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HOLDER CONTINUITY OF THE SOLUTION MAP TO AN ELLIPTIC
OPTIMAL CONTROL PROBLEM WITH MIXED CONSTRAINTS

V. H. Nhu, N. H. Anh and B. T. Kien

Abstract. The goal of the paper is to investigate the Holder continuity of the
solution map to a parametric optimal control problem which is governed by el-
liptic equations with mixed control-state constraints and convex cost functions.
By reducing the problem to a programming problem and parametric variational
inequality, we get sufficient conditions under which the solution map is Holder
continuous in parameters.

1. INTRODUCTION

Let 2 be a bounded domain in R with the Lipschitz boundary 9Q and N € {2, 3}.
We consider the following parametric optimal control problem for the elliptic equations
with mixed control-state constraints:

Find a control function u € LP(Q), p > 2 and a state y € H}(2) N C(Q) which
minimize the cost

() Fly,u,p) = /Q £ y(@), u(@), pa))da

with the state equation

2 {Ay:u+/\1 in §2

y=20 on 0}

and pointwise constraints

3)

U > Ay in
eu > 6y + A3 in §,
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where f: Q x R x R x R¥ — RU{+oco} with k > 1, is given function,
= (1, ) € LP(Q)F, X = (A1, Ao, A3) € LP(Q) x L®(R) x L™=(Q)

are parameters, A denotes a second-order elliptic operator of the form

— Z Dj(aij(a:)Diy(a:)) + a,g(a:)y(a:),

ij=1
where coefficients a;; € L () satisfy the strongly elliptic condition

N

> ai(@)&€ > Malél? Vee RN a e x€Q

ij=1
for some A4 > 0 and ag € L™(Q2), ap(z) > 0 almost everywhere x € 2, 6 € L>°(Q)
and € € L™(Q).

Let us put
Y =H}(Q)NCQ),U=LPN),Z=Y xU

and

M = L®(Q)F, A = LP(Q) x L®(Q) x L=(Q).
The norms of y € Y, n € M and A € A are defined by

lylly = 19l ) + 19l [pellar = max{||pil| Loy : 1 < i < K}
and  [[Alla = [[Mllze(e) + A2l Lo (@) + A3l Lo ()

respectively. -

In the sequel, we denote by By and Bx the open unit ball and the closed unit
ball in a norm space X, respectively. Also, given x € X and ¢ > 0, Bx(z,d) and
Bx (z, ) stand for an open ball and a closed ball, respectively with center = and radius
d.

Let us define a set-valued map K : A = Z by setting

4) K(\) ={z=(y,u) € Y x U|(2) and (3) are satisfied}.
Then problem (1)-(3) can be formulated in the form

{F(z, p) — inf

Pl ) 2 e K()).

We denote by S(u, A) the solution set of P(u, A). In this paper, we always assume
that S(u, ) :_{2 that is, problem P(fz, ) has a unique solution zZ = Z(fi, \) =

W@, X, u(m, N)).
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Our main concern is to investigate the behavior of S(u, A) when (u, \) varies
around (77, A). This problem interested some authors in the last decade. For papers
which have a closed connection to the present work, we refer the readers to [2, 10, 15,
16] and the references given therein. When f is a quadratic function, that is

1 Y
(5) F@yu ) = Sy = ya(@)* + S lu—va@)|* =y — pou,

where y4 and ug are given in L%(Q), and v > 0 is a constant, [2, 10] and [15] showed
that the solution map is singleton and Lipschitz continuous in parameters.

It is noted that the obtained result of [10] is for problem with pure state con-
straints, the obtained result of [15] is for problem with pure control constraints while
the obtained result of [2] is for problem with mixed control-state constraints (3) with

€ = €9, 0 = —1 and under additional condition that
(6) Jo >0, S7TNST =0,
where

ST :={xeQ:0<uy(zr) <o},
ST ={x € Q:0<eup(x)+7g(r) —ye(zr) <o}

with y. € L>®(Q), (¥, o) is a solution of P(fi, \) corresponding to 77 = 0 and
A= (07 0, yc)'

In this paper we continue to develop results of [2] by considering problem (1)-(3)
under weaker conditions and for a larger class of cost functions F', where the integrand
function f is not necessary to be quadratic. Namely, by reducing (1)-(3) to a parametric
variational inequality and using technique in [8] and [18], we will show that, under
certain conditions but without condition (6), the solution map S of problem (1)-(3) is
singleton and Holder continuous in (i, A).

Let us recall some concepts which are related to our problems. Given a function
¢ € L*(R), a function y € H(Q) is called a weak solution of the elliptic partial
differential equation

Ay=¢ inQ,
" { y=0 on 00
if
/Q(i;Iaij(eT)Diy(ﬂf)DjU(x)—i—ao(a:)y(a:)v(a:))dx:/Q¢(x>v(x>dx o € HY(Q).

Given a Banach space E and a nonempty closed convex set K in E, the normal
cone to K at a point zg € Z is define by

N(zo; K)={z"€ E*: (2", 2 — 2z) <0,Vz € K}.
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For definition of normal cones and their properties, we refer the readers to [13, Chapter
4].

Let us impose the following conditions for problem (1)-(3).
(A1) Q is a bounded domain in R, N € {2, 3}, with the Lipschitz boundary 992 and
€,0 € L™(Q),e(x) > € >0, ae. xin .

(A2) f(-,y,u,p) is measurable for all (y,u,u) € R x R x R* and f(x,-,-,-) is
continuous a.e. x in §. Besides, there exist a positive number €; and a continuous
nonnegative function g : © x R®> — R such that for all (z,u) € Q x RF with
| —7(z)| < €1, one has
7 (2 3(@), W), 1) - £ (2, 52), 0(2), 7))
< g(z, [7(@)], |ul, [A(z)]) Hy ([a(z)]),

where H;(-) is the following form

mi
Hy(t) = Ztsi with m1 >1,0<s; <p,Vi=1my.
i=1
(A3) There exist constant numbers €3, p > 0 such that for a. e. € Q the function
(y,u) — f(x,y,u,n) is continuously differentiable and convex on subset D(x) and
the following condition holds

(fa(z, 21, ) — fo(@, 20, ) (21 — 22) > plug — upfP
for all z; = (y;,u;) € D(x) and for all 4 € RF with |u — fi(x)] < e, where
D(z) = (y(z) — e2,y(x) + €2) X R.

(A4) There exist continuous functions a; : Q x R? — R, b; : 2 x R? — R and positive
numbers «;, ¢ = 1, 2 such that

T , yl, [i(x)]) Hy (Jul),

’fy(xuyuuaﬁ ))’ < al(
2))| < az(z, |yl, [A(z)[) Ha(|ul)

(
’fu(xuyuuuﬁ(
for all x € Q,y,u € R satisfying |y — y(x)| < €3 and

[,y 1) = fy (g, )] < b Jyl L] ) (ful) [ = ],

| ful, g, w, 1) = fulz,y,u, p1?)| < ba (2, [yl |6, |02) Ha (Jul) |1 — 2]
forall 2 € Q,y,u € R, i’ € R¥ satisfying |’ — i(z)| < e1,i=1,2,|y —7(2)| < €2,
where

ma
Hy(t) = Ztsf withmg > 1,0 <s; <p—1Vj=1,mo.
j=1
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Under conditions (A1), (A2) and by Lemma 2.1, for each ¢ € LP(2), equation
(7) has a unique solution y, € H3(€2) N C(Q) which satisfies the estimation

®) 1ol ma) + lwsllog@ < ClillLeo)-

In the paper, we also need the following assumption.
(A5) For a.e. = € (),

€0
0x) < g :=
2 (@) < 00 = e O

where || is the volume of §2 and C' is positive constant which is given in (8).

We now state our main result

Theorem 1.1. Suppose that assumptions (Al) — (A5) are satisfied. Then there
exist a neighborhood My x Ay of (i, \) and a neighborhood Z1 = Yy x Uy of (¥, )
such that for each (u,\) € My x Ay, P(u,\) has a unique solution z(u,\) =
(y(p, N), u(p, N)) € Zy and the map z(-,-) is Holder continuous, that is, there exist
positive constants 1y and lo such that

Iy (s AN =y, M)y + NJu(', M) = u(p?, A2) || o)
< Lt — @257+ A = NP
Sor all (ui, \) € My x Ay with i = 1,2. Here a = min{ay, as}.

In order to prove Theorem 1.1 we will establish some auxiliary results which are
provided in section 2. Section 3 contains the proof of Theorem 1.1. Section 4 is
destined for some examples illustrating Theorem 1.1.

2. AUXILIARY RESULTS

In this section we will give some properties of the set-valued map K : A = Z,
where K () is defined by (4). We begin with the following important result on the
continuity of solutions of PDEs, which is due to E. Casas who did the associated
pionieering work (see [5, Theorem 2.1] and [6, Theorem 2.1]) . For complement, we
provide here a brief proof.

Lemma 2.1. [5, Theorem 2.1] Assume that conditions (A1) and (A2) are satisfied.
Then for each ¢ € LP(SY) equation (7) has a unique weak solution y, € Hg(Q)NC(Q)
which has the a priori estimate
(10) 1Ysll i) + 9sllcq@) < Cllllr ),

where C'is a constant independent of ¢, and if ¢n, — ¢ weakly in LP(QY) then yg, — Yo
strongly in HE(Q) N C(Q). Moreover, the maximum principle holds, that is,

¢ >0 implies ys > 0.
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Proof. Since ¢ € LP(Q) — L?(), the Lax-Milgram theorem and G. Stampacchia
(see [7, Theorem 12.4]) imply that (7) has a unique solution y, € H{(Q) N L>®(Q),
and there exists a constant C; > 0 independent of ¢ such that
(11) 1yl ) + vellLe @) < Cillollw-1r(0),
where 2 < r < 2. The continuity of y(-) is followed from [9, Theorem 8.30]. Since
the imbedding L?(Q2) — W~L7(Q) is compact, there exists a constant C' independent
of ¢ such that (10) is satisfied. If ¢,, — ¢ weakly in LP(Q) then ¢,, — ¢ strongly in
W17 (). Combining this with (11), we see that y,,, — yg strongly in H} (Q)NC(Q).
Finally, by [2, Lemma 2.2], the maximum principle is proved. ]

From Lemma 2.1, we can define a linear continuous solution mapping
S:LP(Q)—-Y
¢ =y,
where y is a unique solution of (7) corresponding to ¢.
Lemma 2.2. Under assumptions (A1), (A2) and (A5), for each X € A, K(\) is
a nonempty and closed convex set in Z.

Proof. For each A = (A1, A2, A3) € A. Obviously, K () is convex. Now we show that

K ()) is nonempty subset. In fact, we choose u(x) = max{ug; —A1(x)}, where wy is

given by

€0l Q7P| A1l o) + 411 A3l L (0
3€0

ug 1= maX{ )§H/\2HL°°(Q)}~

This implies u + Ay = § (uo + A1 + |ug + A1]) > 0 and u > Az in Q.
Moreover, we set y = S(u + A1) then (y, u) satisfies (2) and y > 0.
From Lemma 2.1, we get

1lle@) < Cllu+ Mlle)
< C|luollr) + Ml Lee))
< C (w0l + | M| Lo ())-
Combining this with (A5) yields

0y + Az < dollyll e + [Asll Lo (q)
€0 1/p
< 74(;,&‘1/])0(100\9\ + [IAillze)) + 1Al Lo o
€0UO 6OH/\IHLP(Q)
- 4 4|Q|V/r

+ I3l Lo () -
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On the other hand, since u > ug > 0 and € > ¢g > 0,

€u > €oUQ
€oUQ
4

Hence eu > dy + A3, and so (y, u) satisfies (3). Consequently, K (\) # ().
Finally we show that K () is closed.

Indeed. Assume that z,, = (yy, u,) € K(\) and 2, — z = (y, u) in Z. Then z,, —
zin L2(Q) x LP(£2). By passing a subsequence where z, — z as n — oo a. e. in §)
(see, [4, Theorem 4.9, pp. 94]). In other words, there exists a subset B which has
measure zero such that

1 _
= + Z(GO\Q\ VP Ml + 4l Asl oo o) -

zn(2) = 2(z) = (y(x),u(x)) for all z € Q\B as n — oo.

Since
Up > A2 in Q,
€Up > 0Yn + A3 1n £,

there exists subset P, which has measure zero such that

{un(a:) > Ao(x) for all = € Q\PF,,
e(z)un(z) > 6(x)yn(x) + A3(z) for all x € Q\P,.

Setting ' = | J,,~; P»UB, we see that T" has measure zero. Letting n — oo, we obtain
from the above that

u(z) > Ao(x) for all x € Q\T,
) >4

e(z)u(x (x)y(x) + Az(xz) for all z € Q\T.

Hence z = (y, u) satisfies (3). It remains to prove that (y, u) satisfies (2). In fact, we
set ¥ = S(u+ A1). We then have

ly =7lly < lly —vally + llyn —7lly
< lly = ynlly + [[S(un + A1) = S(u+ M)y
<y = yully + Cllun — ull o)
Letting n — oo, we obtain y = 7. Consequently, (y, u) satisfies (2) and (y, u) € K(X).

Hence K () is closed. The proof of the lemma is complete. ]

Lemma 2.3. Under assumptions of Lemma 2.2, the set-valued map K : A = Z is
Lipschitz continuous, that is, there exists a positive constant k such that

(12) K(X) C K(B) + kA= BllaBz, VA B€A.
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Proof. Take any A = (A1, A2, A3), B = (B1, B2, 3) € A. For convenience we put
v = A= Bla = A1 = Billr) + X2 = B2l o) + A3 — B3l Lo ()

4+¢€
(@) =7+ M) = Al 0= max {152},

Taking any z) = (yx, uy) € K(\), we choose ug = uy + 071 and set yg = S(ug+ 1)
is a unique solution to the following elliptic equation

Ay =ug+ (1 in (),
y=20 on Of).

Since uy) > A9, we have
(13) ug > Ba.
Moreover

ys = S(ug+ 1) = S(ur + A1) + S0+ B — A1)
=y + 0,

where o = S(07 + 51 — A\1). Since 07 + 1 — A\ > 0, Lemma 2.1 implies that o > 0.
Hence

eug — 0yg — 33
=euy —0Yyy — A3+ et — fo + A3 — O3
> 9607‘ — 50HUHC(§) — H/\g — /BHLOO(Q) (because of €u) — 5y,\ — /\3 > 0)

> 0o — SC|0T + B1 — AillLr() — A3 — Bsll Lo (o)
> Oegr — 00C [0 7| o) + A1 = Billzo)] — 1A3 = Bsll ()

This implies

eug — 5yg — B3
> Oeor — SoC [0 Py + (0 + 1) | A1 — Bill o] — A3 — Bsll = ()

1 1
2 feo — 700y — 2(0 + Deo[| A1 = Bill o) = 1As = Bsll = (@)
1
> OeoT — 160(29 + 1)y = IA3 = BsllL(q)
1
> (feg — 1)y — 160(29 + 1)y (because of 7 > and [[A3 — B3| L () <)

>

1
> 1(2960 —4—¢)y>0.
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Combining this with (13) yields z3 = (yg, ug) satisfying (3). This implies z3 € K(f3).
On the other hand, we have

lug — urll o) = 1107 o) < O1UYPy +0]181 — Ml r()

(14) ,
<017 +1).
By Lemma 2.1,
Iy = ally = llolly < 07 + (81 — M) 5oy
< COlTllre) + 181 — Moo
(15) ( () @)

< C019"Py + (0 + 1181 = Mll o)
<C0|QM? + (0 +1))y.
Combining (14) with (15) we have the following inequality
lys — yally + [lug — uallze(o) < kv,
where k = 0(|QY/P + 1) + C(0]|/? + (6 + 1)). The proof is complete. ]
3. PROOF OF THE MAIN RESULT
From Lemma 2.3 , we get
K(\) € K(\) +Ek||A—X[aBz, VXcA.

Fix ro > 0 such that kro < €3, where € is given in the assumption (A3). Then we
have

(16) KM\ N(Z+eBz)#0, VA€ By o).
Let us put
Yo = By (¥, €2), Uy = Bu(T, €2), Zo = Yo x Up,

My = EM(ﬁ, €1> and Ag = FA(X, 7’0).

Easily, we see that
(17) Bz(z,e) C Zy.
Combining this with (16) yields

(18) K\ NZy#0 VA€ A
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Lemma 3.1. Suppose that assumptions (A1) — (A5) are fulfilled. Then the fol-
lowing assertions hold.:

(1) For each pn € My, the function F(-, ) is Gateaux differentiable and its deriva-
tive is given by

(Fo(2, 1), h)=(Fy(y, u, ), h >+<Fu(y7u,u>7h2>
/ ol y(a), ue), e a )+ [ Fu(o o). o) (o) s,

Sfor all h = (hy, ha) € Z. Moreover, F,(-,-) is uniformly bounded on Zy x M.

(1i) There exists a positive constant ly such that

(19 |Fu(z,p4") = Folz, 1) 2= < lollp' = 0?18, V2 € Zo, p', 1 € M.

(1i1) F,(-, p) is strongly monotone, that is
20)  (Filzr,p) = Falzz, ), 21 — 22) 2 pllur —uallfp gy V21,22 € Zo,
where z1 = (y1,u1) and zo = (Y2, 22).

Proof. By (A4), for each p € My, the first variation F(z, u)(h) of F(-, ) at a
point z = (y,u) € Z does exist and defined by

R0 = (B
(y,u M) h1> (Fu(y,u,p), ha)

/fy 2,y(), w(@), pe)h(@)de | fulz, y(@), (@), p@))ha(w)dr,

for all h = (hy, hy) € Z. Obviously, F,(z, u)(+) is a linear mapping. We now show
that F (-, -) is uniformly bounded on Zy x Mj.
Indeed. For any z = (y,u) € Zy, we have

1) 1F (2, 7))

7= < [Ey(y, w, W) ly= + 1 Fulys w, Bl Lo,

where ¢ is the conjugate number of p.
By the Holder inequality, there exist constants ¢; > 0, 7 = 1, 2 such that

/Q fulfhldz < ex[[ullgaoy bl < exllulline by ¥ b €Y,

(22) and /Q\u\d\h2\d$ < eollullfoeyllhall o) ¥ e € LP(Q),

where 0 < s <pand0<d<p-—1.
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By definitions of H;(i = 1, 2) and (22), there exist positive constants C'7, such that

(23) /Qﬂl(\u\)\hl\dx < Cuy Hi([ull o) IMlly ¥ hi €,
and
(24) /Qﬂz(\U\)\hz\dx < Cr, Ha([lull o) [ h2ll o) ¥ h2 € LP().
We put
A = max{ai(a:, ], t2) ¢ (2, tr,t2) € © x [0, 8] [0, 52]},2' ~1,2,

where 01 := HyHC@) + €2, 02 1= [[ftl|ar + €1

By (44),
1Fy (g, w, @) |ly» = Sup{ (Fy(y,u, @), h1) s by € Y, |[Ia]ly < 1}
=sup{ [ fy@ (o), u(o).mla)m(@)ds s ]y <1}
<sup { [ eyl ) (el lde « sy < 1}
A 2|k .
25) < Avsup {_ [ H(ul) mldo  huly <1}

Combining (23) with (25) yields

v+ < A1Chy Sup{Hl(HUHLp(Q))thHY ey < 1}

< A1 O, Hy (||ull o)
(26) < A\ Crpy Hy ([[ull ooy + 2).

1Ey (y, u, )|

Using similar arguments, we obtain

(27) 1Fu(y, w, )| Lagqy < A2Chy Ha(|[T]| o () + €2)-
Combining (21) with (26) and (27) we conclude that

28)  |F.(z,m)

On the other hand, for any z = (y,u) € Zy and p!, u? € My, we have

1P, (2, 1) = Fu(2, 12)]| 22
(29) < ||Fy(y, u, u*) — Fy(y, u, p?)|

7+ < A Crp Hi ([l o) + €2) + A2Cri, Ha (|G| Lo (o) + €2)-

v+ + HFu(yu u, M1> - Fu(ya u, M2>HL‘1(Q)'
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In the same manner, using (A4), we get

1Fy (y, u, 1) = Fy(y, u, 1®) v+ < BiCry Hi(|lull ooy I = 12115

(30) I 1 211
< BiC Hi ([Tl oo + e2) 1" — 1157

and

a1) 1 Fu(y, u, ') — Fuy, w, p?) || 2o < BoClriy Ha ([|ull ooy I — 121153

< ByCliy Ha (|[l| o) + €2) 1" — 12153,

where Bi = max{bi(a:,tl,tg,tg) : (x,tl,tg,t;g) € Q x [0,(51] X [0,(52]2},i = 1,2.
From (29)-(31) we deduce that

(32) 1F. (2, 1) = Fa(z, 12 2+ < lollpe" — 1?1,

where [ := BlCHl H, (HﬂHLp(Q)—i-GQ) (261)a1_a—|—BQCH2H2 (HﬂHLp(Q)—i-GQ) (261)a2_a.
We obtain assertion (7).
Since (28) and (32), we get

1= (2, 1)

7z < HFZ(27M> - FZ(Z,ﬁM

<lollu = allS+A1Crr, Hy ([Tl o () +€2) + A2Cri, Ha (|G| 1o () +€2) -

7+ + | F2 (2, 1) || 2+

Hence

z+ <1

)

(33) £ (2, )]

where | = l()ﬁ(ll +A10H1 H1 (HEHLP(Q) +€2) +AQCH2H2 (HEHLP(Q) +€2) . This lmplles
that F,(-,-) is uniformly bounded on Zy x M. Consequently, the function F'(-, 1) is
Gateaux differentiable for all ;1 € Mj. Hence, assertion (i) is obtained.

Fix any p € M. Taking any z; = (y;, w;) € Zo,i = 1,2, we have

(Fo(z1, ) — Fu(22, ), 21 — 22)
= /Q (f=(z, 21(2), @) = fa(2, 22(2), p(2)) (21(2) — 22(x))de.
From this and (A3) we obtain

(Fx(z1, ) = 22, ), 21 = 22) 2 pllur — wall -

The proof of the lemma is complete. ]
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Lemma 3.2. Under assumptions of Lemma 3.1, for each (u, \) € My x Ay, the
problem
F(z, ) — inf
PO(Ma A) ( )
FAS] K(A) N Zy
has a unique solution.
Proof. Put
E=inf {F(z,p):z € K(A\)NZp}.

Then there exists a sequence z, = (yn, u,) € K(X) N Zy such that
£ = nlLrgo F(zy, p).
Since {uy,} is bounded and LP(€2) is a reflexive Banach space, we can assume that
up, — 4 in LP(Q).

By Lemma 2.1, we get
Yyp — ¢y in Y

for some 2 = (y,4) € Y x LP(Q2). By Lemma 2.2, K(\) is a weakly closed set.
Consequently, 2 = (g, 1) € K(\). Since Z is a weakly closed subset, Z € Zy. Thus
we get z € K(\)N Zp and

(34) F(z,p) > €.

On the other hand, by a property of convex functions, we have

(@, yn(2), un(), pl2)) = f (2, 9(2), @), w(z))
+ (fy (2, 9(2), (), 1)), yn(2) = () + (fu (2, §(2), W), p(2)), un (@) —i(2)).

It follows that

By (A2) and (A4) we can show that f, (-, §, @, ) € L*(2) and f, (-, 9, @, u) € LI(Q).
Letting n — oo, we obtain from the above that £ > F'(y, @, 1). Combining this with
(34) we have & = F(, 4, ).

We now prove that ¢ is finite. To do this we first show that F'(Z, -) is bounded on
M. In fact, for any p € My from (A2), we get
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P~ FER| < [ [£(0500), ) 1(0)) — 1o 3) 1), 10) s
< [ oo ), ), o)) o)
<o [ H(fata) )z,

< nCHlHl(HEHLP(Q)>7
where
n=max { g, 1, b2, 13): (2t 2, 5) €50¢ 0, 7] ey % [0, [Tl -+ea) [0, 7] -

Consequently,

(39) Pz, 1) = FZ )| < nCr, H (10 (0)).

We obtain the desired conclusion.
From (35), the uniform boundedness of F.(-,-) on Zy x My and the mean value
theorem, for all i € My, we get

F(,0) = F(Z70)| < [F(2,0) = Fz,0)| + |[FE ) - P2, 7)
< suwp |IF(5+ 12 = 2), 1)1 2- |12 = F| 2+ | F (2, ) - FZ )

0<t<1
< sup ||F(<', )|

Z/EZO

< +00.

7%

7012 = Zl z + nCr, Hy ([T Lr(e2))

This implies that ’F(é, u)’ < +o0o and so £ is finite.
It remains to show that problem Py(x, A) has a unique solution. Indeed, we assume
that z; (11, A) = (i1, A), wi(p, X)), i = 1, 2 are solutions of Py(y, A). It follows that

(Fo(zi(ps A), 1), 2 — 2(, A)) > 0 Vz € K(A)N Zp,i=1,2.
Hence
<FZ(21(M7 A)? M) - FZ (ZQ(Ma A)u M)u Zl(/% A) - ZQ(M; A>> <0.
From this and (i77) of Lemma 3.1, we get
0= <FZ(21(Ma A)a M) - FZ(ZQ(Ma A)u M)u Zl(/% A) - ZQ(Ma A>>
> pllur(p, A) — w2 (g, A)Hip(gy

It follows w1 (e, A) = ua(p, A). Since yi(p, A) = S(ui(p, A) + A1) and Lemma 2.1,
we obtain y1 (i, A) = yo(u, A). Hence 21 (u, \) = 2z2(p, A). This proves the lemma. m
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Proof of Theorem 1.1. For each (u, \) € My x A, due to Lemma 3.2, problem
Py(pt, A) has a unique solution z(p, A) = (y(u, A), u(p, A)) € K(X) N Zy. Since
Po(fe, A) is a convex problem, it must hold

(36) 0€ F.(2(1, A), 1) + N (2(p, A); K(A) N Zo).
It is equivalent to the variational inequality
(37) (Fo(2(p, A), ), 2 — 2(p, ) > 0 Vz € K(A)N Zo, p € Mo, A € Ag.

We first show that the solution mapping z(-, -) is continuous at (i, \).
In fact, fix any (p, A) € Mo x Ag. By the Lipschitz continuous property of K(-), there
exists an element z; € K (\) such that

12(1, A) = z1llz < KA = A|la < eo.
Putting A = X and 3 = X in (12), we see that there exists zo € K ()) such that
12— 2llz < kA=Al < e
Since 7 and z(u, \) are solutions of P(77, \) and P(u, \), respectively, it follows that

(F,(Z,m),z1—%z) >0 and (F,(z(u, ), ), 22— 2z(p, \)) > 0.

By (ii) and (iii) of Lemma 3.1, and using (33), we have

o)~ uum o
< (P (211, \), 1) — Fo(Z, 1), 2(, ) — %)
< (Fa(2(us M)y 1) = Fo(Z, 1), 2(1, ) = Z) + (FL(Z,7), 21 — %)
+(F. (2(p, A), 1), 22 — 2(p, A))
(38) = (F.(2(us ), ), 22 — Z) + (Fo(Z, ), 21 — 2(p, \))
(L (Z,1) = Fo(Z, 1), 21 — Z)
<N (2(p, A)s i)l 2|22 = Zl 2 + | F2(Z, )]
+F:(Z,5) — F2(Z, 1) z-
< 20K||X = Xla +lollz1 — 2|zl — 7l

z* z+|l21 — 2(p, )| z

21— 2|z

On the other hand

21 = Zllz < [lz1 — 2(p, M)z + |2(1, A) = Z|| 2 < e2 + 262 = 3ea.
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Hence (38) implies that

_ 21k — 3ealp
(39) (. ) = 30y < =N~ N +

I = 5
From Lemma 2.1, it follows that
Iy (i, A) = Flly < Clluu, A) + M =4 = Ml o)
< C(Jfulie, A) = Tlaey + A1 = Ml o))
< O(Jluli, A) = Wl oy + 1A = Xa)-

Combining this with (39), we can assert that there exist positive constants Cp, Co
satisfying

_ — — 11
@0) Ny, \) = Flly + llulps, ) = Tl ooy < Cullp = T 537" + Call A = MY

This implies that ||z(u, A) — 2(Z, )|z — 0 as (u, \) — (%, A). We obtain the desired
property. It remains to show that the solution mapping z(-, -) is Hélder continuous in a

neighborhood of (z, A). From (40) we can choose neighborhoods My C My of 7z and
Ay C Ap of X such that z(pu, \) € intBz(Z, e2), for all u € M, A € A;. Combining
this with (17) yields

N (2(p, A); K(X)) = N (2(1, A); K(A)N Zg) Vi€ My, A€ Ay.
From this and (36) we obtain
0€ F.(2(A), 1) + N(2(p, A); K(X) V€ My, A€ Ay.
This is equivalent to
(Fo(2(p, A), 1), 2 — 2(p, X)) > 0Vz € K(A),p € My, A € Ay.

Consequently, for each (i, A) € My x Ay, z(u, A) is the unique solution of P(u, A).
Let (u!, A1), (12, A2) € My x Ay. Putting A = A\ and 8 = A? in (12), we can find an
element ¢ € K ()\?) such that

(e, A1) = Gallz < KIAT = A?][a.

Also, replacing A = A2 and 3 = A! in (12), we can find an element (; € K(\!) such
that
12(1%,A%) = Gillz < EIAT = A% a.

Besides, we have

(Fola(ph, A, 1), G=z(ph, M) 2 00 and - (F(2(u?, X%), 42), G —2(?, A%)) > 0.
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Combining these with the strong monotonicity of F, (-, u!) (see Lemma 3.1), we have

pllu(pt, A1) = u(u?, N)I7,

< (Feo(2(u', M), pt) = Fa(2( ) 1), 2(uty A1) = 2(1?,2%))

< (Fo(2(u', M), pt) = Fa(2( ) 1), 2(uty A1) = 2(1?,A%))
H(F(2(ph A, 1), =2 (D) +(Fa(2 (M N2), 1), a—z(p?, M%)

= (F(2(u!, A1), 1h), =2 (1, A2)> +{(Fa(2(1%,02), 1), Go—2(p', A1)
H(FL(2(12, M), 1%) = Fo (2 A7), 1h), 2(ph AY) = (6, 3%)

<R[ = N2|Ia + 262 | Fo(2(4, A2), 1%) = Fo(2(6, A%), )|

< 20K|IA = N34 + 2ealo|pt — 12]IS;-

TIPS
TIPS

(41)

A

Here we used the fact that
I2(u', AY) = 2(0?, M)z < [lz(p', M) = 2]z + 1|7 — 2(1%, X2 || 2 < 26

Using the inequality (a + b)® < (a® + b*), where a,b > 0 and 0 < s < 1 (see [12,
Inequality 2.12.2, p.32]), it follows from (41) that

” lu(pt, AY) = u(e®, A) oo
(42) —I\1/py(,, 1 _ 2/ —1\1/p;y1 2 1/p
< (2ealop™ ) Pl — el + Qlkp™) PN = AT

By Lemma 2.1, we obtain
ly (', A1) = y (12, A2y
< Cllu(p', M) = w(p?, N) + (AL = A oo
< O(JJulp', AV = u(p?, )| pogey + AT = A%[|a)
_ o _ 1-1 1
< O(2e2lop™ V||t — 421577 + C((2Lkp™ VP 4 AL = N2| V7Y AL — 227
< C(2ealop™)P| it — 12|57 + C((20kp™ )P 4 (2r0) HPY A — N2V
Combining this with (42) yields
ly(e', A =y A [y + lu(e, AY) = w(p®, X) || ooy
o 1
< Il = 2577 + A = N1,

where I} := (1 + C)(2e2cp™ )P and Iy := (14 C)(2lkp~ ")/ + C(2r)'~'/P. The
proof of Theorem 1.1 is complete. ]



1262 V. H. Nhu, N. H. Anh and B. T. Kien

4. SOME EXAMPLES

In this section we will give some examples which illustrate Theorem 1.1.

Example 4.1. Suppose that £ = 2,p = 2, N € {2,3}, e = ¢ >0 and § = —1
a.e. in 2. We consider the problem P (u, \) of finding u € L?(2) and y € Y which
minimize the cost function

1 Y
43)  F(y,up)=glly - vl j2() + S llu— udllF2(q) — /Qy/ﬂdw - /Qu/mdﬂf

with the state equation

Ay = A1 inQ
(44) {yu+1ln

y=20 on 0}

and pointwise constraints

>\ in 2
(5) {u_ 9 in

€u+y > A3 in €,

where € is a bounded domain in RN with the Lipschitz boundary 02, y4,uq €
LX), 1 = (p1, p2) € M, A = (A1, A2, A3) € A with M = L®(Q)%, A = L?(Q) x
L>(€) x L*>(€2) and A is a strongly elliptic operator.

For (fz, A) = (0,0), by [2, Lemma 2.4], P;(0,0) has a unique solution.

Then all conditions of Theorem 1.1 are satisfied. Moreover, there exist positive
constants 7, k; with j = 1,2 such that for all (%, \?) € Bas(0,71) x Ba(0,72) with
1 =1, 2, one has

Iy (e, X = (e, X2y + (', AY) = u(p®, X))
1/2 1/2
< Hallat = w57+ Ral A= 2,
where (y(p, A), u(p, A)) is the unique solution of Py (u, A).

In fact, in this case we have
Flyuoi) = [ fGopta),u(o), po))de,

where §(z, 1) = Hy — va@)? + Hhu — ua(@)? = v — upy or
fy(xu Yy, u, M) = (y - yd@)) — M1,

fulm, gy, u, 1) = v(u—ug(z)) — pa-
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Hence it is easy to see that assumptions (A1) and (A5) are satisfied. Obviously,
f(z,y,u, p) is convex in (y,u) and

| you, ) = f,y,u )| = |y(pn —py) +ulpe — )| < (L4 ]y (L4 ul)p— |-
Hence (A2) is valid. Since

(46) (fol@y 21, 1) = fo(m, 20, ) (21 — 22) = (y1 — y2)? + y(u1 — u2)?
for all x € Q, z; = (y;,u;) € R? with i = 1,2 and p € R?, it follows that assumption
(A3) is fulfilled with p = 5. Also, (A4) is satisfied with

ar = 1,ax(|p]) = v+ |pa| + |p2l, b1 = ba = 1, Hi(Jul) = 1 + |u|

and
Hy(u]) =1+ |u—ug(x)],0n = ag = 1.

Thus all conditions of Theorem 1.1 are fulfilled. The conclusion is followed.
It is noted that when y4 = 0,uq = 0,y. = 0 a.e. in  then condition (6) is not
satisfied. Therefore in this case, Theorem 4.2 in [2] is not applicable for Example 4.1.
The next example illustrates Theorem 1.1 for the case where the integrand function
f is not a quadratic function.

Example 4.2. Let k =4,p =2, N € {2,3} and €(x) = €9 > 0,6(z) = 0¢(z) ae.
in Q. Here function ¢ € L>°(Q2) and § € R are given. We consider problem Py (A, p)
of finding u € L?(Q2) and y € Y which minimize the cost function

@) Flun) = [ £(u@). u(w). p(w)ds
Q
with the state equation

—Ay+y=u+A; in
(48)
y=20 on 012

and constraints

u(z) > Ao(x) a. e. in
(49) _
eou(z) > dp(x)y(z) + Az(x) a. e. in Q,

where p1 = (pu1, pi2, i, pua) € M = LO(Q)*, (A1, A2, Az) € A = L2(Q) x L>(Q) x
L*>(€2) and function

1

¥ 1
Fyu ) = 5y — m)* + 5 (u—p2)* + 5y — psu)” + pay’®,
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Here v is a positive constant.

Easily, we see that P,(0,0) has a unique optimal solution (y,w) = (0,0) corre-
sponding to (77, \) = (0,0). We shall show that for ¢ small enough, there exist positive
numbers r1, 79 such that for each (1, \) € Bas(0,71) X BA(0, r2), Pa(u, A) satisfies all
conditions of Theorem 1.1. Moreover, there exist positive constants k; with j = 1,2
such that for all (1, \¥) € Bys(0,71) x Ba(0,r9) with i = 1,2, one has

Iy (e, X = (e, Xy + (', AY) = ulp®, X)) g2
1/2 1/2
< Rallat =213+ AT = A7
where (y(p, A), u(p, A)) is the unique solution of Po(u, A).
In fact, since § is small enough, (A5) is valid. Obviously, (A1) —(A2) are satisfied.
It remains to show that (A3) and (A4) are satisfied. We have
oy, u, 1) = (y — m) + (y — pzw) + 3uay?,
fuly, w, p) = v (u— p2) — p3(y — pu).

The Hessian matrix of f in (y,u) is given by

2+ 6y —ps

Jit
A v+ 3

By a detailed computation, we get

FyyFuu = fow =27+ 113 + 6pay (v + p13) > 7,

and
A
y+1  y+1

u € R, |us| <1 and |uy| < 1. This implies that for each

fyy(yu u, M) >2—

forall y € R, |y| < 6(7+1)
w= (p1, o, 3, pta) € R* with |uz| < 1 and |ps| < 1, the function I, ,u) is convex

on (— x R. Moreover, for z; = (y;,u;) € (— X R, 1=

6(y+1)7 6(y+1) 6(7+1)’ 6(v+1)

(1, p2, i3, pra) € R* with 4| < 1, we obtain
(fo(z1, 1) = fo(22, 1)) (21 — 22)
= 2(y1—y2)*+ (v + 1) (w1 —u2)® +3pa (Y7 —y3) (y1 — y2) — 23 (y1 —2) (w1 —u2)
= (11— v2)° (1 +3pa(yr + 1)) + (w1 —u2)® + (y1 — y2 — pa(wy — u2))2
> y(ur — u2)”.
Here we used the fact that
6y 1

— = > 0.
6(v+1) ~y+1

1+ 3ua(yr +y2) >
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Hence (A3) is satisfied. On the other hand we get

and

fy(y,u,O)ZQy, fu(y,u,(]):’yu

for any y,u € R, 1= (i1, ..., pa), 1 = (py,- .-, pty) € R*

Foysu, 1) = fy(yyu, 1) = — (1 — py) — ulps — p5) + 3y° (ha — piy),
Fulsuy 1) = Fulysu, 1) = =y (o — pg) + ulpss — ) (uz + pis) — y(ps — ps)-

Hence (A4) is valid. Thus all assumptions of Theorem 1.1 are fulfilled for Pa(u, A).

10.
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13.
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