as a distorted
k-parallelogram.
A partial partition P = {Iαsi

i }m
i=1 of M is a finite collection of non-overlapping

distorted k-parallelogram. If the union of {Iαsi
i }m

i=1 is M , then P is said to be a
partition of M . A partial division D of M is a finite collection of point-distorted
k-parallelogram pairs {(xi, I

αsi
i )}m

i=1 such that {I
αsi
i }m

i=1 is a partial partition of M .
If {Iαsi

i }m
i=1 is a partition of M , then D is said to be a division of M .

Let δ be a positive function on M and x ∈ M . A point-distorted k-parallelogram
pair (x, Iα) is said to be Henstock δ-fine if x ∈ Iα ⊂ B(x, δ(x)). A partial division
D of M is said to be a Henstock δ-fine partial division of M if each point-distorted
k-parallelogram pair inD is Henstock δ-fine. If, in addition,D is a division ofM , then
D is said to be a Henstock δ-fine division of M . Similarly, we can define McShane
δ-fine and McShane δ-fine division, see Section 2.
Let α = (α1, α2, . . . , αn) be a chart and x ∈ M with α(y) = x. Let �vi =

(∂iα1(y), ∂iα2(y), . . . , ∂iαn(y))T and �ui = hi�vi, where 0 < hi ≤ 1. Let J =
{1, 2, . . . , k}, V(J) = (�v1, �v2, . . . , �vk) and U(J) = (�u1, �u2, . . . , �uk). Then the volume
of Iα can be approximated by the volume of the k-parallelogram Px(U(J)) induced
by U(J). The volume of Px(U(J)) is given by[

det
(
[Dα(y)]T · Dα(y)

)] 1
2 |I |.

A k-form ϕ = F (dxj1 ∧ dxj2 ∧ . . . ∧ dxjk
) defined on M is said to be α pa-

rameterisable if the closure of suppF can be parameterised by one chart α, i.e.,
α : U → V ⊃ suppF . In the following, suppF is denoted by suppϕ.

Definition 6.1. Let M be a compact differentiable k-manifold with atlas Θ. An
α parameterisable k-form ϕ defined on M is said to be KH-integrable to real number
A on M associated with chart α if for every ε > 0, there exists a positive function δ
defined on M such that for every Henstock δ-fine partial division D = {(xi, I

α
i )}m

i=1

of M covering suppϕ with xi ∈ suppϕ, for each i, we have

|S(ϕ, δ, D)− A| ≤ ε,

where

S(ϕ, δ, D) =
m∑

i=1

F (xi)(dxj1 ∧ dxj2 ∧ . . .∧ dxjk
)Pxi(U

i(J))
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and Pxi(Ui(J)) is the k-parallelogram corresponding to Iα
i as mentioned before Defi-

nition 6.1. We denote A by (KH)
∫
M ϕ.

The value of the integral does not depend on α, more precisely, if a k-form ϕ is
KH-integrable on M with respect to a chart α and another chart β, then the values of
these two integrals are equal, see [3]. Hence the integral value is uniquely determined.
Independence of the integral with respect to a chart is not required. Furthermore,
if F is continuous on M , then ϕ is KH-integrable on M . We remark that in [3]
Corollary 1, the claim that f is HK-integrable with respect to chart α if and only if f
is HK-integrable with respect to any other chart α′ is not correct.
Let M be a compact differentiable k-manifold with an atlas Θ. Let α : U → V

be a chart in the atlas Θ and ϕ = F (dxj1 ∧ dxj2 ∧ . . . ∧ dxjk
) be a k-form defined

on M . Then ϕ is said to be KH-integrable on V if FχV (dxj1 ∧ dxj2 ∧ . . . ∧ dxjk
),

denoted by ϕχV , is KH-integrable on M . Suppose ϕ is KH-integrable on V . Then,
(Fω)(dxj1 ∧ dxj2 ∧ . . . ∧ dxjk

), denoted by ϕω, is KH-integrable on V if ω is of
class C∞ and suppω ⊆ V . Here we use the fact that if g is Kurzweil-Henstock
integrable on a compact interval E∗ ⊆ R

k and ω : E∗ → R is of class C∞, then gω

is Kurzweil-Henstock integrable on E∗; see [6, 8].
In general, a δ-fine division may not exist on a compact manifold with more than

one chart. For example, let M be a unit sphere in R
3 and U be an open unit disk

in R
2. Let α1 be a function mapping the open unit disk U to the upper half of

the unit sphere M defined by α1(t1, t2) = (t1, t2,
√

1 − t21 − t22); and α2, . . . , α6 be
functions mapping the open unit disk U to the lower, right, left, front and back half
of the unit sphere M defined in a similar way. Clearly M is a compact 2-manifold
with atlas Θ = {αj}6

j=1. Suppose a δ-fine division exists on M . Then there exist
two nonoverlapping distorted intervals from different charts such that their common
points form a non-degenerated curve in R

3. Suppose that the two distorted intervals
are α1(I) and α5(I). Then (t1, t2,

√
1 − t21 − t22) = (

√
1 − s2

1 − s2
2, s1, s2) on the

common curve. We may assume that s1 and t1 are constants; s2 and t2 are variables.
Then t2 = s1 and s2 =

√
1 − t21 − t22 =

√
1 − t21 − s2

1, i.e., s2 and t2 are also
constants. Thus the two distorted intervals have only one common point. It leads to
a contradiction. Therefore a δ-fine division does not exist on M . So we shall use a
partition of unity in the following Definition 6.2.
A partition of unity {ωj}m

j=1, where each ωj is of class C∞ (see [4, p. 298]) and
suppωj = suppωj , on a manifold with an atlas Θ = {αj}m

j=1 is said to be dominated
by Θ if for each j, suppωj ⊂ Vj , where αj : Uj → Vj .

Definition 6.2. Let M be a compact differentiable k-manifold and Θ = {αj}m
j=1

an atlas of M with αj : Uj → Vj . Let {ωj}m
j=1 be a partition of unity dominated

by atlas Θ on M . Suppose that a k-form ϕ is KH-integrable on each Vj. Then the
KH-integral of ϕ on M is defined by
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(KH)
∫

M

ϕ =
m∑

j=1

(KH)
∫

M

ϕωj.

Suppose dϕ is KH-integrable on M and ϕ is KH-integrable on ∂M . Using the
Henstock Lemma; see [8, p. 81] or following the proof of Lemma 3 in [3], we can
prove that for each ε > 0, there exists δ(x) > 0 such that whenever D = {(x, Iα)} is
a Henstock δ-fine division of M , we have

(2) (D)
∑

|dϕ(x, Iα) − dϕ(x, Px(U(J)))| < ε.

(3) (D)
∑

|
∫

∂Px(U(J))

ϕ −
∫

∂Iα

ϕ| < ε.

7. STOKES’ THEOREM ON MANIFOLDS

In this section, we consider compact oriented differentiable (k + 1)-manifolds M

with atlas Θ and boundary ∂M in R
n. It is known that the boundary ∂M is a

k-dimensional manifold without boundary. We assume that the atlas Θ is orientation-
preserving.
Let ϕ = F (dxj1 ∧ dxj2 ∧ . . . ∧ dxjk

) be a k-form in R
n, where F is continuous

and suppose that the exterior derivative dϕ exists in the following sense:
Let α = (α1, α2, . . . , αn) be a chart, x ∈ M with α(y) = x and �vi = (∂iα1(y),

∂iα2(y), . . . , ∂iαn(y))T . Let J = {1, 2, . . . , k + 1}, V(J) = (�v1, �v2, . . . , �vk+1). Let
�ui = hi�vi, where 0 < hi ≤ 1, i = 1, 2, . . . , k + 1 and U(J) = (�u1, �u2, . . . , �uk+1).

dϕ = lim
Px(U(J))⊂B(x,δ(x))

δ(x)→0

∫
∂Px(U(J)) ϕ

SV (Px(U(J)))
.

We stress that when taking limit, the chart is fixed. Recall that SV (Px(U(J))) is
the signed (k + 1)-dimensional volume of Px(U(J)).
More precisely, for each ε > 0, there exists δ(x) > 0 such that when Px(U(J)) ⊂

B(x, δ(x)), we have∣∣∣∣∣dϕ(x, Px(U(J)))−
∫

∂Px(U(J))
ϕ

∣∣∣∣∣ ≤ ε |SV (Px(U(J)))| .

Lemma 7.1. Let M be a compact oriented differentiable (k + 1)-manifold and
ϕ = F (dxj1 ∧dxj2 ∧ . . .∧dxjk

) a k-form in R
n, where F is continuous. Suppose that

the exterior derivative dϕ exists with respect to the chart α and dϕ is α-parametrisable.
Then dϕ is Kurzweil-Henstock integrable on M and∫

M
dϕ =

∫
∂M

ϕ.
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Proof. Assume the chart α : U → V . Let ε > 0. Then, by the definition of dϕ,
there exists δ(x) > 0 on V such that when Px(U(J)) ⊂ B(x, δ(x)), we have∣∣∣∣∣dϕ(x, Px(U(J))) −

∫
∂Px(U(J))

ϕ

∣∣∣∣∣ ≤ ε |SV (Px(U(J)))| .

We may assume that B(x, δ(x)) ⊂ V and inequality (2) and (3) hold. Let D =
{(x, Iα)} be a Henstock δ-fine partial division covering suppdϕ with x ∈ suppdϕ.
We may assume that D is a division of M , since if Iα∩ suppdϕ = ∅, then ∫Iα dϕ = 0
and

∫
∂Iα ϕ = 0.
Therefore∣∣∣∣(D)

∑
dϕ (x, Iα)−

∫
∂M

ϕ

∣∣∣∣
=
∣∣∣∣(D)

∑
dϕ(x, Iα) − (D)

∑∫
∂Iα

ϕ

∣∣∣∣
≤
∣∣∣(D)

∑
(dϕ(x, Iα) − dϕ(x, Px(U(J))))

∣∣∣
+

∣∣∣∣∣(D)
∑(∫

∂Px(U(J))
ϕ −

∫
∂Iα

ϕ

)∣∣∣∣∣
+

∣∣∣∣∣(D)
∑(

dϕ(x, Px(U(J)))−
∫

∂Px(U(J))
ϕ

)∣∣∣∣∣
≤
∣∣∣(D)

∑
(dϕ(x, Iα) − dϕ(x, Px(U(J))))

∣∣∣
+

∣∣∣∣∣(D)
∑(∫

∂Px(U(J))
ϕ −

∫
∂Iα

ϕ

)∣∣∣∣∣+ ε (D)
∑

|SV (Px(U(J)))|

≤ 2ε + ε β,

where β is a constant.
Hence ∫

M
dϕ =

∫
∂M

ϕ.

Theorem 7.2. Let M be a compact oriented differentiable (k + 1)-manifold in
R

n with atlas Θ and ϕ = F (dxj1 ∧ dxj2 ∧ . . . ∧ dxjk
) a k-form in R

n, where F is
continuous. Suppose that the exterior derivative dϕ and d(ϕγ) exist on M for any
γ ∈ C∞ with respect to the atlas Θ. Then∫

M
dϕ =

∫
∂M

ϕ.
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Proof. Let {γi}m
i=1 be a partition of unity dominated by atlas Θ = {αi}m

i=1 with
αi : Ui → Vi.
Then, for each i, suppϕγi ⊆ suppγi. Applying Lemma 7.1 to ϕγi, which is

αi-parametrisable with αi : Ui → Vi, we have∫
M

d(ϕγi) =
∫

∂M
ϕγi.

Note that dϕ =
∑m

i=1 d(ϕγi). Thus,∫
M

dϕ =
m∑

i=1

∫
M

d(ϕγi) =
m∑

i=1

∫
∂M

ϕγi =
∫

∂M

ϕ.

The strong Henstock differentiability of F can be defined similarly on Manifold as
in Definition 4.1 for an n-dimensional space.

Theorem 7.3. Let M be a compact oriented differentiable (k + 1)-manifold in
R

n with atlas Θ and ϕ = F (dxj1 ∧ dxj2 ∧ . . . ∧ dxjk
) a k-form in R

n, where F is
continuous. Suppose that F is strongly Henstock differentiable on M with respect to
(k + 1)-parallelograms induced by the atlas Θ. Then the exterior derivative dϕ exists
with respect to the atlas Θ and dϕ = dF ∧ dxi1 ∧ dxi2 ∧ . . .∧ dxik on M .

The proof of Theorem 7.3 is similar to that of Theorem 4.2.
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