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NEW CURVATURE INEQUALITIES FOR HYPERSURFACES IN THE
EUCLIDEAN AMBIENT SPACE

Charles T. R. Conley, Rebecca Etnyre, Brady Gardener,
Lucy H. Odom and Bogdan D. Suceavă

Abstract. The spread of a matrix is introduced by Mirsky in 1956 in [20]. The
classical theory provides an upper bound for the spread of the shape operator in
terms of the second fundamental form of a hypersurface in the Euclidean space.
In the present work, we are extending our understanding of the phenomenon
by proving a lower bound, inspired from an idea developed recently by X.-Q.
Chang. As we study the concept of curvature on hypersurfaces, we introduce a
new curvature invariant called amalgamatic curvature and explore its geometric
meaning by proving an inequality related to the absolute mean curvature of the
hypersurface. In our study, a new class of geometric objects is obtained: the
absolutely umbilical hypersurfaces.

1. INTRODUCTION

In the classic matrix theory, spread of a matrix has been defined by Mirsky in
[20] and then mentioned in various references, as for example [19]. Let A ∈ Mn(C),
n ≥ 3, and let λ1, . . . , λn be the characteristic roots of A. The spread of A is defined
to be s(A) = maxi,j |λi−λj|. Let us denote by ||A|| the Euclidean norm of the matrix
A, i.e.: ||A||2 =

∑m,n
i,j=1 |aij|2. We use also the classical notation E2 for the sum of all

2-square principal subdeterminants of A. If A ∈ Mn(C) then we have the following
inequalities (see [19]):

(1.1) s(A) ≤ (2||A||2 − 2
n
|trA|2)1/2,

(1.2) s(A) ≤
√

2||A||.

If A ∈ Mn(R), then:
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(1.3) s(A) ≤
[
2
(

1 − 1
n

)
(trA)2 − 4E2(A)

]1/2

,

with equality if and only if n − 2 of the characteristic roots of A are equal to the
arithmetic mean of the remaining two. These are upper bounds for s(A).
In the present work, we address the question of a lower bound for s(A) in the

particular case when the matrix A is the shape operator of a hypersurface in Euclidean
ambient space.
From the classical theory (see [19], 4.3.2), it is known that for a Hermitian matrix

A ∈ Mn(C) we have
s(A) ≥ 2 max

i�=j
|aij|,

and that this inequality is the best possible, in the sense that there exist hermitian
matrices whose spread is equal to the absolute value of an off-diagonal element. The
fact we prove in the next section is a different kind of lower bound, depending on
geometric elements, and not of the entries of the shape operator (which depend on the
position vector of the hypersurface).
In submanifold geometry, the spread of the shape operator is related to the study

of other curvature invariants; see B.-Y. Chen’s works [3, 4, 5, 6]. For the most recent
comprehensive overview on the developments in the study of curvature in the last two
decades, our main reference is B.-Y. Chen’s monograph [8]. It is in the spirit of these
developments that our present work should be viewed: the study of curvature invariants
raises the most natural class of questions in Riemannian geometry.
The spread of the shape operator was studied from the geometric standpoint by the

last of the present authors in [28]. To mention here just one of the facts previously
obtained, in [28] it is proved that for Mn a compact submanifold of a Riemannian
manifold M̄n+s, the following inequality holds:

(1.4)
(∫

M
LdV

)2

(vol(M))
n

2n−2 ≤ 2n(n − 1)
(∫

M
(|H |2 − ext)

n
2 dV

) 2
n

where ext stands for the extrinsic scalar curvature. The equality holds if and only if
either n = 2 or M is a totally umbilical submanifold of dimension n ≥ 3.
The pointwise curvature inequalities have applications in integral geometry, as il-

lustrated by Sakai’s work [24].
Important developments on pointwise curvature inequalities could shed a light on

other areas. One of the most important developments in the study of curvature in the
last decade was Zhiqin Lu’s proof of normal scalar curvature conjecture [17]. For its
connection with linear algebra, of particular importance is [18]. The normal scalar
curvature conjecture was also proved independently by Ge and Tang [12].
Although historically, “the idea of spectrum of an operator grew out of attempts

to understand concrete problems of linear algebra involving the solutions of linear
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equations and their infinite dimensional generalizations”, as W. Arveson writes, in
differential geometry the quest to understand the behavior of the spectrum of the shape
operator can be viewed as part of the evolutions of the idea of curvature. This very
idea was pursued by one of the present authors in [26, 27].

2. A RIGIDITY THEOREM FOR HYPERSURFACES BASED ON X.-Q. CHANG’S ESTIMATE

Let σ : U ⊂ R
n → R

n+1 be a hypersurface given by the smooth map σ. Let p
be a point on the hypersurface. Denote σk(p) = ∂σ

∂xk
, for all k from 1 to n. Consider

{σ1(p), σ2(p), ..., σn(p), N (p)}, the Gauss frame of the hypersurface, whereN denotes
the normal vector field. We denote by gij(p) the coefficients of the first fundamental
form and by hij(p) the coefficients of the second fundamental form. Then we have

gij(p) =< σi(p), σj(p) >, hij(p) =< N (p), σij(p) > .

The Weingarten map Lp = −dNp ◦ dσ−1
p : Tσ(p)σ → Tσ(p)σ is linear. Denote by

(hi
j(p))1≤i,j≤n the matrix associated to Weingarten’s map, that is:

Lp(σi(p) = hk
i (p)σk(p),

where the repeated index and upper script above indicates Einstein’s summation con-
vention. It is well-known that Weingerten’s operator is self-adjoint, which implies that
the roots of the algebraic equation

det(hi
j(p)− λ(p)δi

j) = 0

are real. The eigenvalues of Weingarten’s linear map are called principal curvatures of
the hypersurface. They are the roots λ1(p), λ2(p), ..., λn(p) of this algebraic equation.
The mean curvature at the point p is

H(p) =
1
n

[λ1(p) + ... + λn(p)],

and the Gauss-Kronecker curvature is

K(p) = λ1(p)λ2(p)...λn(p).

Without any loss of generality, in our work we assume that λ1 ≤ λ2 ≤ ... ≤ λn.

Therefore the spread of the shape operator is s(Lp) = s(h)(p) = λn(p)− λ1(p). This
is the quantity we compare with other geometric quantities.
Define δ = n||h||2−n2H2. Thus, relation (1.1) is s(L) ≤

√
2
n

√
δ. In this context,

we prove the following.
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Theorem 2.1. Let σ : U ⊂ Rn → Rn+1 be a hypersurface given by the smooth
map σ, endowed with the second fundamental form h. Let ||h|| =

∑
(hij)2 and δ =

n||h||2−n2H2. Then the spread of the shape operator satisfies the double inequality:

2
n

√
δ ≤ s(L) ≤

√
2
n

√
δ.

The equality holds true everywhere at umbilics, where s(L) = 0.

Proof. The second inequality is known. We need to prove the first inequality. X.-Q.
Chang’s [2] idea is to write δ as a combination of square and of a positive quantity
whose sign we fully control. Namely, we have

(2.1)

δ(L) = n||h||2 − n2H2 = n trace(h2)− (trace h)2

=
n2

4
(λn−λ1)2−n

n−1∑
j=2

(λn−λj)(λj−λ1)−
⎡
⎣n−1∑

j=2

λj−n − 2
2

(λ1+λn)

⎤
⎦

2

.

Before proving (2.1), remark that our assumption λ1 ≤ λ2 ≤ ... ≤ λn yields

n−1∑
j=2

(λn − λj)(λj − λ1) ≥ 0.

By multiplying in the left hand side term, we obtain:

n−1∑
j=2

(λn − λj)(λj − λ1) =
n−1∑
j=2

(λnλj + λjλ1 − λ1λn − λ2
j)

= (λn + λ1)

⎛
⎝n−1∑

j=2

λj

⎞
⎠−

n−1∑
j=2

λ2
j − (n − 2)λ1λn.

Here we solve for
∑n−1

j=2 λ2
j and we obtain:

(2.2)
n−1∑
j=2

λ2
j = (λn + λ1)

⎛
⎝n−1∑

j=2

λj

⎞
⎠− (n − 2)λ1λn −

n−1∑
j=2

(λn − λj)(λj − λ1).

We use (2.2) to prove (2.1). Now we are ready to prove (2.1). We start by writing:

δ(L) = n trace(h2) − (trace h)2 = n

n∑
j=1

λ2
j −

⎛
⎝ n∑

j=1

λ

⎞
⎠

2

= (n − 1)
n∑

j=1

λ2
j − 2

∑
1≤i<j≤n

λiλj.
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Now we separate the terms of index 1 and n, as we are aiming to reach s(L) = λn−λ1.

We continue further our computation:

δ(L) = (n − 1)(λ2
1 + λ2

n) − 2λ1λn + (n − 1)

⎛
⎝n−1∑

j=2

λ2
j

⎞
⎠

−2
∑

1≤i<j≤n

λiλj − 2(λ1 + λn)

⎛
⎝n−1∑

j=2

λj

⎞
⎠ .

We complete the square for the sum of the principal curvatures for indices 2 ≤ i, j ≤
n − 1, to obtain

(∑n−1
j=2 λj

)2
, as follows:

δ(L) = (n−1)(λ2
1+λ2

n)−2λ1λn+n

⎛
⎝n−1∑

j=2

λ2
j

⎞
⎠−

⎛
⎝n−1∑

j=2

λj

⎞
⎠

2

−2(λ1+λn)

⎛
⎝n−1∑

j=2

λj

⎞
⎠ .

In this last relation we substitute the left hand side term obtained in (2.2) and we have:

δ(L) = (n − 1)(λ2
1 + λ2

n) − 2λ1λn

+n

⎧⎨
⎩(λn + λ1)

⎛
⎝n−1∑

j=2

λj

⎞
⎠− (n − 2)λ1λn −

n−1∑
j=2

(λn − λj)(λj − λ1)

⎫⎬
⎭

−
⎛
⎝n−1∑

j=2

λj

⎞
⎠

2

− 2(λ1 + λn)

⎛
⎝n−1∑

j=2

λj

⎞
⎠ .

We collect the like terms:

δ(L) = (n − 1)(λ2
1 + λ2

n) − (2 + n(n − 2))λ1λn −
⎛
⎝n−1∑

j=2

λj

⎞
⎠

2

+(n − 2)(λ1 + λn)

⎛
⎝n−1∑

j=2

λj

⎞
⎠− n

n−1∑
j=2

(λn − λj)(λj − λ1).

In the third term, we are completing a perfect square and rewrite the whole expression
in the form:

δ(L) = (n − 1)(λ2
1 + λ2

n) − (2 + n(n − 2))λ1λn

−
⎡
⎣
⎛
⎝n−1∑

j=2

λj

⎞
⎠− (n − 2)

2
(λ1+λn)

⎤
⎦

2

+
n − 2

4
(λ1+λn)2−n

n−1∑
j=2

(λn−λj)(λj−λ1).
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The terms in λ1 and λn can be collected together into a single square:

δ(L) =
n2

4
(λn−λ1)2−

⎡
⎣
⎛
⎝n−1∑

j=2

λj

⎞
⎠− (n − 2)

2
(λ1 + λn)

⎤
⎦

2

−n

n−1∑
j=2

(λn−λj)(λj−λ1).

This proves finally (2.1). From (2.1) we get immediately that δ(L) − n2

4 s(h) ≥ 0,

which was the inequality we wanted to prove. The equality case holds when the sum
n−1∑
j=2

(λn − λj)(λj − λ1)

vanishes, and this corresponds to the equality of all the principal curvatures, i.e. p is
an umbilical point.

3. AMALGAMATIC CURVATURE AND ABSOLUTELY UMBILICAL HYPERSURFACES

In the classical geometry of curves, a curve satisfying the property that the ratio
between curvature and torsion is constant is called a generalized helix. It’s natural to
think if it is possible to extend this idea to higher dimensional geometric objects.
For example, would it make sense to study surfaces that are satisfying a similar

relationship between the mean curvature H and the Gaussian curvature K? One could
consider both the ratio K

H or K
H2 and derive some analogies with the theory of curves.

The history of the original idea can be traced back to Weingarten’s original papers
[29, 30], as some authors suggest, e.g. [16]. After WW II, one of the first contributions
to the study of this problem, along with [13], is S.-S. Chern’s paper [9]. There are
many substantive recent works focused on the study of linear Weingarten surfaces, i.e.
of the surfaces in R3 satisfying the relation aH2 + bK = c, where a, b, c are real
constants; see e.g. [15, 16, 22]. This is the context in which we look at the idea of
the ratio K

H seen in the geometry of surfaces. In general, the ratio K
H is a function that

depends on the point of the surface, everywhere where it is defined. If we denote the
principal curvatures by k1 and k2, then

K

H
=

2k1k2

k1 + k2
.

Note that this term could be also viewed as the harmonic ratio of the real numbers k1

and k2.We would like to define a geometric quantity that encodes the same information
as this ratio. This discussion is our motivation to introduce the following.

Definition 3.1. Let σ : U ⊂ Rn → Rn+1 be a hypersurface given by the smooth
map σ. In the generic case, the amalgamatic curvature at point p is

A(p) = (n2 )−1
∑

1≤i<j≤n

2|ki||kj|
|ki| + |kj| .
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First, we show why A(p) is defined everywhere on the hypersurface. Suppose
|ki| + |kj| vanishes at some point p. Remark that the inequality 2|ki||kj |

|ki|+|kj | ≤ |ki| + |kj|
insures the existence of the limit of the function A(p) at p. For a hyperplane in Rn+1,

we have A(p) ≡ 0, for all p.
We can describe the amalgamatic curvature as the arithmetic mean of the harmonic

means of all the pairs of absolute values of principal curvatures. Working with algebraic
means is the reason why we consider the absolute value of the principal curvatures in
this definition.

Definition 3.2. Let σ : U ⊂ Rn → Rn+1 be a hypersurface given by the smooth
map σ. The point p on the hypersurface is called absolutely umbilical if the principal
curvatures satisfy |k1| = |k2| = ... = |kn|. If all the points of a hypersurface are
absolutely umbilical, then the hypersurface is called absolutely umbilical.

Example 3.1. All the points of a minimal surface in R3 are absolutely umbilical.

Example 3.2. On the cylinder S1(a) × R ⊂ R3 there are no absolutely umbilical
points.

Example 3.3. Any totally umbilical hypersurface in the Euclidean ambient space
is absolutely umblical hypersurface. For a more comprehensive discussion, see section
12.8. in [7].

Example 3.4. Consider the torus σ : [0, 2π)× [0, 2π) → R3, parametrized by

σ(u, v) = ((a + b cos v) cosu, (a + b cos v) sinu, b sinv), a > b > 0.

It is well known that
k1 = − cos v

a + b cos v
, k2 = −1

b
.

The umbilical points should satisfy k1 = k2, and this equality yields that there are no
umbilics on the torus, since a 
= 0. On the other hand, there are absolutely umbilical
points, provided 2b ≥ a. To prove this assertion, set k1 = −k2, and get −2b cosv = a.
Thus, absolutely umbilical points exist if and only if cos v = − a

2b ∈ [−1, 1]. The
existence condition 2b ≥ a ≥ −2b is actually 2b ≥ a > b. Under this condition,
the curve γ(u) = σ(u, v0), for v0 = arccos

(− a
2b

)
on the torus is a set of absolutely

umbilical points.

We prove the following.

Theorem 3.1. Let σ : U ⊂ Rn → Rn+1 be a hypersurface given by the smooth
map σ. Let k1, k2, ..., kn be the principal curvatures at p. Denote by H̄ its absolute
mean curvature, i.e.

H̄ =
1
n

(|k1| + |k2| + ... + |kn|) .



892 Charles T. R. Conley, Rebecca Etnyre, Brady Gardener, Lucy H. Odom and Bogdan D. Suceavă

Then the absolute mean curvature and the amalgamatic curvature satisfy

H̄(p) ≥ A(p),

with equality being satisfied at all the points where the hypersurface is absolutely
umbilical.

Proof. Denote by ai = |ki|. Then we need to prove the following:

1
n

n∑
i=1

ai ≥ 2 · 2
n(n − 1)

∑
1≤i<j≤n

aiaj

ai + aj
,

Thus, we need to prove that for any a1, a2, ..., an > 0, we have

(3.1)
(n − 1)

4

(
n∑

i=1

ai

)
≥

∑
1≤i<j≤n

aiaj

ai + aj
,

with equality if and only if a1 = a2 = ... = an. (See also [1].)
Multiply the inequality above by 2 and collect all the terms on one side:

(n − 1)
2

(
n∑

i=1

ai

)
−

∑
1≤i<j≤n

2aiaj

ai + aj
≥ 0.

Add to both sides the quantity (n−1)
2 (

∑n
i=1 ai) , and the inequality we need to prove

turns out to be:

(3.2) (n − 1)

(
n∑

i=1

ai

)
−

∑
1≤i<j≤n

2aiaj

ai + aj
≥ (n − 1)

2

(
n∑

i=1

ai

)
.

We group the ai’s two by two in the left hand side term:

(3.3)

∑
1≤i<j≤n

(
ai − 2aiaj

ai+aj
+ aj

)
=

∑
1≤i<j≤n

a2
i + a2

j

ai + aj

=
∑

1≤i<j≤n

(
a2

i

ai + aj
+

a2
j

ai + aj

)
.

At this point we apply the so-called Engel’s Lemma, which is a fundamental algebraic
argument that yields Cauchy-Schwarz inequality. Specifically, we apply the following:
If a1, a2, ..., an are any real numbers and x1, x2, ..., xn > 0, then

a2
1

x1
+

a2
2

x2
+ ... +

a2
n

xn
≥ (a1 + a2 + ... + an)2

x1 + x2 + ... + xn
,
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with equality if and only if a1
x1

= ... = an
xn

. Thus, from (3.3), we obtain:

∑
1≤i<j≤n

(
a2

i

ai + aj
+

a2
j

ai + aj

)
≥ [(n − 1)

∑
ai]2

2(n − 1)
∑

ai
=

n − 1
2

n∑
i=1

ai.

This last relation proves (3.2). The equality case follows immediately from a1 = a2 =
... = an, as proved in (3.1).

Example 3.5. An even dimensional austere hypersurface M2n ⊂ R2n+1 with prin-
cipal curvatures {−k,−k, ...,−k, k, k, ..., k} is absolutely umbilical, if the multiplici-
ties of the eigenvalues λ1 = −k and λ2 = k are the same.

Note that austere hypersurfaces were studied recently in [10] and served as class of
examples that are satisfying Walker identities in Riemannian space forms of dimension
at least four.
The origin of the study of hypersurfaces with two disjoint principal curvatures can

be found in Otsuki’s work [21]. The absolute umbilical hypersurfaces that are not
umbilical have values of their principal curvatures as k and −k. Recently, in [25], Shu
and Liu studied hypersurfaces with two distinct principal curvatures in a real space
form, under the assumption that the extrinsic invariant ρ2 is constant. Also recently,
Wu [31] studied hypersurfaces with two distinct non-simple principal curvatures in
space forms, without the assumption that the (high order) mean curvature is constant.
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1. M. Bakke, B. Wu and B. D. Suceavă, Problem 11670, American Mathematical Monthly,
119 (2012), p. 800.

2. X.-Q. Chang, Problem 970, College Mathematical Journal, 43 (2012), p. 96.

3. B.-Y. Chen, An invariant of conformal mappings, Proc. Amer. Math. Soc., 40 (1973),
563-564.

4. B.-Y. Chen, Some conformal invariants of submanifolds and their applications, Boll. Un.
Mat. Ital., 10(4) (1974), 380-385.



894 Charles T. R. Conley, Rebecca Etnyre, Brady Gardener, Lucy H. Odom and Bogdan D. Suceavă
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26. B. D. Suceavă, Some theorems on austere submanifolds, Balkan. J. Geom. Appl., 2
(1997), 109-115.
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