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A LEWENT TYPE DETERMINANTAL INEQUALITY

Minghua Lin

Abstract. We prove a Lewent type determinantal inequality: Let Ai, i = 1, . . . , n,
be (strictly) contractive trace class operators over a separable Hilbert space. Then∣∣∣∣∣∣∣∣∣∣

det

⎛
⎜⎜⎜⎜⎝

I +
n∑

i=1

λiAi

I −
n∑

i=1

λiAi

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
≤

n∏
i=1

det
(

I + |Ai|
I − |Ai|

)λi

,

where
∑n

i=1 λi = 1, λi ≥ 0, i = 1, . . . , n, are (scalar) weights and |A| =
(A∗A)1/2.

1. MAIN RESULTS

All the operators considered in this paper are trace class operators over a separable
Hilbert space except I , the identity operator. The (Fredholm) determinant of I + A is
thus well defined and the trace functional of A is denoted by trA. A positive operator
A (written A ≥ 0) has a unique positive square root B with B2 = A; we write
B = A1/2. For two self-adjoint operators A, B, we say A ≥ B whenever A − B ≥ 0.
For any operator A, one defines its absolute value |A| = (A∗A)1/2; A is (strictly)
contractive if ‖A‖ < 1, such an A is called a contraction.
We start with an elegant result as part of the motivation for this article.

Theorem 1. Let A, B be trace class operators. Then
| det(I + A + B)| ≤ det(I + |A|) det(I + |B|).(1.1)

This interesting inequality was discovered first by Grothendieck (unpublished; see
[3]) and reproved many times; see, for example, [9, 10, 7]. A quick application of
Bernoulli’s inequality gives, for contractions A, B and λ ∈ [0, 1],

(1.2)
det(I + |A|)λ det(I + |B|)1−λ ≤ det(I + λ|A|) det(I + (1 − λ)|B|);
det(I − |A|)λ det(I − |B|)1−λ ≤ det(I − λ|A|) det(I − (1 − λ)|B|).
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If A, B are positive contractions, then using a result of Ky Fan [4, p. 467] gives

(1.3)
det(I + A)λ det(I + B)1−λ ≤ det(I + λA + (1− λ)B);

det(I − A)λ det(I − B)1−λ ≤ det(I − λA− (1− λ)B).

In view of (1.1), (1.3) is stronger than (1.2) in the positive case.
The following numerical inequality is due to Lewent [6]; see also [5]:

(1.4)
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,

where xi ∈ [0, 1) and
∑n

i=1 λi = 1, λi ≥ 0, i = 1, . . . , n, are (scalar) weights.
This paper proves an analogue of (1.4) for determinant functional.

Theorem 2. Let Ai, i = 1, . . . , n, be contractive trace class operators. Then∣∣∣∣∣∣∣∣∣∣
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where
∑n

i=1 λi = 1, λi ≥ 0, i = 1, . . . , n.

Here I+A
I−A is understood as (I + A)(I − A)−1, or equivalently, (I − A)−1(I + A)

provided the inverse exists.

Remark 3. When Ai (i = 1, . . . , n) in the previous theorem are moreover self-
adjoint, a much more general result has been stated in [2, Theorem 3.3].

Theorem 2 is essentially equivalent to the following, though the latter looks stronger
in the form.

Theorem 4. Let Ai, i = 1, . . . , n, be contractive trace class operators. Then
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where
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i=1 λi = 1, λi ≥ 0, i = 1, . . . , n.
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2. THE PROOF

The proof of Theorem 2 relies on a few auxiliary results.

Proposition 5. Let A, B be positive trace class operators with A ≥ B and C be
any self-adjoint trace class operator. Then tr(AC)2 ≥ tr(BC)2.

Proof. Note that if X, Y, Z are positive trace operators with X ≥ Y , then
Z1/2XZ1/2 ≥ Z1/2Y Z1/2 and so trXZ = trZ1/2XZ1/2 ≥ trZ1/2Y Z1/2 = trY Z,
i.e., trXZ ≥ trY Z. Thus

tr(AC)2 = tr A(CAC) ≥ trB(CAC) = trA(CBC) ≥ trB(CBC) = tr(BC)2.

The next lemma is a special case of Theorem 2. As in Remark 3, Lemma 6 below
is also an implication of [2, Theorem 3.3], nevertheless, we provide a self-contained
proof here.

Lemma 6. Let Ai, i = 1, . . . , n, be positive contractions and trace class. Then

det
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where
∑n

i=1 λi = 1, λi ≥ 0, i = 1, . . . , n.

Proof. It suffices to show the case where Ai, i = 1, . . . , n, are positive (semi)
definite matrices, the general case is via limiting arguments. The alleged inequality is
equivalent to showing that f(A) = ln det(I + A) − ln det(I − A) is convex over the
set of positive (semi)definite contractions.
The following claim is readily verified.

Claim. A real-valued function g is convex over the convex set S if and only if
∀x, y ∈ S (x �= y),

φ(t) ≡ g(y + t
x − y

‖x − y‖)

is convex over t ∈ [0, ‖x− y‖].
Suppose U = U(t), V = V (t) are matrices of the same size, we have the known

formulae
∂(UV )

∂t
= U

∂V

∂t
+

∂U

∂t
V ;
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and if U is invertible, then

∂ ln det U

∂t
= tr

∂U

∂t
U−1,

∂U−1

∂t
= −U−1 ∂U

∂t
U−1.

Now let X, Y (X �= Y ) be positive definite contractions, denoted by M = (X −
Y )/‖X−Y ‖. Then Y + tM = t

‖X−Y ‖X +(1− t
‖X−Y ‖ )Y is again a positive definite

contraction for t ∈ [0, ‖X − Y ‖]. Define

φ(t) = f(Y + tM) = lndet(I + Y + tM) − ln det(I − (Y + tM)),

t ∈ [0, ‖X − Y ‖]. Then

φ′(t) = tr[(I + Y + tM)−1M ] + tr[(I − (Y + tM))−1M ]

and
φ′′(t) = − tr[(I + Y + tM)−1M ]2 + tr[(I − (Y + tM))−1M ]2.

As (I−(Y + tM))−1≥(I+Y +tM)−1, by Proposition 5, we have φ′′(t)≥0. Then the
Claim tells us f(A) is convex over the set of positive (semi)definite contractions.

Let Φ be a map between C∗-algebras. We say that Φ is 2-positive if whenever the

2 × 2 operator matrix
[

A B

B∗ C

]
≥ 0 then so is

[
Φ(A) Φ(B)
Φ(B∗) Φ(C)

]
≥ 0. It is clear that

any Liebian function [11, p. 70] is 2-positive.
The following identity carries the name of L.-K. Hua (see, for example, [8]),

(I−B∗B)−(I−B∗A)(I−A∗A)−1(I−A∗B) = −(A−B)∗(I−AA∗)−1(A−B),

where A, B are contractions.
An application of a result of Schur [4, p. 472] reveals that[

(I − A∗A)−1 (I − B∗A)−1

(I − A∗B)−1 (I − B∗B)−1

]
≥ 0.

Exchanging the role of A, B and their adjoints gives[
(I − AA∗)−1 (I − BA∗)−1

(I − AB∗)−1 (I − BB∗)−1

]
≥ 0.(2.2)

Proposition 7. Φ(t) = (1− t)−1 is 2-positive over the contractions.
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Proof. If A, B are contractions, so are A∗B, B∗A. With (2.2), we have[
(I − A∗A)−1 (I − A∗B)−1

(I − B∗A)−1 (I − B∗B)−1

]

=

[
I + A∗(I − AA∗)−1A I + A∗(I − BA∗)−1B

I + B∗(I − AB∗)−1A I + B∗(I − BB∗)−1B

]

=
[
I I
I I

]
+ (A ⊕ B)∗

[
(I − AA∗)−1 (I − BA∗)−1

(I − AB∗)−1 (I − BB∗)−1

]
(A ⊕ B) ≥ 0.

Here we use A⊕B to denote the 2×2 operator matrix
[
A 0
0 B

]
. As we can identify any

positive 2×2 operator matrix with the form
[
X∗X X∗Y
Y ∗X Y ∗Y

]
, the conclusion follows.

Remark 8. The above argument can also be found in [1, Theorem 1.1].

Proposition 9. Φ(t) = (1 + t)(1− t)−1 is 2-positive over the contractions.

Proof. From the proof of previous proposition, we have (1− t)−1−1 is also 2-po-
sitive over the contractions. The proof is complete by noting Φ(t) = 2(1− t)−1 −1.

Lemma 10. Let Ai, i = 1, . . . , n, be contractive trace class operators. Then for
any Liebian function f ,

(2.3)
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where
∑n

i=1 λi = 1, λi ≥ 0, i = 1, . . . , n.

Proof. An application of the polar decomposition reveals
[|A∗

i | Ai

A∗
i |Ai|

]
≥ 0 for
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≥ 0.

The conclusion follows from Proposition 9.
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Proof of Theorem 2. Determinant functional is a Liebian function, so by Lemma 10,
we have∣∣∣∣∣∣∣∣∣∣

det

⎛
⎜⎜⎜⎜⎝

I +
n∑

i=1

λiAi

I −
n∑

i=1

λiAi

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣

2

≤ det

⎛
⎜⎜⎜⎜⎝

I +
n∑

i=1

λi|Ai|

I −
n∑

i=1

λi|Ai|

⎞
⎟⎟⎟⎟⎠det

⎛
⎜⎜⎜⎜⎝

I +
n∑

i=1

λi|A∗
i |

I −
n∑

i=1

λi|A∗
i |

⎞
⎟⎟⎟⎟⎠

≤
n∏

i=1

det
(

I + |Ai|
I − |Ai|

)λi n∏
i=1

det
(

I + |A∗
i |

I − |A∗
i |

)λi

=
n∏

i=1

det
(

I + |Ai|
I − |Ai|

)2λi

,

in which the second inequality is by Lemma 6 and the third equality is by the fact
det(I + |A|) = det(I + |A∗|).
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