TAIWANESE JOURNAL OF MATHEMATICS
Vol. 17, No. 4, pp. 1303-1309, August 2013
DOI: 10.11650/tjm.17.2013.2682
This paper is available online at http://journal.taiwanmathsoc.org.tw

A LEWENT TYPE DETERMINANTAL INEQUALITY

Minghua Lin

Abstract. We prove a Lewent type determinantal inequality: Let $A_{i}, i=1, \ldots, n$, be (strictly) contractive trace class operators over a separable Hilbert space. Then

$$
\left|\operatorname{det}\left(\frac{I+\sum_{i=1}^{n} \lambda_{i} A_{i}}{I-\sum_{i=1}^{n} \lambda_{i} A_{i}}\right)\right| \leq \prod_{i=1}^{n} \operatorname{det}\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}}
$$

where $\sum_{i=1}^{n} \lambda_{i}=1, \lambda_{i} \geq 0, i=1, \ldots, n$, are (scalar) weights and $|A|=$
$\left(A^{*} A\right)^{1 / 2}$.

1. Main Results

All the operators considered in this paper are trace class operators over a separable Hilbert space except I, the identity operator. The (Fredholm) determinant of $I+A$ is thus well defined and the trace functional of A is denoted by $\operatorname{tr} A$. A positive operator A (written $A \geq 0$) has a unique positive square root B with $B^{2}=A$; we write $B=A^{1 / 2}$. For two self-adjoint operators A, B, we say $A \geq B$ whenever $A-B \geq 0$. For any operator A, one defines its absolute value $|A|=\left(A^{*} A\right)^{1 / 2} ; A$ is (strictly) contractive if $\|A\|<1$, such an A is called a contraction.

We start with an elegant result as part of the motivation for this article.
Theorem 1. Let A, B be trace class operators. Then

$$
\begin{equation*}
|\operatorname{det}(I+A+B)| \leq \operatorname{det}(I+|A|) \operatorname{det}(I+|B|) \tag{1.1}
\end{equation*}
$$

This interesting inequality was discovered first by Grothendieck (unpublished; see [3]) and reproved many times; see, for example, [9, 10, 7]. A quick application of Bernoulli's inequality gives, for contractions A, B and $\lambda \in[0,1]$,

$$
\begin{align*}
& \operatorname{det}(I+|A|)^{\lambda} \operatorname{det}(I+|B|)^{1-\lambda} \leq \operatorname{det}(I+\lambda|A|) \operatorname{det}(I+(1-\lambda)|B|) ; \\
& \operatorname{det}(I-|A|)^{\lambda} \operatorname{det}(I-|B|)^{1-\lambda} \leq \operatorname{det}(I-\lambda|A|) \operatorname{det}(I-(1-\lambda)|B|) . \tag{1.2}
\end{align*}
$$

Received November 21, 2012, accepted January 26, 2013.
Communicated by Wen-Wei Lin.
2010 Mathematics Subject Classification: 47B15, 15A45.
Key words and phrases: Lewent inequality, Determinantal inequality, Trace class operators, Contraction.

If A, B are positive contractions, then using a result of Ky Fan [4, p. 467] gives

$$
\begin{align*}
\operatorname{det}(I+A)^{\lambda} \operatorname{det}(I+B)^{1-\lambda} & \leq \operatorname{det}(I+\lambda A+(1-\lambda) B) ; \\
\operatorname{det}(I-A)^{\lambda} \operatorname{det}(I-B)^{1-\lambda} & \leq \operatorname{det}(I-\lambda A-(1-\lambda) B) . \tag{1.3}
\end{align*}
$$

In view of (1.1), (1.3) is stronger than (1.2) in the positive case.
The following numerical inequality is due to Lewent [6]; see also [5]:

$$
\begin{equation*}
\frac{1+\sum_{i=1}^{n} \lambda_{i} x_{i}}{1-\sum_{i=1}^{n} \lambda_{i} x_{i}} \leq \prod_{i=1}^{n}\left(\frac{1+x_{i}}{1-x_{i}}\right)^{\lambda_{i}} \tag{1.4}
\end{equation*}
$$

where $x_{i} \in[0,1)$ and $\sum_{i=1}^{n} \lambda_{i}=1, \lambda_{i} \geq 0, i=1, \ldots, n$, are (scalar) weights.
This paper proves an analogue of (1.4) for determinant functional.
Theorem 2. Let $A_{i}, i=1, \ldots, n$, be contractive trace class operators. Then

$$
\begin{equation*}
\left|\operatorname{det}\left(\frac{I+\sum_{i=1}^{n} \lambda_{i} A_{i}}{I-\sum_{i=1}^{n} \lambda_{i} A_{i}}\right)\right| \leq \prod_{i=1}^{n} \operatorname{det}\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}} \tag{1.5}
\end{equation*}
$$

where $\sum_{i=1}^{n} \lambda_{i}=1, \lambda_{i} \geq 0, i=1, \ldots, n$.
Here $\frac{I+A}{I-A}$ is understood as $(I+A)(I-A)^{-1}$, or equivalently, $(I-A)^{-1}(I+A)$ provided the inverse exists.

Remark 3. When $A_{i}(i=1, \ldots, n)$ in the previous theorem are moreover selfadjoint, a much more general result has been stated in [2, Theorem 3.3].

Theorem 2 is essentially equivalent to the following, though the latter looks stronger in the form.

Theorem 4. Let $A_{i}, i=1, \ldots, n$, be contractive trace class operators. Then

$$
\begin{equation*}
\operatorname{det}\left(\frac{I+\left|\sum_{i=1}^{n} \lambda_{i} A_{i}\right|}{I-\left|\sum_{i=1}^{n} \lambda_{i} A_{i}\right|}\right) \leq \prod_{i=1}^{n} \operatorname{det}\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}} \tag{1.6}
\end{equation*}
$$

where $\sum_{i=1}^{n} \lambda_{i}=1, \lambda_{i} \geq 0, i=1, \ldots, n$.

2. The Proof

The proof of Theorem 2 relies on a few auxiliary results.
Proposition 5. Let A, B be positive trace class operators with $A \geq B$ and C be any self-adjoint trace class operator. Then $\operatorname{tr}(A C)^{2} \geq \operatorname{tr}(B C)^{2}$.

Proof. Note that if X, Y, Z are positive trace operators with $X \geq Y$, then $Z^{1 / 2} X Z^{1 / 2} \geq Z^{1 / 2} Y Z^{1 / 2}$ and so $\operatorname{tr} X Z=\operatorname{tr} Z^{1 / 2} X Z^{1 / 2} \geq \operatorname{tr} Z^{1 / 2} Y Z^{1 / 2}=\operatorname{tr} Y Z$, i.e., $\operatorname{tr} X Z \geq \operatorname{tr} Y Z$. Thus

$$
\operatorname{tr}(A C)^{2}=\operatorname{tr} A(C A C) \geq \operatorname{tr} B(C A C)=\operatorname{tr} A(C B C) \geq \operatorname{tr} B(C B C)=\operatorname{tr}(B C)^{2} .
$$

The next lemma is a special case of Theorem 2. As in Remark 3, Lemma 6 below is also an implication of [2, Theorem 3.3], nevertheless, we provide a self-contained proof here.

Lemma 6. Let $A_{i}, i=1, \ldots, n$, be positive contractions and trace class. Then

$$
\begin{equation*}
\operatorname{det}\left(\frac{I+\sum_{i=1}^{n} \lambda_{i} A_{i}}{I-\sum_{i=1}^{n} \lambda_{i} A_{i}}\right) \leq \prod_{i=1}^{n} \operatorname{det}\left(\frac{I+A_{i}}{I-A_{i}}\right)^{\lambda_{i}} \tag{2.1}
\end{equation*}
$$

where $\sum_{i=1}^{n} \lambda_{i}=1, \lambda_{i} \geq 0, i=1, \ldots, n$.
Proof. It suffices to show the case where $A_{i}, i=1, \ldots, n$, are positive (semi) definite matrices, the general case is via limiting arguments. The alleged inequality is equivalent to showing that $f(A)=\ln \operatorname{det}(I+A)-\ln \operatorname{det}(I-A)$ is convex over the set of positive (semi)definite contractions.

The following claim is readily verified.
Claim. A real-valued function g is convex over the convex set S if and only if $\forall x, y \in S(x \neq y)$,

$$
\phi(t) \equiv g\left(y+t \frac{x-y}{\|x-y\|}\right)
$$

is convex over $t \in[0,\|x-y\|]$.
Suppose $U=U(t), V=V(t)$ are matrices of the same size, we have the known formulae

$$
\frac{\partial(U V)}{\partial t}=U \frac{\partial V}{\partial t}+\frac{\partial U}{\partial t} V
$$

and if U is invertible, then

$$
\begin{aligned}
\frac{\partial \ln \operatorname{det} U}{\partial t} & =\operatorname{tr} \frac{\partial U}{\partial t} U^{-1} \\
\frac{\partial U^{-1}}{\partial t} & =-U^{-1} \frac{\partial U}{\partial t} U^{-1}
\end{aligned}
$$

Now let $X, Y(X \neq Y)$ be positive definite contractions, denoted by $M=(X-$ $Y) /\|X-Y\|$. Then $Y+t M=\frac{t}{\|X-Y\|} X+\left(1-\frac{t}{\|X-Y\|}\right) Y$ is again a positive definite contraction for $t \in[0,\|X-Y\|]$. Define

$$
\phi(t)=f(Y+t M)=\ln \operatorname{det}(I+Y+t M)-\ln \operatorname{det}(I-(Y+t M))
$$

$t \in[0,\|X-Y\|]$. Then

$$
\phi^{\prime}(t)=\operatorname{tr}\left[(I+Y+t M)^{-1} M\right]+\operatorname{tr}\left[(I-(Y+t M))^{-1} M\right]
$$

and

$$
\phi^{\prime \prime}(t)=-\operatorname{tr}\left[(I+Y+t M)^{-1} M\right]^{2}+\operatorname{tr}\left[(I-(Y+t M))^{-1} M\right]^{2}
$$

As $(I-(Y+t M))^{-1} \geq(I+Y+t M)^{-1}$, by Proposition 5, we have $\phi^{\prime \prime}(t) \geq 0$. Then the Claim tells us $f(A)$ is convex over the set of positive (semi)definite contractions.

Let Φ be a map between C^{*}-algebras. We say that Φ is 2-positive if whenever the 2×2 operator matrix $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \geq 0$ then so is $\left[\begin{array}{cc}\Phi(A) & \Phi(B) \\ \Phi\left(B^{*}\right) & \Phi(C)\end{array}\right] \geq 0$. It is clear that any Liebian function [11, p. 70] is 2-positive.

The following identity carries the name of L.-K. Hua (see, for example, [8]),

$$
\left(I-B^{*} B\right)-\left(I-B^{*} A\right)\left(I-A^{*} A\right)^{-1}\left(I-A^{*} B\right)=-(A-B)^{*}\left(I-A A^{*}\right)^{-1}(A-B)
$$

where A, B are contractions.
An application of a result of Schur [4, p. 472] reveals that

$$
\left[\begin{array}{ll}
\left(I-A^{*} A\right)^{-1} & \left(I-B^{*} A\right)^{-1} \\
\left(I-A^{*} B\right)^{-1} & \left(I-B^{*} B\right)^{-1}
\end{array}\right] \geq 0
$$

Exchanging the role of A, B and their adjoints gives

$$
\left[\begin{array}{ll}
\left(I-A A^{*}\right)^{-1} & \left(I-B A^{*}\right)^{-1} \tag{2.2}\\
\left(I-A B^{*}\right)^{-1} & \left(I-B B^{*}\right)^{-1}
\end{array}\right] \geq 0
$$

Proposition 7. $\Phi(t)=(1-t)^{-1}$ is 2-positive over the contractions.

Proof. If A, B are contractions, so are $A^{*} B, B^{*} A$. With (2.2), we have

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\left(I-A^{*} A\right)^{-1} & \left(I-A^{*} B\right)^{-1} \\
\left(I-B^{*} A\right)^{-1} & \left(I-B^{*} B\right)^{-1}
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
I+A^{*}\left(I-A A^{*}\right)^{-1} A & I+A^{*}\left(I-B A^{*}\right)^{-1} B \\
I+B^{*}\left(I-A B^{*}\right)^{-1} A & I+B^{*}\left(I-B B^{*}\right)^{-1} B
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
I & I \\
I & I
\end{array}\right]+(A \oplus B)^{*}\left[\begin{array}{ll}
\left(I-A A^{*}\right)^{-1} & \left(I-B A^{*}\right)^{-1} \\
\left(I-A B^{*}\right)^{-1} & \left(I-B B^{*}\right)^{-1}
\end{array}\right](A \oplus B) \geq 0 . }
\end{aligned}
$$

Here we use $A \oplus B$ to denote the 2×2 operator matrix $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$. As we can identify any positive 2×2 operator matrix with the form $\left[\begin{array}{ll}X^{*} X & X^{*} Y \\ Y^{*} X & Y^{*} Y\end{array}\right]$, the conclusion follows.

Remark 8. The above argument can also be found in [1, Theorem 1.1].
Proposition 9. $\Phi(t)=(1+t)(1-t)^{-1}$ is 2-positive over the contractions.
Proof. From the proof of previous proposition, we have $(1-t)^{-1}-1$ is also 2-positive over the contractions. The proof is complete by noting $\Phi(t)=2(1-t)^{-1}-1$.

Lemma 10. Let $A_{i}, i=1, \ldots, n$, be contractive trace class operators. Then for any Liebian function f,

$$
\begin{equation*}
\left|f\left(\frac{I+\sum_{i=1}^{n} \lambda_{i} A_{i}}{I-\sum_{i=1}^{n} \lambda_{i} A_{i}}\right)\right|^{2} \leq f\left(\frac{I+\sum_{i=1}^{n} \lambda_{i}\left|A_{i}\right|}{I-\sum_{i=1}^{n} \lambda_{i}\left|A_{i}\right|}\right) f\left(\frac{I+\sum_{i=1}^{n} \lambda_{i}\left|A_{i}^{*}\right|}{I-\sum_{i=1}^{n} \lambda_{i}\left|A_{i}^{*}\right|}\right) \tag{2.3}
\end{equation*}
$$

where $\sum_{i=1}^{n} \lambda_{i}=1, \lambda_{i} \geq 0, i=1, \ldots, n$.
Proof. An application of the polar decomposition reveals $\left[\begin{array}{cc}\left|A_{i}^{*}\right| & A_{i} \\ A_{i}^{*} & \left|A_{i}\right|\end{array}\right] \geq 0$ for any i, so

$$
\left[\begin{array}{cc}
\sum_{i=1}^{n} \lambda_{i}\left|A_{i}^{*}\right| & \sum_{i=1}^{n} \lambda_{i} A_{i} \\
\sum_{i=1}^{n} \lambda_{i} A_{i}^{*} & \sum_{i=1}^{n} \lambda_{i}\left|A_{i}\right|
\end{array}\right]=\sum_{i=1}^{n} \lambda_{i}\left[\begin{array}{cc}
\left|A_{i}^{*}\right| & A_{i} \\
A_{i}^{*} & \left|A_{i}\right|
\end{array}\right] \geq 0 .
$$

The conclusion follows from Proposition 9.

Proof of Theorem 2. Determinant functional is a Liebian function, so by Lemma 10, we have

$$
\begin{aligned}
\left.\operatorname{det}\left(\frac{I+\sum_{i=1}^{n} \lambda_{i} A_{i}}{I-\sum_{i=1}^{n} \lambda_{i} A_{i}}\right)\right|^{2} & \leq \operatorname{det}\left(\frac{I+\sum_{i=1}^{n} \lambda_{i}\left|A_{i}\right|}{I-\sum_{i=1}^{n} \lambda_{i}\left|A_{i}\right|}\right) \operatorname{det}\left(\frac{I+\sum_{i=1}^{n} \lambda_{i}\left|A_{i}^{*}\right|}{I-\sum_{i=1}^{n} \lambda_{i}\left|A_{i}^{*}\right|}\right) \\
& \leq \prod_{i=1}^{n} \operatorname{det}\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}} \prod_{i=1}^{n} \operatorname{det}\left(\frac{I+\left|A_{i}^{*}\right|}{I-\left|A_{i}^{*}\right|}\right)^{\lambda_{i}} \\
& =\prod_{i=1}^{n} \operatorname{det}\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{2 \lambda_{i}},
\end{aligned}
$$

in which the second inequality is by Lemma 6 and the third equality is by the fact $\operatorname{det}(I+|A|)=\operatorname{det}\left(I+\left|A^{*}\right|\right)$.

Acknowledgments

The author thanks J. Jiang for several useful conversations in 10th ICMTAC held in Guiyang. He also thanks the referee for a careful reading of the draft and for pointing out a number of misprints.

References

1. T. Ando, Positivity of operator-matrices of Hua-type, Banach J. Math. Anal., 2 (2008), 1-8.
2. J. S. Aujla and J. C. Bourin, Eigenvalue inequalities for convex and log-convex functions, Linear Algebra Appl., 424 (2007), 25-35.
3. A. Grothendieck, Réarrangements de fonctions et inégalités de convexité dans les algèbres de von Neumann munies d'une trace (mimeographied notes), in: Séminaire Bourbaki, 1955, pp. 113.01-113.13.
4. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
5. M. V. Jovanoié, T. K. Pogány and J. Sándor, Notes on certain inequalities by Hölder, Lewent and Ky Fan, J. Math. Inequal., 1 (2007), 53-55.
6. L. Lewent, Über einige Ungleichungen, Sitzungsber. Berl. Math. Ges., 7 (1908), 95-100.
7. E. H. Lieb, Inequalities for some operator matrix functions, Adv. Math., 20 (1976), 174-178.
8. M. Lin and Q. Wang, Remarks on Hua's matrix equality involving generalized inverses, Linear Multilinear Algebra, 59 (2011), 1059-1067.
9. S. Yu. Rotfel'd, The Singular Numbers of the Sum of Completely Continuous Operators, Topics in Mathematical Physics, Vol. 3, Spectral Theory, 1969, pp. 73-78.
10. E. Seiler and B. Simon, An inequality among determinants, Proc. Nat. Acad. Sci. USA, 72 (1975), 3277-3278.
11. B. Simon, Trace Ideals and Their Applications, 2nd ed., Amer. Math. Soc., Providence, RI, 2005.

Minghua Lin
Department of Applied Mathematics
University of Waterloo
Waterloo, ON, N2L 3G1
Canada
E-mail: mlin87@ymail.com

