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OPENNESS OF MULTIPLICATION IN SOME FUNCTION SPACES

Marek Balcerzak, Adam Majchrzycki and Artur Wachowicz

Abstract. We show that, for several function Banach spaces, multiplication
considered as a bilinear continuous surjection is an open mapping. In particular,
we prove that multiplication from Lp×Lq to L1 (for p, q ∈ [1,∞], 1/p+1/q = 1)
is open.

1. INTRODUCTION

Let X and Y be topological spaces. A mapping f : X → Y is called open if the
image f [U ] is open for each open set U ⊆ X . We say that f is open at a point x0 ∈ X
(cf. [1]) whenever f(x0) ∈ int f [U ] for every open neighbourhood U of x0. It easily
follows that f is open if and only if f is open at every point of X .
The Banach open mapping principle, a classical result in functional analysis, states

that every continuous linear surjection between two Banach spaces is an open mapping.
This theorem has been generalized in several papers (see [9]). One can ask about an
extension of the Banach principle to the bilinear case. Such an extension is not valid
in general. See [11, Chapter 2, Exercise 11] where a simple counterexample is given,
compare also with [4, 6] and [5]. Thus it would be interesting to establish which
bilinear continuous surjections T : X × Y → Z (for Banach spaces X, Y, Z) are open
mappings. In some function spaces, multiplication is a natural bilinear continuous
surjection, however it need not be an open mapping. Namely, if X = C[0, 1] denotes
the Banach space of all real-valued continuous functions on [0, 1], with the supremum
norm, then multiplication fromX2 intoX is not open at (f, f) where f(x) = x−(1/2),
x ∈ [0, 1] (see [2]). For some further discussion on that topic, see [7, 13, 8, 3, 1].
The aim of this paper is to show several examples of function spaces in which

multiplication being a bilinear continuous surjection is an open mapping. In fact, we
also consider a strong version of openness.
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If X and Y are metric spaces, the openness of f : X → Y at x0 ∈ X means that

∀ε > 0 ∃δ > 0 B(f(x0), δ) ⊆ f [B(x0, ε)]

where B(z, η) denotes the ball with centre z and radius η in the respective space. We
say that f is uniformly open whenever

∀ε > 0 ∃δ > 0 ∀x ∈ X B(f(x), δ) ⊆ f [B(x, ε)].

Note that arctan is a function from R into R which is open but not uniformly open.
Indeed, for every δ > 0 we can find x ∈ R such that (arctanx − δ, arctanx+ δ) is
not included in Jx = (arctan(x− 1), arctan(x+ 1)) since the length of Jx tends to 0
if x tends to ∞.
It follows from [2, Prop. 1] that, for every normed spaceX , addition is a uniformly

open mapping from X2 into X . Also by [2, Prop. 2], minimum and maximum are
uniformly open mappings from C[0, 1]×C[0, 1] into C[0, 1] (the same holds when they
are considered as functions from R

2 into R). Note that, in the Banach open mapping
principle, we can state the uniform openness in its assertion since the global openness
of a linear operator is equivalent to the openness at zero.

2. RESULTS

First, we will show that multiplication as a function from R
2 into R is a uniformly

open mapping. The idea of this proof will be then repeated in a modified way. For
U, V ⊆ R, write U · V = {xy : x ∈ U, y ∈ V }. The same notation will be used for
the respective Banach spaces.

Proposition 1. Multiplication as a function from R
2 into R is a uniformly open

mapping.

Proof. Fix ε > 0, (x0, y0) ∈ R
2 and put U = (x0−ε, x0+ε), V = (y0−ε, y0+ε).

Define δ = ε2/4 and let z ∈ (x0y0 − δ, x0y0 + δ). Consider three cases:

10 |x0| > ε/4. Put x = x0 and y = z/x0. Then z = xy and x ∈ U . Also y ∈ V

since
|y − y0| =

|z − x0y0|
|x0| <

δ

ε/4
= ε.

20 |y0| > ε/4 – analogous to 10.

30 |x0| ≤ ε/4 and |y0| ≤ ε/4. Put x =
√|z|, y =

√|z| sgn z. Then z = xy and

|x−x0| ≤ |x|+|x0| ≤
√

|z|+ ε

4
≤
√

|z − x0y0|+
√

|x0y0|+ ε

4
<
ε

2
+
ε

4
+
ε

4
= ε.

Hence x ∈ U and similarly, y ∈ V .
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So, we have (x0y0 − δ, x0y0 + δ) ⊆ U · V which ends the proof.
Now, we will show that multiplication is an open mapping in several Banach spaces

of real-valued bounded functions equipped with the norm ||f || = supx∈X |f(x)|.
Theorem 2. Multiplication is a uniformly open mapping as a function from Y 2 into

Y where Y denotes the Banach space of all real-valued bounded functions measurable
with respect to a given σ-algebra S of subsets of a nonempty set X . In particular, Y
can be considered as:

• the space of all real-valued bounded functions on a nonempty set X;
• the space of all bounded Borel measurable functions on a metrizable space X .
Proof. Fix ε > 0 and f0, g0 ∈ Y . Put U = B(f0, ε), V = B(g0, ε) and

h0 = f0g0. Define δ = ε2/5. We will show that B(h0, δ) ⊆ U · V . So, let h ∈
B(h0, δ). Define F = {x ∈ X : |f0(x)| > ε/4}, G = {x ∈ X \ F : |g0(x)| > ε/4},
H = X \ (F ∪G). These sets are in S and they form a partition of X . Then define
functions f and g on X as follows:

• for each x ∈ F put f(x) = f0(x) and g(x) = h(x)/f0(x);
• for each x ∈ G put f(x) = h(x)/g0(x) and g(x) = g0(x);
• for each x ∈ H put f(x) =

√|h(x)| and g(x) =
√|h(x)| · sgn(h(x)).

We have h = fg. We infer that ||f − f0|| < ε and ||g − g0|| < ε which shows
that h ∈ U · V . Indeed, if x ∈ F then |f(x) − f0(x)| = 0 and |g(x) − g0(x)| =
|h(x)−h0(x)|/|f0(x)| < (ε2/5)/(ε/4) = 4ε/5. If x ∈ G, we proceed similarly. Now,
let x ∈ H . We have

|f(x)− f0(x)| ≤ |f(x)|+ |f0(x)| ≤
√
|h(x)|+ ε/4

≤
√

||h− h0||+
√
|h0(x)|+ ε/4 < ε/

√
5 + ε/4 + ε/4.

Similarly, for |g(x)− g0(x)|.
Of course, multiplication considered in Theorem 2 is a continuous surjection. Now,

let X be a fixed metrizable space. By Σ0
α, α < ω1, we denote the respective countably

additive classes of Borel subsets of X . So, Σ0
1 = open sets, Σ0

2 = Fσ , Σ0
3 = Gδσ, etc.

(see [12]). We say that a function f : X → R is Borel measurable of class α whenever
the preimage f−1[U ] is in Σ0

1+α for every open set U ⊆ R (cf. [12]). For an ordinal
α, 1 ≤ α < ω1, consider the Banach space bBorα of all bounded functions on X that
are Borel measurable of class α. It is known that fg ∈ bBorα for all f, g ∈ bBorα,
and multiplication is a continuous surjection from bBorα × bBorα into bBorα.
In the proof of the following theorem, we mimic some trick of Komisarski [7,

p. 150]. In fact, from the proof of his result it follows that multiplication from
C(K) × C(K) into C(K) is a uniformly open mapping, provided that K is a zero-
dimensional compact space.
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Theorem 3. For an arbitrary α, 1 ≤ α < ω1, let Y = bBorα. Then multiplication
as a function from Y 2 into Y is a uniformly open mapping.

Proof. We start with the same notation that was used in the previous proof. Let
ε > 0. Again put δ = ε2/5. We will show that B(h0, δ) ⊆ U ·V . So, let h ∈ B(h0, δ).
Define

F0 = {x ∈ X : |f0(x)| > ε/4}, G0 = {x ∈ X : |g0(x)| > ε/4},

H0 = {x ∈ X : |f0(x)| < ε/3 and |g0(x)| < ε/3}.
The sets F0, G0, H0 are in Σ0

1+α and F0 ∪G0 ∪H0 = X . By the reduction theorem
(see [12, Thm 3.6.10]) pick pairwise disjoint sets F , G, H in Σ0

1+α such that F ⊆ F0,
G ⊆ G0, H ⊆ H0 and F ∪G ∪H = X . Define functions f and g on the sets F , G
and H as in the previous proof. We have h = fg. The argument for ||f − f0|| < ε

and ||g− g0|| < ε is similar to that in the previous proof but if x ∈ H , the calculation
is a bit subtler:

|f(x)− f0(x)| ≤ |f(x)|+ |f0(x)| ≤
√
|h(x)|+ ε/3

≤
√

||h− h0||+ |h0(x)|+ ε/3 < ε
√

14/45 + ε/3.

It remains to show that f and g are in bBorα. It suffices to prove that their restrictions
to the sets F , G, H are Borel measurable of class α. In fact, we should check what
happens with f |H and g|H . Recall that the composition ψ ◦ ϕ of a function ϕ being
Borel measurable of class α with a continuous function ψ is Borel measurable of class
α. Thus we need only to check g|H. For c ∈ R define Ac = (g|H)−1[(−∞, c)] and
Ac = (g|H)−1[(c,∞)]. Then Ac equals to {x ∈ H : h(x) < c2} if c > 0, and it equals
to {x ∈ H : h(x) < 0 and −√|h(x)| < c} if c ≤ 0. Hence Ac is in Σ0

1+α. The
argument for Ac is similar.

From now on, fix a measure space (X, S, μ) where μ is a measure on the σ-algebra
S of subsets of X . Let p, q ∈ (1,∞), 1/p+ 1/q = 1. By H"older’s inequality∫

X
|fg| ≤

(∫
X
|f |p

)1/p(∫
X
|g|q
)1/q

for f ∈ Lp, g ∈ Lq, it follows that multiplication Φ: Lp × Lq → L1, Φ(f, g) = fg, is
a bilinear continuous mapping. Also Φ is a surjection since for every h ∈ L1 we pick
f = |h|1/p, g = |h|1/q sgn(h), and then f ∈ Lp, g ∈ Lq, fg = h. Similarly, one can
show that multiplication Φ: L1 × L∞ → L1 is a continuous bilinear surjection.
If Z ∈ S , we will denote by Lp(Z) the respective Banach space of functions

defined on Z.
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Theorem 4. For any p, q ∈ [1,∞] with 1/p + 1/q = 1, multiplication Φ: Lp ×
Lq → L1, Φ(f, g) = fg, is an open mapping.

Proof. For p ∈ [1,∞], denote by Bp(f, r) a ball in Lp. Let p, q ∈ [1,∞] with
1/p + 1/q = 1. Fix (f0, g0) ∈ Lp × Lq and ε > 0. We will find δ > 0 such that
B1(f0g0, δ) ⊆ Bp(f0, ε) · Bq(g0, ε) which shows that Φ is open at (f0, g0).

Case 1. Assume that 0 < μ(X) <∞. For simplicity, let μ(X) = 1, ε ∈ (0, 1).
First assume that p, q ∈ (1,∞). We will find δ > 0 such that for each h ∈ L1 with∫

Ω |h−f0g0| < δ we have h = fg for some f ∈ Lp, g ∈ Lq with (
∫
X |f−f0|p)1/p < ε,

(
∫
X |g − g0|q)1/q < ε. By the absolute continuity of integrals, pick δ0 ∈ (0, 1) such

that for each H ∈ S with μ(H) < δ0 we have

(1)

(∫
H
|f0|p

)1/p

<
ε

13
,

(∫
H
|g0|q

)1/q

<
ε

13
,∫

H
|f0g0| < min

{( ε
13

)p
,
( ε

13

)q}
.

Define
δ = δ0 min

{( ε
13

)p2

,
( ε

13

)q2
}
.

Let h ∈ L1,
∫
X |h−f0g0| < δ. Consider the following sets in S which form a partition

of X :

A =
{
x ∈ X : |f0(x)| ≤

( ε
13

)p
and |g0(x)| ≤

( ε
13

)q}
,

B =
{
x ∈ X : |f0(x)| >

( ε
13

)p
and |h(x)− (f0g0)(x)|q−1 > |f0(x)|q

}
,

C =
{
x ∈ X : |f0(x)| >

( ε
13

)p
and |h(x)− (f0g0)(x)|q−1 ≤ |f0(x)|q

}
,

D =
{
x ∈ X \ (B ∪C) : |g0(x)| >

( ε
13

)q
and |h(x)− (f0g0)(x)|p−1 > |g0(x)|p

}
,

E =
{
x ∈ X \ (B ∪C) : |g0(x)| >

( ε
13

)q
and |h(x)− (f0g0)(x)|p−1 ≤ |g0(x)|p

}
.

For each x ∈ A ∪ B ∪ D define f(x) = |h(x)|1/p and g(x) = |h(x)|1/q sgn(h(x)).
Then h(x) = f(x)g(x). Since ε ∈ (0, 1), for each x ∈ A we have

|(f0g0)(x)| ≤ min
{( ε

13

)p
,
( ε

13

)q}
.

Hence

(2)

(∫
A
|f − f0|p

)1/p

≤
(∫

A
|f |p

)1/p

+
(∫

A
|f0|p

)1/p

≤
(∫

A
|h|
)1/p

+
ε

13

≤
(∫

A
|h− f0g0|

)1/p

+
(∫

A
|f0g0|

)1/p

+
ε

13
< δ1/p +

2ε
13

≤ 3ε
13
.
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Similarly,

(3)
(∫

A
|g − g0|q

)1/q

<
3ε
13
.

Note that q/(q − 1) = p. Hence for each x ∈ B we have

|h(x)− (f0g0)(x)|> |f0(x)|q/(q−1) >
( ε

13

)p2

and
( ε

13

)p2

μ(B)≤
∫

B

|h− f0g0|<δ.

Thus μ(B) < (13/ε)p2
δ ≤ δ0. Then by (1) we have

(4)

(∫
B
|f − f0|p

)1/p

≤
(∫

B
|f |p

)1/p

+
(∫

B
|f0|p

)1/p

<

(∫
B
|h|
)1/p

+
ε

13

≤
(∫

B
|h− f0g0|

)1/p

+
(∫

B
|f0g0|

)1/p

+
ε

13
< δ1/p +

2ε
13

≤ 3ε
13
.

Analogously,

(5)
(∫

B
|g − g0|q

)1/q

<
3ε
13
.

On the set D we proceed similarly and we obtain

(6)
(∫

D
|f − f0|p

)1/p

<
3ε
13
.

(7)
(∫

D

|g − g0|q
)1/q

<
3ε
13
.

For x ∈ C define f(x) = f0(x) and g(x) = h(x)/f0(x). Then h(x) = f(x)g(x) and
obviously,

(8)
(∫

C
|f − f0|p

)1/p

= 0.

Also

(9)
(∫

C

|g−g0|q
)1/q

=
(∫

C

|h−f0g0|q
|f0|q

)1/q

≤
(∫

C

|h−f0g0|
)1/q

< δ1/q ≤ ε

13
.

For x ∈ E define g(x) = g0(x) and f(x) = h(x)/g0(x). Then h(x) = f(x)g(x) and
analogously as above,

(10)
(∫

E
|f − f0|p

)1/p

<
ε

13
.
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(11)
(∫

E

|g − g0|q
)1/q

= 0.

Clearly, h = fg on X . Finally, from (2), (4), (6), (8), (10) it follows that (
∫
X |f −

f0|p)1/p < ε and by (3), (5), (7), (9), (11) we have (
∫
X |g − g0|q)1/q < ε.

Now, let p = 1, q = ∞. We will find δ > 0 such that for each h ∈ L1 with∫
X |h − f0g0| < δ we have h = fg for some f ∈ L1, g ∈ L∞ with

∫
X |f − f0| < ε

and ess sup
x∈X

|g(x) − g0(x)| < ε. By the absolute continuity of integrals, pick δ0 > 0

such that for each H ∈ S with μ(H) < δ0 we have

(12)
∫

H
|f0| < ε

8
,

∫
H
|f0g0| < ε2

16
.

Define δ = min{ε2/64, (δ0ε2)/32}. Let h ∈ L1,
∫
X |h − f0g0| < δ. Consider the

following sets in S which form a partition of X :
A =

{
x ∈ X : |g0(x)| > ε

8

}
,

B =
{
x ∈ X : |g0(x)| ≤ ε

8
and |f0(x)| ≤ ε

8

}
,

C =
{
x ∈ X : |g0(x)| ≤ ε

8
and |f0(x)| > ε

8
and |h(x) − (f0g0)(x)| ≤ ε

4
|f0(x)|

}
,

D =
{
x ∈ X : |g0(x)| ≤ ε

8
and |f0(x)| > ε

8
and |h(x) − (f0g0)(x)| > ε

4
|f0(x)|

}
.

For x ∈ A define g(x) = g0(x), f(x) = h(x)/g0(x). Then h(x) = f(x)g(x) and
ess sup

x∈A
|g(x)− g0(x)| = 0. Also we have

(13)
∫

A
|f − f0| =

∫
A

|h− f0g0|
|g0| <

8δ
ε

≤ ε

8
.

For x ∈ B define g(x) = ε/8, f(x) = h(x)/(ε/8). Then h(x) = f(x)g(x) and

(14) ess sup
x∈B

|g(x)− g0(x)| ≤ ε

8
+
ε

8
=
ε

4
,

(15)

∫
B

|f − f0| =
∫

B

|h− (ε/8)f0|
ε/8

≤
∫

B

|h− f0g0|
ε/8

+
∫

B

|f0g0 − (ε/8)f0|
ε/8

<
8δ
ε

+
8
ε

ess sup
x∈B

∣∣∣g0(x)− ε

8

∣∣∣ ∫
B
|f0| ≤ ε

8
+

8
ε
· ε
4
· ε
8

=
3
8
ε.

For x ∈ C define f(x) = f0(x), g(x) = h(x)/f0(x). Then h(x) = f(x)g(x) and∫
C |f − f0| = 0. Also

(16) ess sup
x∈C

|g(x)− g0(x)| = ess sup
x∈C

|h(x) − (f0g0)(x)|
|f0(x)| ≤ ε

4
.
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For x ∈ D define g(x) = ε/4, f(x) = h(x)/(ε/4). Then h(x) = f(x)g(x) and

(17) ess sup
x∈D

|g(x)− g0(x)| ≤ ε

4
+
ε

8
=

3
8
ε.

We have ∫
D
|h− f0g0| ≥ ε

4

∫
D
|f0| ≥ ε2

32
μ(D) and thus μ(D) <

32δ
ε2

≤ δ0.

Consequently, by (12) we obtain

(18)

∫
D
|f − f0| ≤

∫
D
|f |+

∫
D
|f0| ≤ 4

ε

∫
D
|h|+ ε

8
≤ 4
ε

∫
D
|h− f0g0|

+
4
ε

∫
D
|f0g0| + ε

8
≤ 4δ

ε
+

4
ε
· ε

2

16
+
ε

8
≤ ε

16
+

3ε
8
<
ε

2
.

By (13)-(18) the proof is finished.

Case 2. Assume that μ(X) = ∞ and that measure μ is σ-finite. Fix a partition
{Xn : n ≥ 1} of X into pairwise disjoint sets in S of finite measure. For an integer
k ≥ 1, denote X−

k =
⋃

n≤k Xn and X+
k =

⋃
n>k Xn.

Let p, q ∈ (1,∞). Since f0 ∈ Lp, g0 ∈ Lq, f0g0 ∈ L1, the series
∑

n

∫
Xn

|f0|p,∑
n

∫
Xn

|g0|q,
∑

n

∫
Xn

|f0g0| are convergent. So, by the σ-additivity of integral, we
can pick an index k such that

(19)

(∫
X+

k

|f0|p
)1/p

<
ε

6
,

(∫
X+

k

|g0|q
)1/q

<
ε

6

(20)

(∫
X+

k

|f0g0|
)1/p

<
ε

6
,

(∫
X+

k

|f0g0|
)1/q

<
ε

6
.

By Case 1 we can find δ0 > 0 such that for everyϕ ∈ L1(X−
k ) with

∫
X−

k
|ϕ−f0g0| < δ0

we have ϕ = f∗g∗ for some f∗ ∈ Lp(X−
k ), g∗ ∈ Lq(X−

k ) with

(21)

(∫
X−

k

|f∗ − f0|p
)1/p

<
ε

2
,

(∫
X−

k

|g∗ − g0|q
)1/q

<
ε

2
.

Put δ = min{δ0, (ε/6)p, (ε/6)q}. Let h ∈ L1 and
∫
X |h − f0g0| < δ. For ϕ = h|X−

k

find the respective functions f∗ and g∗ defined on X−
k and fulfilling ϕ = f∗g∗ and

(21). For x ∈ X+
k put f∗(x) = |h(x)|1/p, g∗(x) = |h(x)|1/q sgn(h(x)). Define f and

g on X as follows

(22) f(x) =

{
f∗(x) if x ∈ X−

k

f∗(x) if x ∈ X+
k
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(23) g(x) =

{
g∗(x) if x ∈ X−

k

g∗(x) if x ∈ X+
k .

Then h = fg on X . Also, by (19), using the choice of δ and the evaluations anologous
to (2) and (3) on X+

k , we obtain

(24)

(∫
X+

k

|f − f0|p
)1/p

<
ε

2
,

(∫
X+

k

|g − g0|q
)1/q

<
ε

2
.

This together with (21) yields the assertion.
Now, let p = 1, q = ∞. We proceed similarly as before. So, we pick an index k

such that

(25)
∫

X+
k

|f0| < ε

8

where X+
k , X

−
k are defined as before. By Case 1, find δ0 > 0 such that for every

ϕ ∈ L1(X−
k ) with

∫
X−

k
|ϕ − f0g0| < δ0 we have ϕ = f∗g∗ for some f∗ ∈ L1(X−

k ),
g∗ ∈ L∞(X−

k ) with

(26)
∫

X−
k

|f∗ − f0| < ε

2
, ess sup

x∈X−
k

|g∗(x) − g0(x)| < ε.

Put δ = min{δ0, ε2/8}. Let h ∈ L1 and
∫
X |h − f0g0| < δ. For ϕ = h|X−

k
find the

respective functions f∗ and g∗ defined on X−
k and fulfilling ϕ = f∗g∗ and (26). Let

M = ess sup
x∈X+

k

|f(x)| and put w = min{n > k : εn/2 > M}. Define g∗ on X+
k by the

formula

(27) g∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε(m+ 1)

2
if εm

2 ≤ g0(x) <
ε(m+1)

2 and m = 0, . . . , w− 1

−ε(m+ 1)
2

if −ε(m+1)
2 ≤ g0(x) < −εm

2 and m = 0, . . . , w− 1

1 otherwise (this holds on a set of measure zero).

Also put f∗(x) = h(x)/g∗(x) for x ∈ X+
k . Then define f and g on X by (22) and

(23). By (26) and (27), it is clear that ess sup
x∈X

|g(x)− g0(x)| < ε. By (25), (27) and

the choice of δ we have∫
X+

k
|f − f0| =

∫
X+

k

|h− f0g
∗|

|g∗| ≤ 2
ε

∫
X∗

k

|h− f0g
∗|

≤ 2
ε

∫
X+

k

|h− f0g0| + 2
ε

∫
X∗

k

|f0| · |g0 − g∗| < 2
ε
δ +

2ε
ε

∫
X+

k

|f0|

<
2
ε
· ε

2

8
+
ε

4
=
ε

2
.
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This together with (26) yields the assertion.

Case 3. Assume that μ is not σ-finite. Let p, q ∈ (1,∞). Given f0 ∈ Lp, g0 ∈ Lq

and ε > 0, denote K = {x ∈ X : f0(x) 
= 0 or g0(x) 
= 0} and observe that μ
restricted to K is σ-finite. So, by Case 2, pick δ0 > 0 such that each h̃ ∈ L1(K) with
||h̃−f0g0||L1(K) < δ0 can be written as h̃ = f̃ g̃ with f̃ ∈ Lp(K) and g̃ ∈ Lq(K) such
that ||f̃−f0||Lp(K) < ε/2 and ||g̃−g0||Lq(K) < ε/2. Let δ = min{δ0, (ε/2)p, (ε/2)q}
and assume that h ∈ L1(X), ||h−fg||L1(X) < δ. Let h̃ = h|K and pick f̃ , g̃ as above.
Next extend f̃ to f and g̃ to g, where f, g are defined inX , by letting f(x) = |h(x)|1/p

and g(x) = |h(x)|1/q sgnh(x) for x ∈ X \K . Then h = fg, f ∈ Lp(X), g ∈ Lq(X)
and

||f − f0||Lp(X) ≤ ||f̃ − f0||Lp(K) + ||h||1/p
Lp(X\K) <

ε

2
+ δ1/p ≤ ε.

Similarly ||g − g0||Lq(X) < ε.
If p = 1, q = ∞, an analogous argument works withK = {x ∈ X : f0(x) = 0}, δ0

chosen as before and δ = min{δ0, ε2/4}. Taking h, h̃, f̃ , g̃ as before, we produce the
respective extensions f and g of f̃ and g̃ by letting f(x) = (2/ε)h(x) and g(x) = ε/2
for x ∈ X \K.
Note that the Banach space 
p, for p ∈ [1,∞], can be treated as a special case of

the space Lp associated with the σ-finite counting measure on the power set of positive
integers. So, from Theorem 4 we deduce the following corollary.

Corollary 5. For any p, q ∈ [1,∞] with 1/p+1/q = 1, multiplicationΦ: 
p×
q →

1 is an open mapping.

In the case if p = 1, we have 
1 · 
∞ = 
1 and the above result shows that
multiplication is an open mapping. It turns out that we also have 
1 · c0 = 
1, in other
words, the multiplication Φ: 
1 × c0 → 
1 is a surjection. Indeed, let z = (zn) ∈ 
1.
We may suppose that there are infinitely many nonzero terms zn. Put rn =

∑
i≥n |zi|

for n ≥ 1. Then (
√
rn) ∈ c0 and (zn/

√
rn) ∈ 
1 since |zn|/√rn ≤ 2(

√
rn −√

rn+1)
for all n and

∑
n 2(

√
rn −√

rn+1) = 2
√
r1 < ∞ (cf. [10, Exercise 12, Chapter 2]).

Clearly, Φ is continuous. In this case, we have the following result which cannot be
deduced directly from Corollary 5.

Theorem 6. Multiplication Φ from 
1 × c0 into 
1 is an open mapping.

Proof. Fix a0 = (a0
n) ∈ 
1, b0 = (b0n) ∈ c0 and ε > 0. Pick an index k such that∑

n>k

|a0
nb

0
n| <

ε2

64
, sup

n>k
|b0n| <

ε

2
,
∑
n>k

|a0
n| <

ε

4
.

By Proposition 1, for ε/(4k) pick δ0 > 0 witnessing that multiplication from R
2 to R

is a uniformly open mapping. Define δ = min{δ0, ε2/64}. Let z = (zn) ∈ 
1 and
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∑
n |zn−a0

nb
0
n| < δ. For n ∈ {1, . . . , k}, from |zn−a0

nb
0
n| < δ ≤ δ0 it follows that we

can find an, bn ∈ R such that zn = anbn and |an − a0
n| < ε/(4k), |bn − b0n| < ε/(4k).

Now, let n > k. Define rn =
∑

i≥n |zi|. If rn = 0, put bn = b0n and an = 0 (this
case is easy and we will ignore it in further calculations). Otherwise, put bn =

√
rn,

an = zn/
√
rn. Then zn = anbn and we have

|bn−b0n| ≤ |bn|+|b0n| ≤
√∑

i>k

|zi−a0
i b

0
i |+

√∑
i>k

|a0
i b

0
i |+|b0n| <

ε

8
+
ε

8
+
ε

2
=

3
4
ε.

Hence supn≥1 |bn − b0n| < ε. Also we have

∑
n

|an − a0
n| =

∑
n≤k

|an − a0
n|+

∑
n>k

|an|+
∑
n>k

|a0
n| <

ε

2
+
∑
n>k

|zn|√
rn

≤ ε

2
+ 2

∑
n>k

(
√
rn −√

rn+1)

=
ε

2
+2 ·

√∑
n>k

|zn| ≤ ε

2
+2

⎛⎝√∑
n>k

|zn−a0
nb

0
n|+

√∑
n>k

|a0
nb

0
n|
⎞⎠

<
ε

2
+ 2

(ε
8

+
ε

8

)
= ε.

In the forthcoming paper we will study the (nontrivial) problem whether Φ in
Theorems 4 and 6 is uniformly open.
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