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HÖLDER CONTINUITY OF THE SOLUTION MAP TO AN ELLIPTIC
OPTIMAL CONTROL PROBLEM WITH MIXED CONSTRAINTS

V. H. Nhu, N. H. Anh and B. T. Kien

Abstract. The goal of the paper is to investigate the Hölder continuity of the
solution map to a parametric optimal control problem which is governed by el-
liptic equations with mixed control-state constraints and convex cost functions.
By reducing the problem to a programming problem and parametric variational
inequality, we get sufficient conditions under which the solution map is Hölder
continuous in parameters.

1. INTRODUCTION

Let Ω be a bounded domain inRN with the Lipschitz boundary ∂Ω andN ∈ {2, 3}.
We consider the following parametric optimal control problem for the elliptic equations
with mixed control-state constraints:
Find a control function u ∈ Lp(Ω), p ≥ 2 and a state y ∈ H1

0 (Ω) ∩ C(Ω) which
minimize the cost

(1) F (y, u, μ) =
∫

Ω
f(x, y(x), u(x), μ(x))dx

with the state equation

(2)

{
Ay = u + λ1 in Ω
y = 0 on ∂Ω

and pointwise constraints

(3)

{
u ≥ λ2 in Ω
εu ≥ δy + λ3 in Ω,
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where f : Ω × R × R × Rk → R ∪ {+∞} with k ≥ 1, is given function,

μ = (μ1, . . . , μk) ∈ L∞(Ω)k, λ = (λ1, λ2, λ3) ∈ Lp(Ω)× L∞(Ω)× L∞(Ω)

are parameters, A denotes a second-order elliptic operator of the form

Ay(x) = −
N∑

i,j=1

Dj(aij(x)Diy(x)) + a0(x)y(x),

where coefficients aij ∈ L∞(Ω) satisfy the strongly elliptic condition

N∑
i,j=1

aij(x)ξiξj ≥ λA|ξ|2 ∀ξ ∈ RN , a. e. x ∈ Ω

for some λA > 0 and a0 ∈ L∞(Ω), a0(x) ≥ 0 almost everywhere x ∈ Ω, δ ∈ L∞(Ω)
and ε ∈ L∞(Ω).
Let us put

Y = H1
0 (Ω) ∩ C(Ω), U = Lp(Ω), Z = Y × U

and
M = L∞(Ω)k, Λ = Lp(Ω)× L∞(Ω)× L∞(Ω).

The norms of y ∈ Y, μ ∈ M and λ ∈ Λ are defined by

‖y‖Y = ‖y‖H1
0(Ω) + ‖y‖C(Ω), ‖μ‖M = max{‖μi‖L∞(Ω) : 1 ≤ i ≤ k}

and ‖λ‖Λ = ‖λ1‖Lp(Ω) + ‖λ2‖L∞(Ω) + ‖λ3‖L∞(Ω),

respectively.
In the sequel, we denote by BX and BX the open unit ball and the closed unit

ball in a norm space X , respectively. Also, given x ∈ X and δ > 0, BX(x, δ) and
BX(x, δ) stand for an open ball and a closed ball, respectively with center x and radius
δ.
Let us define a set-valued map K : Λ ⇒ Z by setting

K(λ) = {z = (y, u) ∈ Y × U |(2) and (3) are satisfied}.(4)

Then problem (1)-(3) can be formulated in the form

P (μ, λ)

{
F (z, μ) → inf
z ∈ K(λ).

We denote by S(μ, λ) the solution set of P (μ, λ). In this paper, we always assume
that S(μ, λ) = {z}, that is, problem P (μ, λ) has a unique solution z = z(μ, λ) =(
y(μ, λ), u(μ, λ)

)
.
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Our main concern is to investigate the behavior of S(μ, λ) when (μ, λ) varies
around (μ, λ). This problem interested some authors in the last decade. For papers
which have a closed connection to the present work, we refer the readers to [2, 10, 15,
16] and the references given therein. When f is a quadratic function, that is

(5) f(x, y, u, μ) =
1
2
|y − yd(x)|2 +

γ

2
|u− ud(x)|2 − μ1y − μ2u,

where yd and ud are given in L2(Ω), and γ > 0 is a constant, [2, 10] and [15] showed
that the solution map is singleton and Lipschitz continuous in parameters.
It is noted that the obtained result of [10] is for problem with pure state con-

straints, the obtained result of [15] is for problem with pure control constraints while
the obtained result of [2] is for problem with mixed control-state constraints (3) with
ε = ε0, δ = −1 and under additional condition that

(6) ∃σ > 0, Sσ
1 ∩ Sσ

2 = ∅,
where

Sσ
1 := {x ∈ Ω : 0 ≤ u0(x) ≤ σ},

Sσ
2 := {x ∈ Ω : 0 ≤ ε0u0(x) + y0(x) − yc(x) ≤ σ}

with yc ∈ L∞(Ω), (y0, u0) is a solution of P (μ, λ) corresponding to μ = 0 and
λ = (0, 0, yc).
In this paper we continue to develop results of [2] by considering problem (1)-(3)

under weaker conditions and for a larger class of cost functions F , where the integrand
function f is not necessary to be quadratic. Namely, by reducing (1)-(3) to a parametric
variational inequality and using technique in [8] and [18], we will show that, under
certain conditions but without condition (6), the solution map S of problem (1)-(3) is
singleton and Hölder continuous in (μ, λ).
Let us recall some concepts which are related to our problems. Given a function

φ ∈ L2(Ω), a function y ∈ H1
0 (Ω) is called a weak solution of the elliptic partial

differential equation

(7)

{
Ay = φ in Ω,

y = 0 on ∂Ω

if∫
Ω

( N∑
i,j=1

aij(x)Diy(x)Djv(x)+a0(x)y(x)v(x)
)
dx =

∫
Ω

φ(x)v(x)dx ∀v ∈ H1
0 (Ω).

Given a Banach space E and a nonempty closed convex set K in E , the normal
cone to K at a point z0 ∈ Z is define by

N (z0; K) = {z∗ ∈ E∗ : 〈z∗, z − z0〉 ≤ 0, ∀z ∈ K}.
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For definition of normal cones and their properties, we refer the readers to [13, Chapter
4].
Let us impose the following conditions for problem (1)-(3).

(A1) Ω is a bounded domain in RN , N ∈ {2, 3}, with the Lipschitz boundary ∂Ω and
ε, δ ∈ L∞(Ω), ε(x) ≥ ε0 > 0, a.e. x in Ω.

(A2) f(·, y, u, μ) is measurable for all (y, u, μ) ∈ R × R × Rk and f(x, ·, ·, ·) is
continuous a.e. x in Ω. Besides, there exist a positive number ε1 and a continuous
nonnegative function g : Ω × R3 → R such that for all (x, μ) ∈ Ω × Rk with
|μ − μ(x)| ≤ ε1, one has∣∣∣f(

x, y(x), u(x), μ
)− f

(
x, y(x), u(x), μ(x)

)∣∣∣
≤ g

(
x, |y(x)|, |μ|, |μ(x)|)H1

(|u(x)|),
where H1(·) is the following form

H1(t) =
m1∑
i=1

tsi with m1 ≥ 1, 0 ≤ si ≤ p, ∀i = 1, m1.

(A3) There exist constant numbers ε2, ρ > 0 such that for a. e. x ∈ Ω the function
(y, u) �→ f(x, y, u, μ) is continuously differentiable and convex on subset D(x) and
the following condition holds(

fz(x, z1, μ) − fz(x, z2, μ)
)
(z1 − z2) ≥ ρ|u1 − u2|p

for all zi = (yi, ui) ∈ D(x) and for all μ ∈ Rk with |μ − μ(x)| ≤ ε1, where
D(x) = (y(x)− ε2, y(x) + ε2) × R.

(A4) There exist continuous functions ai : Ω×R2 → R, bi : Ω×R3 → R and positive
numbers αi, i = 1, 2 such that∣∣fy(x, y, u, μ(x))

∣∣ ≤ a1

(
x, |y|, |μ(x)|)H1

(|u|),∣∣fu(x, y, u, μ(x))
∣∣ ≤ a2

(
x, |y|, |μ(x)|)H2

(|u|)
for all x ∈ Ω, y, u ∈ R satisfying |y − y(x)| ≤ ε2 and∣∣fy(x, y, u, μ1) − fy(x, y, u, μ2)

∣∣ ≤ b1

(
x, |y|, |μ1|, |μ2|)H1

(|u|)∣∣μ1 − μ2
∣∣α1,∣∣fu(x, y, u, μ1)− fu(x, y, u, μ2)

∣∣ ≤ b2

(
x, |y|, |μ1|, |μ2|)H2

(|u|)∣∣μ1 − μ2
∣∣α2

for all x ∈ Ω, y, u ∈ R, μi ∈ Rk satisfying |μi − μ(x)| ≤ ε1, i = 1, 2, |y − y(x)| ≤ ε2,
where

H2(t) =
m2∑
j=1

tsj with m2 ≥ 1, 0 ≤ sj ≤ p − 1 ∀j = 1, m2.
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Under conditions (A1), (A2) and by Lemma 2.1, for each φ ∈ Lp(Ω), equation
(7) has a unique solution yφ ∈ H1

0 (Ω) ∩ C(Ω) which satisfies the estimation

(8) ‖yφ‖H1
0(Ω) + ‖yφ‖C(Ω) ≤ C‖φ‖Lp(Ω).

In the paper, we also need the following assumption.
(A5) For a.e. x ∈ Ω,

(9) δ(x) ≤ δ0 :=
ε0

4C max{1; |Ω|1/p} ,

where |Ω| is the volume of Ω and C is positive constant which is given in (8).

We now state our main result

Theorem 1.1. Suppose that assumptions (A1) − (A5) are satisfied. Then there
exist a neighborhood M1 × Λ1 of (μ, λ) and a neighborhood Z1 = Y1 × U1 of (y, u)
such that for each (μ, λ) ∈ M1 × Λ1, P (μ, λ) has a unique solution z(μ, λ) =(
y(μ, λ), u(μ, λ)

) ∈ Z1 and the map z(·, ·) is Hölder continuous, that is, there exist
positive constants l1 and l2 such that

‖y(μ1, λ1) − y(μ2, λ2)‖Y + ‖u(μ1, λ1) − u(μ2, λ2)‖Lp(Ω)

≤ l1‖μ1 − μ2‖α/p
M + l2‖λ1 − λ2‖1/p

Λ

for all (μi, λi) ∈ M1 × Λ1 with i = 1, 2. Here α = min{α1, α2}.
In order to prove Theorem 1.1 we will establish some auxiliary results which are

provided in section 2. Section 3 contains the proof of Theorem 1.1. Section 4 is
destined for some examples illustrating Theorem 1.1.

2. AUXILIARY RESULTS

In this section we will give some properties of the set-valued map K : Λ ⇒ Z,
where K(λ) is defined by (4). We begin with the following important result on the
continuity of solutions of PDEs, which is due to E. Casas who did the associated
pionieering work (see [5, Theorem 2.1] and [6, Theorem 2.1]) . For complement, we
provide here a brief proof.

Lemma 2.1. [5, Theorem 2.1] Assume that conditions (A1) and (A2) are satisfied.
Then for each φ ∈ Lp(Ω) equation (7) has a unique weak solution yφ ∈ H1

0 (Ω)∩C(Ω)
which has the a priori estimate

(10) ‖yφ‖H1
0(Ω) + ‖yφ‖C(Ω) ≤ C‖φ‖Lp(Ω),

where C is a constant independent of φ, and if φn ⇀ φ weakly in Lp(Ω) then yφn → yφ

strongly in H1
0 (Ω) ∩ C(Ω). Moreover, the maximum principle holds, that is,

φ ≥ 0 implies yφ ≥ 0.
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Proof. Since φ ∈ Lp(Ω) ↪→ L2(Ω), the Lax-Milgram theorem and G. Stampacchia
(see [7, Theorem 12.4]) imply that (7) has a unique solution yφ ∈ H1

0 (Ω) ∩ L∞(Ω),
and there exists a constant C1 > 0 independent of φ such that

(11) ‖yφ‖H1
0 (Ω) + ‖yφ‖L∞(Ω) ≤ C1‖φ‖W−1,r(Ω),

where 2 ≤ r < 2N
N−2 . The continuity of yφ(·) is followed from [9, Theorem 8.30]. Since

the imbedding L2(Ω) ↪→ W−1,r(Ω) is compact, there exists a constant C independent
of φ such that (10) is satisfied. If φn ⇀ φ weakly in Lp(Ω) then φn → φ strongly in
W−1,r(Ω). Combining this with (11), we see that yφn → yφ strongly inH1

0 (Ω)∩C(Ω).
Finally, by [2, Lemma 2.2], the maximum principle is proved.

From Lemma 2.1, we can define a linear continuous solution mapping

S : Lp(Ω) → Y

φ �→ y,

where y is a unique solution of (7) corresponding to φ.

Lemma 2.2. Under assumptions (A1), (A2) and (A5), for each λ ∈ Λ, K(λ) is
a nonempty and closed convex set in Z.

Proof. For each λ = (λ1, λ2, λ3) ∈ Λ. Obviously, K(λ) is convex. Now we show that
K(λ) is nonempty subset. In fact, we choose u(x) = max{u0;−λ1(x)}, where u0 is
given by

u0 := max
{ε0|Ω|−1/p‖λ1‖Lp(Ω) + 4‖λ3‖L∞(Ω)

3ε0
; ‖λ2‖L∞(Ω)

}
.

This implies u + λ1 = 1
2

(
u0 + λ1 + |u0 + λ1|

) ≥ 0 and u ≥ λ2 in Ω.
Moreover, we set y = S(u + λ1) then (y, u) satisfies (2) and y ≥ 0.
From Lemma 2.1, we get

‖y‖C(Ω) ≤ C‖u + λ1‖Lp(Ω)

≤ C
(‖u0‖Lp(Ω) + ‖λ1‖Lp(Ω)

)
≤ C

(
u0|Ω|1/p + ‖λ1‖Lp(Ω)

)
.

Combining this with (A5) yields

δy + λ3 ≤ δ0‖y‖C(Ω) + ‖λ3‖L∞(Ω)

≤ ε0

4C|Ω|1/p
C

(
u0|Ω|1/p + ‖λ1‖Lp(Ω)

)
+ ‖λ3‖L∞(Ω)

≤ ε0u0

4
+

ε0‖λ1‖Lp(Ω)

4|Ω|1/p
+ ‖λ3‖L∞(Ω).
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On the other hand, since u ≥ u0 ≥ 0 and ε ≥ ε0 > 0,

εu ≥ ε0u0

≥ ε0u0

4
+

1
4
(
ε0|Ω|−1/p‖λ1‖Lp(Ω) + 4‖λ3‖L∞(Ω)

)
.

Hence εu ≥ δy + λ3, and so (y, u) satisfies (3). Consequently, K(λ) �= ∅.
Finally we show that K(λ) is closed.
Indeed. Assume that zn = (yn, un) ∈ K(λ) and zn → z = (y, u) in Z. Then zn →

z in L2(Ω) × Lp(Ω). By passing a subsequence where zn → z as n → ∞ a. e. in Ω
(see, [4, Theorem 4.9, pp. 94]). In other words, there exists a subset B which has
measure zero such that

zn(x) → z(x) =
(
y(x), u(x)

)
for all x ∈ Ω\B as n → ∞.

Since {
un ≥ λ2 in Ω,

εun ≥ δyn + λ3 in Ω,

there exists subset Pn which has measure zero such that{
un(x) ≥ λ2(x) for all x ∈ Ω\Pn,

ε(x)un(x) ≥ δ(x)yn(x) + λ3(x) for all x ∈ Ω\Pn.

Setting T =
⋃

n≥1 Pn∪B, we see that T has measure zero. Letting n → ∞, we obtain
from the above that{

u(x) ≥ λ2(x) for all x ∈ Ω\T,

ε(x)u(x) ≥ δ(x)y(x) + λ3(x) for all x ∈ Ω\T.

Hence z = (y, u) satisfies (3). It remains to prove that (y, u) satisfies (2). In fact, we
set y = S(u + λ1). We then have

‖y − y‖Y ≤ ‖y − yn‖Y + ‖yn − y‖Y

≤ ‖y − yn‖Y + ‖S(un + λ1) − S(u + λ1)|‖Y

≤ ‖y − yn‖Y + C‖un − u‖Lp(Ω).

Letting n → ∞, we obtain y = y. Consequently, (y, u) satisfies (2) and (y, u) ∈ K(λ).
Hence K(λ) is closed. The proof of the lemma is complete.

Lemma 2.3. Under assumptions of Lemma 2.2, the set-valued map K : Λ ⇒ Z is
Lipschitz continuous, that is, there exists a positive constant k such that

(12) K(λ) ⊂ K(β) + k‖λ − β‖ΛBZ , ∀λ, β ∈ Λ.
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Proof. Take any λ = (λ1, λ2, λ3), β = (β1, β2, β3) ∈ Λ. For convenience we put

γ = ‖λ − β‖Λ = ‖λ1 − β1‖Lp(Ω) + ‖λ2 − β2‖L∞(Ω) + ‖λ3 − β3‖L∞(Ω),

τ(x) = γ + |λ1(x)− β1(x)|, θ = max
{
1;

4 + ε0
2ε0

}
.

Taking any zλ = (yλ, uλ) ∈ K(λ), we choose uβ = uλ + θτ and set yβ = S(uβ + β1)
is a unique solution to the following elliptic equation{

Ay = uβ + β1 in Ω,

y = 0 on ∂Ω.

Since uλ ≥ λ2, we have

(13) uβ ≥ β2.

Moreover

yβ = S(uβ + β1) = S(uλ + λ1) + S(θτ + β1 − λ1)
= yλ + σ,

where σ = S(θτ + β1 − λ1). Since θτ + β1 − λ1 ≥ 0, Lemma 2.1 implies that σ ≥ 0.
Hence

εuβ − δyβ − β3

= εuλ − δyλ − λ3 + θετ − δσ + λ3 − β3

≥ θε0τ − δ0‖σ‖C(Ω) − ‖λ3 − β‖L∞(Ω) (because of εuλ − δyλ − λ3 ≥ 0)

≥ θε0τ − δ0C‖θτ + β1 − λ1‖Lp(Ω) − ‖λ3 − β3‖L∞(Ω)

≥ θε0τ − δ0C
[
θ‖τ‖Lp(Ω) + ‖λ1 − β1‖Lp(Ω)

] − ‖λ3 − β3‖L∞(Ω).

This implies

εuβ − δyβ − β3

≥ θε0τ − δ0C
[
θ|Ω|1/pγ + (θ + 1)‖λ1 − β1‖Lp(Ω)

] − ‖λ3 − β3‖L∞(Ω)

≥ θε0τ − 1
4
θε0γ − 1

4
(θ + 1)ε0‖λ1 − β1‖Lp(Ω) − ‖λ3 − β3‖L∞(Ω)

≥ θε0τ − 1
4
ε0(2θ + 1)γ − ‖λ3 − β3‖L∞(Ω)

≥ (θε0 − 1)γ − 1
4
ε0(2θ + 1)γ (because of τ ≥ γ and ‖λ3 − β3‖L∞(Ω) ≤ γ)

≥ 1
4
(2θε0 − 4 − ε0)γ ≥ 0.
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Combining this with (13) yields zβ = (yβ, uβ) satisfying (3). This implies zβ ∈ K(β).
On the other hand, we have

(14)
‖uβ − uλ‖Lp(Ω) = ‖θτ‖Lp(Ω) ≤ θ|Ω|1/pγ + θ‖β1 − λ1‖Lp(Ω)

≤ θ
(|Ω|1/p + 1

)
γ.

By Lemma 2.1,

(15)

‖yβ − yλ‖Y = ‖σ‖Y ≤ C‖θτ + (β1 − λ1)‖Lp(Ω)

≤ C
(
θ‖τ‖Lp(Ω) + ‖β1 − λ1‖Lp(Ω)

)
≤ C

(
θ|Ω|1/pγ + (θ + 1)‖β1 − λ1‖Lp(Ω)

)
≤ C

(
θ|Ω|1/p + (θ + 1)

)
γ.

Combining (14) with (15) we have the following inequality

‖yβ − yλ‖Y + ‖uβ − uλ‖Lp(Ω) ≤ kγ,

where k = θ
(|Ω|1/p + 1

)
+ C

(
θ|Ω|1/p + (θ + 1)

)
. The proof is complete.

3. PROOF OF THE MAIN RESULT

From Lemma 2.3 , we get

K(λ) ⊂ K(λ) + k‖λ − λ‖ΛBZ , ∀λ ∈ Λ.

Fix r0 > 0 such that kr0 ≤ ε2, where ε2 is given in the assumption (A3). Then we
have

(16) K(λ) ∩ (z + ε2BZ) �= ∅, ∀λ ∈ BΛ(λ, r0).

Let us put

Y0 = BY (y, ε2), U0 = BU(u, ε2), Z0 = Y0 × U0,

M0 = BM(μ, ε1) and Λ0 = BΛ(λ, r0).

Easily, we see that

(17) BZ(z, ε2) ⊂ Z0.

Combining this with (16) yields

(18) K(λ) ∩ Z0 �= ∅ ∀λ ∈ Λ0.
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Lemma 3.1. Suppose that assumptions (A1) − (A5) are fulfilled. Then the fol-
lowing assertions hold:

(i) For each μ ∈ M0, the function F (·, μ) is Gâteaux differentiable and its deriva-
tive is given by〈
Fz(z, μ), h

〉
=

〈
Fy(y, u, μ), h1

〉
+

〈
Fu(y, u, μ), h2

〉
=

∫
Ω
fy(x, y(x), u(x), μ(x))h1(x)dx+

∫
Ω
fu(x, y(x), u(x), μ(x))h2(x)dx,

for all h = (h1, h2) ∈ Z. Moreover, Fz(·, ·) is uniformly bounded on Z0 × M0.
(ii) There exists a positive constant l0 such that

(19) ‖Fz(z, μ1) − Fz(z, μ2)‖Z∗ ≤ l0‖μ1 − μ2‖α
M , ∀z ∈ Z0, μ

1, μ2 ∈ M0.

(iii) Fz(·, μ) is strongly monotone, that is

(20)
〈
Fz(z1, μ) − Fz(z2, μ), z1 − z2

〉 ≥ ρ‖u1 − u2‖p
Lp(Ω)

∀z1, z2 ∈ Z0,

where z1 = (y1, u1) and z2 = (y2, z2).

Proof. By (A4), for each μ ∈ M0, the first variation Fz(z, μ)(h) of F (·, μ) at a
point z = (y, u) ∈ Z does exist and defined by

Fz(z, μ)(h) =
〈
Fz(z, μ), h

〉
=

〈
Fy(y, u, μ), h1

〉
+

〈
Fu(y, u, μ), h2

〉
=

∫
Ω
fy(x, y(x), u(x), μ(x))h1(x)dx+

∫
Ω
fu(x, y(x), u(x), μ(x))h2(x)dx,

for all h = (h1, h2) ∈ Z. Obviously, Fz(z, μ)(·) is a linear mapping. We now show
that Fz(·, ·) is uniformly bounded on Z0 × M0.

Indeed. For any z = (y, u) ∈ Z0, we have

‖Fz(z, μ)‖Z∗ ≤ ‖Fy(y, u, μ)‖Y ∗ + ‖Fu(y, u, μ)‖Lq(Ω),(21)

where q is the conjugate number of p.
By the Hölder inequality, there exist constants cj > 0, j = 1, 2 such that∫

Ω
|u|s|h1|dx ≤ c1‖u‖s

Lp(Ω)‖h1‖C(Ω) ≤ c1‖u‖s
Lp(Ω)‖h1‖Y ∀ h1 ∈ Y,

and
∫

Ω
|u|d|h2|dx ≤ c2‖u‖d

Lp(Ω)‖h2‖Lp(Ω) ∀ h2 ∈ Lp(Ω),(22)

where 0 ≤ s ≤ p and 0 ≤ d ≤ p − 1.



HölderContinuity of theSolutionMap to an Elliptic OptimalControl ProblemwithMixedConstraints 1255

By definitions of Hi(i = 1, 2) and (22), there exist positive constants CHi such that∫
Ω

H1(|u|)|h1|dx ≤ CH1H1

(‖u‖Lp(Ω)

)‖h1‖Y ∀ h1 ∈ Y,(23)

and ∫
Ω

H2(|u|)|h2|dx ≤ CH2H2

(‖u‖Lp(Ω)

)‖h2‖Lp(Ω) ∀ h2 ∈ Lp(Ω).(24)

We put

Ai = max
{

ai

(
x, |t1|, |t2|

)
: (x, t1, t2) ∈ Ω × [0, δ1] × [0, δ2]

}
, i = 1, 2,

where δ1 := ‖y‖C(Ω) + ε2, δ2 := ‖μ‖M + ε1.

By (A4),

‖Fy(y, u, μ)‖Y ∗ = sup
{
〈Fy(y, u, μ), h1〉 : h1 ∈ Y, ‖h1‖Y ≤ 1

}
= sup

{ ∫
Ω

fy(x, y(x), u(x), μ(x))h1(x)dx : ‖h1‖Y ≤ 1
}

≤ sup
{ ∫

Ω
a1

(·, |y|, |μ|)H1

(|u|)|h1|dx : ‖h1‖Y ≤ 1
}

≤ A1 sup
{ ∫

Ω
H1

(|u|)|h1|dx : ‖h1‖Y ≤ 1
}
.(25)

Combining (23) with (25) yields

‖Fy(y, u, μ)‖Y ∗ ≤ A1CH1 sup
{

H1

(‖u‖Lp(Ω)

)‖h1‖Y : ‖h1‖Y ≤ 1
}

≤ A1CH1H1

(‖u‖Lp(Ω)

)
≤ A1CH1H1

(‖u‖Lp(Ω) + ε2
)
.(26)

Using similar arguments, we obtain

‖Fu(y, u, μ)‖Lq(Ω) ≤ A2CH2H2

(‖u‖Lp(Ω) + ε2
)
.(27)

Combining (21) with (26) and (27) we conclude that

(28) ‖Fz(z, μ)‖Z∗ ≤ A1CH1H1

(‖u‖Lp(Ω) + ε2
)

+ A2CH2H2

(‖u‖Lp(Ω) + ε2
)
.

On the other hand, for any z = (y, u) ∈ Z0 and μ1, μ2 ∈ M0, we have

‖Fz(z, μ1) − Fz(z, μ2)‖Z∗

≤ ‖Fy(y, u, μ1)− Fy(y, u, μ2)‖Y ∗ + ‖Fu(y, u, μ1) − Fu(y, u, μ2)‖Lq(Ω).(29)
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In the same manner, using (A4), we get

(30)
‖Fy(y, u, μ1) − Fy(y, u, μ2)‖Y ∗ ≤ B1CH1H1

(‖u‖Lp(Ω)

)‖μ1 − μ2‖α1
M

≤ B1CH1H1

(‖u‖Lp(Ω) + ε2
)‖μ1 − μ2‖α1

M

and

(31)
‖Fu(y, u, μ1)− Fu(y, u, μ2)‖Lq ≤ B2CH2H2

(‖u‖Lp(Ω)

)‖μ1 − μ2‖α2
M

≤ B2CH2H2

(‖u‖Lp(Ω) + ε2
)‖μ1 − μ2‖α2

M ,

where Bi := max
{
bi(x, t1, t2, t3) : (x, t1, t2, t3) ∈ Ω × [0, δ1] × [0, δ2]2

}
, i = 1, 2.

From (29)-(31) we deduce that

(32) ‖Fz(z, μ1)− Fz(z, μ2)‖Z∗ ≤ l0‖μ1 − μ2‖α
M ,

where l0 := B1CH1H1

(‖u‖Lp(Ω)+ε2
)
(2ε1)α1−α+B2CH2H2

(‖u‖Lp(Ω)+ε2
)
(2ε1)α2−α.

We obtain assertion (ii).
Since (28) and (32), we get

‖Fz(z, μ)‖Z∗ ≤ ‖Fz(z, μ)− Fz(z, μ)‖Z∗ + ‖Fz(z, μ)‖Z∗

≤ l0‖μ − μ‖α
M +A1CH1H1

(‖u‖Lp(Ω)+ε2
)
+A2CH2H2

(‖u‖Lp(Ω)+ε2
)
.

Hence

(33) ‖Fz(z, μ)‖Z∗ ≤ l,

where l = l0ε
α
1 +A1CH1H1

(‖u‖Lp(Ω) + ε2
)
+A2CH2H2

(‖u‖Lp(Ω) + ε2
)
. This implies

that Fz(·, ·) is uniformly bounded on Z0 × M0. Consequently, the function F (·, μ) is
Gâteaux differentiable for all μ ∈ M0. Hence, assertion (i) is obtained.
Fix any μ ∈ M0. Taking any zi = (yi, ui) ∈ Z0, i = 1, 2, we have

〈
Fz(z1, μ)− Fz(z2, μ), z1 − z2

〉
=

∫
Ω

(
fz(x, z1(x), μ(x))− fz(x, z2(x), μ(x)

)(
z1(x) − z2(x)

)
dx.

From this and (A3) we obtain
〈
Fz(z1, μ)− Fz(z2, μ), z1 − z2

〉 ≥ ρ‖u1 − u2‖p
Lp(Ω)

.

The proof of the lemma is complete.
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Lemma 3.2. Under assumptions of Lemma 3.1, for each (μ, λ) ∈ M0 × Λ0, the
problem

P0(μ, λ)

{
F (z, μ) → inf
z ∈ K(λ) ∩ Z0

has a unique solution.

Proof. Put
ξ = inf

{
F (z, μ) : z ∈ K(λ) ∩ Z0

}
.

Then there exists a sequence zn = (yn, un) ∈ K(λ) ∩ Z0 such that

ξ = lim
n→∞F (zn, μ).

Since {un} is bounded and Lp(Ω) is a reflexive Banach space, we can assume that

un ⇀ û in Lp(Ω).

By Lemma 2.1, we get
yn → ŷ in Y

for some ẑ = (ŷ, û) ∈ Y × Lp(Ω). By Lemma 2.2, K(λ) is a weakly closed set.
Consequently, ẑ = (ŷ, û) ∈ K(λ). Since Z0 is a weakly closed subset, ẑ ∈ Z0. Thus
we get ẑ ∈ K(λ) ∩ Z0 and

(34) F (ẑ, μ) ≥ ξ.

On the other hand, by a property of convex functions, we have

f
(
x, yn(x), un(x), μ(x)

)≥f
(
x, ŷ(x), û(x), μ(x)

)
+

〈
fy

(
x, ŷ(x), û(x), μ(x)

)
, yn(x)−ŷ(x)

〉
+

〈
fu

(
x, ŷ(x), û(x), μ(x)

)
, un(x)−û(x)

〉
.

It follows that

F (yn, un, μ) ≥ F (ŷ, û, μ) +
∫

Ω
fy

(
x, ŷ(x), û(x), μ(x)

)(
yn(x)− ŷ(x)

)
dx

+
∫

Ω
fu

(
x, ŷ(x), û(x), μ(x)

)(
un(x) − û(x)

)
dx.

By (A2) and (A4) we can show that fy(·, ŷ, û, μ) ∈ L2(Ω) and fu(·, ŷ, û, μ) ∈ Lq(Ω).
Letting n → ∞, we obtain from the above that ξ ≥ F (ŷ, û, μ). Combining this with
(34) we have ξ = F (ŷ, û, μ).
We now prove that ξ is finite. To do this we first show that F (z, ·) is bounded on

M0. In fact, for any μ ∈ M0 from (A2), we get
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∣∣∣F (z, μ)− F (z, μ)
∣∣∣ ≤ ∫

Ω

∣∣∣f(
x, y(x), u(x), μ(x)

)− f
(
x, y(x), u(x), μ(x)

)∣∣∣dx

≤
∫

Ω

g
(
x, |y(x)|, |μ(x)|, |μ(x)|)H1

(|u(x)|)dx

≤ η

∫
Ω

H1

(|u(x)|)dx,

≤ ηCH1H1(‖u‖Lp(Ω)),

where

η=max
{

g(x, t1, t2, t3) : (x, t1, t2, t3)∈Ω×[
0, ‖y‖C(Ω)

]×[
0, ‖μ‖M+ε1]×

[
0, ‖μ‖M

]}
.

Consequently,

(35)
∣∣∣F (z, μ)− F (z, μ)

∣∣∣ ≤ ηCH1H1

(‖u‖Lp(Ω)

)
.

We obtain the desired conclusion.
From (35), the uniform boundedness of Fz(·, ·) on Z0 × M0 and the mean value

theorem, for all μ ∈ M0, we get∣∣∣F (ẑ, μ)− F (z, μ)
∣∣∣ ≤ ∣∣∣F (ẑ, μ)− F (z, μ)

∣∣∣ +
∣∣∣F (z, μ) − F (z, μ)

∣∣∣
≤ sup

0≤t≤1
‖Fz

(
z + t(ẑ − z), μ

)‖Z∗‖ẑ − z‖Z+
∣∣∣F (z, μ)−F (z, μ)

∣∣∣
≤ sup

z′∈Z0

‖Fz(z′, μ)‖Z∗‖ẑ − z‖Z + ηCH1H1

(‖u‖Lp(Ω)

)
< +∞.

This implies that
∣∣F (ẑ, μ)

∣∣ < +∞ and so ξ is finite.
It remains to show that problem P0(μ, λ) has a unique solution. Indeed, we assume
that zi(μ, λ) =

(
yi(μ, λ), ui(μ, λ)

)
, i = 1, 2 are solutions of P0(μ, λ). It follows that〈

Fz

(
zi(μ, λ), μ

)
, z − zi(μ, λ)

〉 ≥ 0 ∀z ∈ K(λ) ∩ Z0, i = 1, 2.

Hence 〈
Fz

(
z1(μ, λ), μ

)− Fz

(
z2(μ, λ), μ

)
, z1(μ, λ)− z2(μ, λ)

〉 ≤ 0.

From this and (iii) of Lemma 3.1, we get

0 ≥ 〈
Fz

(
z1(μ, λ), μ

)− Fz

(
z2(μ, λ), μ

)
, z1(μ, λ)− z2(μ, λ)

〉
≥ ρ‖u1(μ, λ)− u2(μ, λ)‖p

Lp(Ω).

It follows u1(μ, λ) = u2(μ, λ). Since yi(μ, λ) = S
(
ui(μ, λ) + λ1

)
and Lemma 2.1,

we obtain y1(μ, λ) = y2(μ, λ). Hence z1(μ, λ) = z2(μ, λ). This proves the lemma.
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Proof of Theorem 1.1. For each (μ, λ) ∈ M0 × Λ0, due to Lemma 3.2, problem
P0(μ, λ) has a unique solution z(μ, λ) =

(
y(μ, λ), u(μ, λ)

) ∈ K(λ) ∩ Z0. Since
P0(μ, λ) is a convex problem, it must hold

(36) 0 ∈ Fz

(
z(μ, λ), μ

)
+ N

(
z(μ, λ); K(λ)∩ Z0

)
.

It is equivalent to the variational inequality

(37)
〈
Fz

(
z(μ, λ), μ

)
, z − z(μ, λ)

〉 ≥ 0 ∀z ∈ K(λ) ∩ Z0, μ ∈ M0, λ ∈ Λ0.

We first show that the solution mapping z(·, ·) is continuous at (μ, λ).
In fact, fix any (μ, λ) ∈ M0 ×Λ0. By the Lipschitz continuous property of K(·), there
exists an element z1 ∈ K(λ) such that

‖z(μ, λ)− z1‖Z ≤ k‖λ − λ‖Λ ≤ ε2.

Putting λ = λ and β = λ in (12), we see that there exists z2 ∈ K(λ) such that

‖z − z2‖Z ≤ k‖λ − λ‖Λ ≤ ε2.

Since z and z(μ, λ) are solutions of P (μ, λ) and P (μ, λ), respectively, it follows that

〈Fz(z, μ), z1 − z〉 ≥ 0 and 〈Fz(z(μ, λ), μ), z2 − z(μ, λ)〉 ≥ 0.

By (ii) and (iii) of Lemma 3.1, and using (33), we have

(38)

ρ‖u(μ, λ)− u‖p
Lp(Ω)

≤ 〈
Fz

(
z(μ, λ), μ

)− Fz(z, μ), z(μ, λ)− z
〉

≤ 〈
Fz

(
z(μ, λ), μ

)− Fz(z, μ), z(μ, λ)− z
〉

+
〈
Fz(z, μ), z1 − z

〉
+

〈
Fz

(
z(μ, λ), μ

)
, z2 − z(μ, λ)

〉
=

〈
Fz

(
z(μ, λ), μ

)
, z2 − z

〉
+

〈
Fz(z, μ), z1 − z(μ, λ)

〉
+

〈
Fz(z, μ) − Fz(z, μ), z1 − z

〉
≤ ‖Fz(z(μ, λ), μ)‖Z∗‖z2 − z‖Z + ‖Fz(z, μ)‖Z∗‖z1 − z(μ, λ)‖Z

+‖Fz(z, μ) − Fz(z, μ)‖Z∗‖z1 − z‖Z

≤ 2lk‖λ − λ‖Λ + l0‖z1 − z‖Z‖μ − μ‖α
M .

On the other hand

‖z1 − z‖Z ≤ ‖z1 − z(μ, λ)‖Z + ‖z(μ, λ)− z‖Z ≤ ε2 + 2ε2 = 3ε2.
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Hence (38) implies that

(39) ‖u(μ, λ)− u‖p
Lp(Ω) ≤

2lk

ρ
‖λ − λ‖Λ +

3ε2l0
ρ

‖μ − μ‖α
M .

From Lemma 2.1, it follows that

‖y(μ, λ)− y‖Y ≤ C‖u(μ, λ) + λ1 − u − λ1‖Lp(Ω)

≤ C
(
‖u(μ, λ)− u‖Lp(Ω) + ‖λ1 − λ1‖Lp(Ω)

)
≤ C

(
‖u(μ, λ)− u‖Lp(Ω) + ‖λ − λ‖Λ

)
.

Combining this with (39), we can assert that there exist positive constants C1, C2

satisfying

‖y(μ, λ)− y‖Y + ‖u(μ, λ)− u‖Lp(Ω) ≤ C1‖μ − μ‖α/p
M + C2‖λ − λ‖1/p

Λ .(40)

This implies that ‖z(μ, λ)− z(μ, λ)‖Z → 0 as (μ, λ) → (μ, λ). We obtain the desired
property. It remains to show that the solution mapping z(·, ·) is Hölder continuous in a
neighborhood of (μ, λ). From (40) we can choose neighborhoods M1 ⊂ M0 of μ and
Λ1 ⊂ Λ0 of λ such that z(μ, λ) ∈ intBZ(z, ε2), for all μ ∈ M1, λ ∈ Λ1. Combining
this with (17) yields

N
(
z(μ, λ); K(λ)

)
= N

(
z(μ, λ); K(λ)∩ Z0

) ∀μ ∈ M1, λ ∈ Λ1.

From this and (36) we obtain

0 ∈ Fz

(
z(μ, λ), μ

)
+ N

(
z(μ, λ); K(λ)

) ∀μ ∈ M1, λ ∈ Λ1.

This is equivalent to〈
Fz

(
z(μ, λ), μ

)
, z − z(μ, λ)

〉 ≥ 0 ∀z ∈ K(λ), μ ∈ M1, λ ∈ Λ1.

Consequently, for each (μ, λ) ∈ M1 × Λ1, z(μ, λ) is the unique solution of P (μ, λ).
Let (μ1, λ1), (μ2, λ2) ∈ M1 ×Λ1. Putting λ = λ1 and β = λ2 in (12), we can find an
element ζ2 ∈ K(λ2) such that

‖z(μ1, λ1) − ζ2‖Z ≤ k‖λ1 − λ2‖Λ.

Also, replacing λ = λ2 and β = λ1 in (12), we can find an element ζ1 ∈ K(λ1) such
that

‖z(μ2, λ2) − ζ1‖Z ≤ k‖λ1 − λ2‖Λ.

Besides, we have

〈Fz(z(μ1, λ1), μ1), ζ1−z(μ1, λ1)〉 ≥ 0 and 〈Fz(z(μ2, λ2), μ2), ζ2−z(μ2, λ2)〉 ≥ 0.
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Combining these with the strong monotonicity of Fz(·, μ1) (see Lemma 3.1), we have

(41)

ρ‖u(μ1, λ1) − u(μ2, λ2)‖p
Lp

≤ 〈Fz(z(μ1, λ1), μ1)− Fz(z(μ2, λ2), μ1), z(μ1, λ1) − z(μ2, λ2)〉
≤ 〈Fz(z(μ1, λ1), μ1)− Fz(z(μ2, λ2), μ1), z(μ1, λ1) − z(μ2, λ2)〉

+〈Fz(z(μ1, λ1), μ1), ζ1−z(μ1, λ1)〉+〈Fz(z(μ2, λ2), μ2), ζ2−z(μ2, λ2)〉
= 〈Fz(z(μ1, λ1), μ1), ζ1−z(μ2, λ2)〉+ 〈Fz(z(μ2, λ2), μ2), ζ2−z(μ1, λ1)〉

+〈Fz(z(μ2, λ2), μ2) − Fz(z(μ2, λ2), μ1), z(μ1, λ1) − z(μ2, λ2)〉
≤ 2lk‖λ1 − λ2‖Λ + 2ε2‖Fz(z(μ2, λ2), μ2) − Fz(z(μ2, λ2), μ1)‖Z∗

≤ 2lk‖λ1 − λ2‖Λ + 2ε2l0‖μ1 − μ2‖α
M .

Here we used the fact that

‖z(μ1, λ1)− z(μ2, λ2)‖Z ≤ ‖z(μ1, λ1)− z‖Z + ‖z − z(μ2, λ2)‖Z ≤ 2ε2.

Using the inequality (a + b)s ≤ (as + bs), where a, b ≥ 0 and 0 < s ≤ 1 (see [12,
Inequality 2.12.2, p.32]), it follows from (41) that

(42)
‖u(μ1, λ1)− u(μ2, λ2)‖Lp(Ω)

≤ (2ε2l0ρ
−1)1/p‖μ1 − μ2‖α/p

M + (2lkρ−1)1/p‖λ1 − λ2‖1/p
Λ .

By Lemma 2.1, we obtain

‖y(μ1, λ1)− y(μ2, λ2)‖Y

≤ C‖u(μ1, λ1)− u(μ2, λ2) + (λ1
1 − λ2

1)‖Lp(Ω)

≤ C
(‖u(μ1, λ1) − u(μ2, λ2)‖Lp(Ω) + ‖λ1 − λ2‖Λ

)
≤ C(2ε2l0ρ

−1)1/p‖μ1 − μ2‖α/p
M + C

(
(2lkρ−1)1/p + ‖λ1 − λ2‖1−1/p

Λ

)‖λ1 − λ2‖1/p
Λ

≤ C(2ε2l0ρ
−1)1/p‖μ1 − μ2‖α/p

M + C
(
(2lkρ−1)1/p + (2r0)1−1/p

)‖λ1 − λ2‖1/p
Λ .

Combining this with (42) yields

‖y(μ1, λ1) − y(μ2, λ2)‖Y + ‖u(μ1, λ1) − u(μ2, λ2)‖Lp(Ω)

≤ l1‖μ1 − μ2‖α/p
M + l2‖λ1 − λ2‖1/p

Λ ,

where l1 := (1 + C)(2ε2cρ
−1)1/p and l2 := (1 + C)(2lkρ−1)1/p + C(2r0)1−1/p. The

proof of Theorem 1.1 is complete.
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4. SOME EXAMPLES

In this section we will give some examples which illustrate Theorem 1.1.

Example 4.1. Suppose that k = 2, p = 2, N ∈ {2, 3}, ε = ε0 > 0 and δ = −1
a.e. in Ω. We consider the problem P1(μ, λ) of finding u ∈ L2(Ω) and y ∈ Y which
minimize the cost function

(43) F (y, u, μ) =
1
2
‖y − yd‖2

L2(Ω) +
γ

2
‖u − ud‖2

L2(Ω) −
∫

Ω
yμ1dx −

∫
Ω

uμ2dx

with the state equation

(44)

{
Ay = u + λ1 in Ω
y = 0 on ∂Ω

and pointwise constraints

(45)

{
u ≥ λ2 in Ω
ε0u + y ≥ λ3 in Ω,

where Ω is a bounded domain in RN with the Lipschitz boundary ∂Ω, yd, ud ∈
L2(Ω), μ = (μ1, μ2) ∈ M, λ = (λ1, λ2, λ3) ∈ Λ with M = L∞(Ω)2, Λ = L2(Ω) ×
L∞(Ω)× L∞(Ω) and A is a strongly elliptic operator.
For (μ, λ) = (0, 0), by [2, Lemma 2.4], P1(0, 0) has a unique solution.
Then all conditions of Theorem 1.1 are satisfied. Moreover, there exist positive

constants rj, kj with j = 1, 2 such that for all (μi, λi) ∈ BM (0, r1) × BΛ(0, r2) with
i = 1, 2, one has

‖y(μ1, λ1) − y(μ2, λ2)‖Y + ‖u(μ1, λ1) − u(μ2, λ2)‖L2(Ω)

≤ k1‖μ1 − μ2‖1/2
M + k2‖λ1 − λ2‖1/2

Λ ,

where (y(μ, λ), u(μ, λ)) is the unique solution of P1(μ, λ).

In fact, in this case we have

F (y, u, μ) =
∫

Ω
f(x, y(x), u(x), μ(x))dx,

where f(x, y, u, μ) = 1
2 |y − yd(x)|2 + γ

2 |u − ud(x)|2 − yμ1 − uμ2 or

fy(x, y, u, μ) = (y − yd(x))− μ1,

fu(x, y, u, μ) = γ(u− ud(x))− μ2.
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Hence it is easy to see that assumptions (A1) and (A5) are satisfied. Obviously,
f(x, y, u, μ) is convex in (y, u) and∣∣f(x, y, u, μ)−f(x, y, u, μ

′
)
∣∣ =

∣∣y(μ1−μ
′
1)+u(μ2−μ

′
2)

∣∣ ≤ (1+ |y|)(1+ |u|)|μ−μ
′|.

Hence (A2) is valid. Since

(46)
(
fz(x, z1, μ)− fz(x, z2, μ)

)
(z1 − z2) = (y1 − y2)2 + γ(u1 − u2)2

for all x ∈ Ω, zi = (yi, ui) ∈ R2 with i = 1, 2 and μ ∈ R2, it follows that assumption
(A3) is fulfilled with ρ = γ. Also, (A4) is satisfied with

a1 = 1, a2(|μ|) = γ + |μ1|+ |μ2|, b1 = b2 = 1, H1(|u|) = 1 + |u|
and

H2(|u|) = 1 + |u − ud(x)|, α1 = α2 = 1.

Thus all conditions of Theorem 1.1 are fulfilled. The conclusion is followed.
It is noted that when yd = 0, ud = 0, yc = 0 a.e. in Ω then condition (6) is not

satisfied. Therefore in this case, Theorem 4.2 in [2] is not applicable for Example 4.1.
The next example illustrates Theorem 1.1 for the case where the integrand function

f is not a quadratic function.

Example 4.2. Let k = 4, p = 2, N ∈ {2, 3} and ε(x) = ε0 > 0, δ(x) = δφ(x) a.e.
in Ω. Here function φ ∈ L∞(Ω) and δ ∈ R are given. We consider problem P2(λ, μ)
of finding u ∈ L2(Ω) and y ∈ Y which minimize the cost function

(47) F (u, μ) =
∫

Ω

f(y(x), u(x), μ(x))dx

with the state equation

(48)

⎧⎨
⎩
−Δy + y = u + λ1 in Ω

y = 0 on ∂Ω

and constraints

(49)

⎧⎨
⎩

u(x) ≥ λ2(x) a. e. in Ω

ε0u(x) ≥ δφ(x)y(x) + λ3(x) a. e. in Ω,

where μ = (μ1, μ2, μ3, μ4) ∈ M = L∞(Ω)4, (λ1, λ2, λ3) ∈ Λ = L2(Ω) × L∞(Ω) ×
L∞(Ω) and function

f(y, u, μ) =
1
2
(y − μ1)2 +

γ

2
(u − μ2)2 +

1
2
(y − μ3u)2 + μ4y

3.



1264 V. H. Nhu, N. H. Anh and B. T. Kien

Here γ is a positive constant.
Easily, we see that P2(0, 0) has a unique optimal solution (y, u) = (0, 0) corre-

sponding to (μ, λ) = (0, 0). We shall show that for δ small enough, there exist positive
numbers r1, r2 such that for each (μ, λ) ∈ BM (0, r1)×BΛ(0, r2), P2(μ, λ) satisfies all
conditions of Theorem 1.1. Moreover, there exist positive constants kj with j = 1, 2
such that for all (μi, λi) ∈ BM (0, r1)× BΛ(0, r2) with i = 1, 2, one has

‖y(μ1, λ1) − y(μ2, λ2)‖Y + ‖u(μ1, λ1) − u(μ2, λ2)‖L2(Ω)

≤ k1‖μ1 − μ2‖1/2
M + k2‖λ1 − λ2‖1/2

Λ ,

where (y(μ, λ), u(μ, λ)) is the unique solution of P2(μ, λ).

In fact, since δ is small enough, (A5) is valid. Obviously, (A1)−(A2) are satisfied.
It remains to show that (A3) and (A4) are satisfied. We have

fy(y, u, μ) = (y − μ1) + (y − μ3u) + 3μ4y
2,

fu(y, u, μ) = γ(u− μ2) − μ3(y − μ3u).

The Hessian matrix of f in (y, u) is given by

Hf (y, u) =
[
2 + 6μ4y −μ3

−μ3 γ + μ2
3

]
.

By a detailed computation, we get

fyyfuu − f2
yu = 2γ + μ2

3 + 6μ4y(γ + μ2
3) ≥ γ,

and
fyy(y, u, μ) ≥ 2 − γ

γ + 1
=

γ + 2
γ + 1

for all y ∈ R, |y| ≤ γ
6(γ+1) , u ∈ R, |μ3| ≤ 1 and |μ4| ≤ 1. This implies that for each

μ = (μ1, μ2, μ3, μ4) ∈ R4 with |μ3| ≤ 1 and |μ4| ≤ 1, the function f(·, ·, μ) is convex
on

(− γ
6(γ+1) ,

γ
6(γ+1)

)×R. Moreover, for zi = (yi, ui) ∈
(− γ

6(γ+1) ,
γ

6(γ+1)

)×R, μ =
(μ1, μ2, μ3, μ4) ∈ R4 with |μ4| ≤ 1, we obtain(

fz(z1, μ)− fz(z2, μ)
)
(z1 − z2)

= 2(y1−y2)2+(γ + μ2
3)(u1−u2)2+3μ4(y2

1−y2
2)(y1−y2)−2μ3(y1−y2)(u1−u2)

=
(
y1 − y2)2(1 + 3μ4(y1 + y2)

)
+ γ(u1 − u2)2 +

(
y1 − y2 − μ3(u1 − u2)

)2

≥ γ(u1 − u2)2.

Here we used the fact that

1 + 3μ4(y1 + y2) ≥ 1 − 6γ

6(γ + 1)
=

1
γ + 1

> 0.
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Hence (A3) is satisfied. On the other hand we get

fy(y, u, 0) = 2y, fu(y, u, 0) = γu

and for any y, u ∈ R, μ = (μ1, . . . , μ4), μ
′
= (μ

′
1, . . . , μ

′
4) ∈ R4

fy(y, u, μ)− fy(y, u, μ
′
) = −(μ1 − μ

′
1) − u(μ3 − μ

′
3) + 3y2(μ4 − μ

′
4),

fu(y, u, μ)− fu(y, u, μ
′
) = −γ(μ2 − μ

′
2) + u(μ3 − μ

′
3)(μ3 + μ

′
3) − y(μ3 − μ

′
3).

Hence (A4) is valid. Thus all assumptions of Theorem 1.1 are fulfilled for P2(μ, λ).
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15. K. Malanowski and F. Tröltzsch, Lipschitz stability of solutions to parametric optimal
control for elliptic equations, Control Cybern., 29 (2000), 237-256.
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