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ALMOST h-SEMI-SLANT RIEMANNIAN MAPS

Kwang-Soon Park

Abstract. As a generalization of slant Riemannian maps, semi-slant Riemannian
maps, almost h-slant submersions, and almost h-semi-slant submersions, we intro-
duce the notion of almost h-semi-slant Riemannian maps from almost quaternionic
Hermitian manifolds to Riemannian manifolds. We investigate the integrability
of distributions, the harmonicity of such maps, the geometry of fibers, etc. We
also deal with the condition for such maps to be totally geodesic and study some
decomposition theorems. Moreover, we give some examples.

1. INTRODUCTION

Let F be a C∞-map from a Riemannian manifold (M, gM) to a Riemannian man-
ifold (N, gN). According to the conditions on the map F , the map F is said to be
a harmonic map [1], a totally geodesic map [1], an isometric immersion [4], a Rie-
mannian submersion ([8, 11, 19]), a Riemannian map [7], etc. As we know, if we
consider the notions of an isometric immersion and a Riemannian submersion as the
Riemannian generalization of the notions of an immersion and a submersion, then the
notion of a Riemannian map may be the Riemannian generalization of the notion of a
subimmersion [7].
The study of isometric immersions is originated from Gauss’ work, which studied

surfaces in the Euclidean space R
3 and there are a lot of papers and books on this

topic. In particular, B. Y. Chen introduced and studied some notions: generic subman-
ifolds [2] and slant submanifolds [3]. The notion of generic submanifolds contains the
notions of real hypersurfaces, complex submanifolds, totally real submanifolds, anti-
holomorphic submanifolds, purely real submanifolds, and CR-submanifolds. And the
notion of slant submanifolds has some similarities with the notions of slant submersions
[17], semi-slant submersions [15], almost h-slant submersions [12], almost h-semi-slant
submersions [13], slant Riemannian maps [18], and semi-slant Riemannian maps [14].
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For the Riemannian submersion F , B. O’Neill [11] and A. Gray [9] firstly studied the
map F . Since then, there are several kinds of Riemannian submersions ([14], refer-
ences therein). A. Fischer [7] defined a Riemannian map F , which generalizes and
unifies the notions of an isometric immersion, a Riemannian submersion, and an isom-
etry. After that, there are a lot of papers on this topic. Moreover, B. Sahin introduced a
slant Riemannian map [18] and the author defined a semi-slant Riemannian map [14].
As a generalization of slant Riemannian maps [18], semi-slant Riemannian maps [14],
almost h-slant submersions [12], and almost h-semi-slant submersions [13], we will
define an almost h-semi-slant Riemannian map and a h-semi-slant Riemannian map.
And as we know, the quaternionic Kähler manifolds have applications in physics as
the target spaces for nonlinear σ−models with supersymmetry [5].
The paper is organized as follows. In section 2 we recall some notions, which

are needed for later use. In section 3 we define the notions of an almost h-semi-slant
Riemannian map and a h-semi-slant Riemannian map and obtain some properties on
them. In section 4 using both an almost h-semi-slant Riemannian map and a h-semi-
slant Riemannian map, we get some decomposition theorems. In section 5 we obtain
some examples.

2. PRELIMINARIES

Let (M, E, g) be an almost quaternionic Hermitian manifold, where M is a
4m−dimensional differentiable manifold, g is a Riemannian metric on M , and E
is a rank 3 subbundle of End(TM) such that for any point p ∈ M with a neighbor-
hood U , there exists a local basis {J1, J2, J3} of sections of E on U satisfying for all
α ∈ {1, 2, 3}

(2.1) J2
α = −id, JαJα+1 = −Jα+1Jα = Jα+2,

(2.2) g(JαX, JαY ) = g(X, Y )

for all vector fieldsX, Y ∈ Γ(TM), where the indices are taken from {1, 2, 3}modulo
3. The above basis {J1, J2, J3} is said to be a quaternionic Hermitian basis. We
call (M, E, g) a quaternionic Kähler manifold if there exist locally defined 1-forms
ω1, ω2, ω3 such that for α ∈ {1, 2, 3}

(2.3) ∇XJα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2

for any vector fieldX ∈ Γ(TM), where the indices are taken from {1, 2, 3}modulo 3.
If there exists a global parallel quaternionic Hermitian basis {J1, J2, J3} of sections of
E onM , then (M, E, g) is said to be hyperkähler. Furthermore, we call (J1, J2, J3, g)
a hyperkähler structure on M and g a hyperkähler metric.
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Let (M, gM) and (N, gN) be Riemannian manifolds. Let F : (M, gM) �→ (N, gN)
be a C∞-map. We call the map F a C∞-submersion if F is surjective and the
differential (F∗)p has maximal rank for any p ∈ M . The map F is said to be a
Riemannian submersion [11] if F is a C∞-submersion and

(F∗)p : ((ker(F∗)p)⊥, (gM)p) �→ (TF (p)N, (gN)F (p))

is a linear isometry for each p ∈ M , where (ker(F∗)p)⊥ is the orthogonal complement
of the space ker(F∗)p in the tangent space TpM of M at p. We call the map F a
Riemannian map [7] if

(F∗)p : ((ker(F∗)p)⊥, (gM)p) �→ ((rangeF∗)F (p), (gN)F (p))

is a linear isometry for each p ∈ M , where (rangeF∗)F (p) := (F∗)p((ker(F∗)p)⊥) for
p ∈ M .
Let (M, gM , J) be an almost Hermitian manifold and (N, gN) a Riemannian man-

ifold. Let F : (M, gM , J) �→ (N, gN) be a C∞-map. We call the map F a slant
submersion [17] if F is a Riemannian submersion and the angle θ = θ(X) between
JX and the space ker(F∗)p is constant for nonzero X ∈ ker(F∗)p and p ∈ M .
We call the angle θ a slant angle.
The map F is said to be a semi-slant submersion [15] if F is a Riemannian

submersion and there is a distribution D1 ⊂ ker F∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)q is constant for nonzero
X ∈ (D2)q and q ∈ M , where D2 is the orthogonal complement of D1 in kerF∗.
We call the angle θ a semi-slant angle.
We call the map F a slant Riemannian map [18] if F is a Riemannian map and

the angle θ = θ(X) between JX and the space ker(F∗)p is constant for nonzero
X ∈ ker(F∗)p and p ∈ M .
We call the angle θ a slant angle.
The map F is said to be a semi-slant Riemannian map [14] if F is a Riemannian

map and there is a distribution D1 ⊂ ker F∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)q is constant for nonzero
X ∈ (D2)q and q ∈ M , where D2 is the orthogonal complement of D1 in kerF∗.
We call the angle θ a semi-slant angle.
Let (M, E, gM) be an almost quaternionic Hermitian manifold and (N, gN) a Rie-

mannian manifold. A Riemannian submersion F : (M, E, gM) �→ (N, gN) is said to
be an almost h-slant submersion [12] if given a point p ∈ M with a neighborhood
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U , there exists a quaternionic Hermitian basis {I, J, K} of sections of E on U such
that for R ∈ {I, J, K} the angle θR = θR(X) between RX and the space ker(F∗)q is
constant for nonzero X ∈ ker(F∗)q and q ∈ U .
We call such a basis {I, J, K} an almost h-slant basis and the angles {θI , θJ , θK}

almost h-slant angles.
A Riemannian submersion F : (M, E, gM) �→ (N, gN) is called a h-slant submer-

sion [12] if given a point p ∈ M with a neighborhood U , there exists a quaternionic
Hermitian basis {I, J, K} of sections of E on U such that for R ∈ {I, J, K} the
angle θR = θR(X) between RX and the space ker(F∗)q is constant for nonzero
X ∈ ker(F∗)q and q ∈ U , and θ = θI = θJ = θK .
We call such a basis {I, J, K} a h-slant basis and the angle θ a h-slant angle.
A Riemannian submersion F : (M, E, gM) �→ (N, gN) is called a h-semi-slant

submersion [13] if given a point p ∈ M with a neighborhood U , there exist a quater-
nionic Hermitian basis {I, J, K} of sections of E on U and a distributionD1 ⊂ kerF∗
on U such that for any R ∈ {I, J, K},

ker F∗ = D1 ⊕D2, R(D1) = D1,

and the angle θR = θR(X) between RX and the space (D2)q is constant for nonzero
X ∈ (D2)q and q ∈ U , where D2 is the orthogonal complement of D1 in kerF∗.
We call such a basis {I, J, K} a h-semi-slant basis and the angles {θI , θJ , θK}

h-semi-slant angles.
Furthermore, if we have

θ = θI = θJ = θK ,

then we call the map F : (M, E, gM) �→ (N, gN) a strictly h-semi-slant submersion,
{I, J, K} a strictly h-semi-slant basis, and the angle θ a strictly h-semi-slant angle.
A Riemannian submersion F : (M, E, gM) �→ (N, gN) is called an almost h-semi-

slant submersion [13] if given a point p ∈ M with a neighborhood U , there exists
a quaternionic Hermitian basis {I, J, K} of sections of E on U such that for each
R ∈ {I, J, K}, there is a distribution DR

1 ⊂ kerF∗ on U such that

ker F∗ = DR
1 ⊕DR

2 , R(DR
1 ) = DR

1 ,

and the angle θR = θR(X) between RX and the space (DR
2 )q is constant for nonzero

X ∈ (DR
2 )q and q ∈ U , where DR

2 is the orthogonal complement of DR
1 in ker F∗.

We call such a basis {I, J, K} an almost h-semi-slant basis and the angles {θI , θJ , θK}
almost h-semi-slant angles.
Let (M, EM , gM) and (N, EN , gN) be almost quaternionic Hermitian manifolds.

A map F : M �→ N is called a (EM , EN)−holomorphic map if given a point x ∈ M ,
for any J ∈ (EM)x there exists J ′ ∈ (EN)F (x) such that

(2.4) F∗ ◦ J = J ′ ◦ F∗.
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A Riemannian submersion F : M �→ N which is a (EM , EN)−holomorphic map is
called a quaternionic submersion. Moreover, if (M, EM , gM) is a quaternionic Kähler
manifold (or a hyperkähler manifold), then we say that F is a quaternionic Kähler
submersion (or a hyperkähler submersion) [10].
Let F : (M, gM) �→ (N, gN) be a C∞-map. The second fundamental form of F

is given by

(2.5) (∇F∗)(X, Y ) := ∇F
XF∗Y − F∗(∇XY ) for X, Y ∈ Γ(TM),

where∇F is the pullback connection and we denote conveniently by∇ the Levi-Civita
connections of the metrics gM and gN [1]. Recall that F is said to be harmonic if
we have the tension field τ(F ) := trace(∇F∗) = 0 and we call the map F a totally
geodesic map if (∇F∗)(X, Y ) = 0 for X, Y ∈ Γ(TM) [1]. Denote the range of F∗ by
rangeF∗ as a subset of the pullback bundle F−1TN . With its orthogonal complement
(rangeF∗)⊥ we obtain the following decomposition

(2.6) F−1TN = rangeF∗ ⊕ (rangeF∗)⊥.

Moreover, we have

(2.7) TM = ker F∗ ⊕ (kerF∗)⊥.

Then we easily get

Lemma 2.1. [16]. Let F be a Riemannian map from a Riemannian manifold
(M, gM) to a Riemannian manifold (N, gN). Then

(2.8) (∇F∗)(X, Y ) ∈ Γ((rangeF∗)⊥) for X, Y ∈ Γ((kerF∗)⊥).

Lemma 2.2. [7]. Let F be a Riemannian map from a Riemannian manifold
(M, gM) to a Riemannian manifold (N, gN). Then the map F satisfies a general-
ized eikonal equation

(2.9) 2e(F ) = ||F∗||2 = rankF.

As we can see, ||F∗||2 is continuous onM and rankF is an integer-valued function
on M so that rankF is locally constant. Hence, if M is connected, then rankF is
a constant function [7]. In [7], A. Fischer suggested that using (2.9), we may build
a quantum model of nature. And if we can do it, then there will be an interesting
relationship between the mathematical side from Riemannian maps, harmonic maps, and
Lagrangian field theory and the physical side from Maxwell’s equation, Schrödinger’s
equation, and their proposed generalization.
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3. ALMOST h-SEMI-SLANT RIEMANNIAN MAPS

Definition 3.1. Let (M, E, gM) be an almost quaternionic Hermitian manifold and
(N, gN) a Riemannian manifold. A Riemannian map F : (M, E, gM) �→ (N, gN)

is called a h-semi-slant Riemannian map if given a point p ∈ M with a neighborhood
U , there exist a quaternionic Hermitian basis {I, J, K} of sections of E on U and a
distribution D1 ⊂ kerF∗ on U such that for any R ∈ {I, J, K},

ker F∗ = D1 ⊕D2, R(D1) = D1,

and the angle θR = θR(X) between RX and the space (D2)q is constant for nonzero
X ∈ (D2)q and q ∈ U , where D2 is the orthogonal complement of D1 in kerF∗.

We call such a basis {I, J, K} a h-semi-slant basis and the angles {θI , θJ , θK}
h-semi-slant angles.
Furthermore, if we have

θ = θI = θJ = θK ,

then we call the map F : (M, E, gM) �→ (N, gN) a strictly h-semi-slant Riemannian
map, {I, J, K} a strictly h-semi-slant basis, and the angle θ a strictly h-semi-slant
angle.

Definition 3.2. Let (M, E, gM) be an almost quaternionic Hermitian manifold and
(N, gN) a Riemannian manifold. A Riemannian map F : (M, E, gM) �→ (N, gN)
is called an almost h-semi-slant Riemannian map if given a point p ∈ M with a
neighborhood U , there exists a quaternionic Hermitian basis {I, J, K} of sections of
E on U such that for each R ∈ {I, J, K}, there is a distribution DR

1 ⊂ kerF∗ on U
such that

ker F∗ = DR
1 ⊕DR

2 , R(DR
1 ) = DR

1 ,

and the angle θR = θR(X) between RX and the space (DR
2 )q is constant for nonzero

X ∈ (DR
2 )q and q ∈ U , where DR

2 is the orthogonal complement of DR
1 in ker F∗.

We call such a basis {I, J, K} an almost h-semi-slant basis and the angles {θI , θJ , θK}
almost h-semi-slant angles.
Let F : (M, E, gM) �→ (N, gN) be an almost h-semi-slant Riemannian map. Then
given a point p ∈ M with a neighborhood U , there exists a quaternionic Hermitian
basis {I, J, K} of sections of E on U such that for each R ∈ {I, J, K}, there is a
distribution DR

1 ⊂ kerF∗ on U such that

ker F∗ = DR
1 ⊕DR

2 , R(DR
1 ) = DR

1 ,

and the angle θR = θR(X) between RX and the space (DR
2 )q is constant for nonzero

X ∈ (DR
2 )q and q ∈ U , where DR

2 is the orthogonal complement of DR
1 in ker F∗.
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Then for X ∈ Γ(kerF∗), we write

(3.1) X = PRX + QRX,

where PRX ∈ Γ(DR
1 ) and QRX ∈ Γ(DR

2 ).
For X ∈ Γ(kerF∗), we obtain

(3.2) RX = φRX + ωRX,

where φRX ∈ Γ(ker F∗) and ωRX ∈ Γ((kerF∗)⊥).
For Z ∈ Γ((kerF∗)⊥), we have

(3.3) RZ = BRZ + CRZ,

where BRZ ∈ Γ(kerF∗) and CRZ ∈ Γ((kerF∗)⊥).
For U ∈ Γ(TM), we get

(3.4) U = VU + HU,

where VU ∈ Γ(kerF∗) and HU ∈ Γ((kerF∗)⊥).
For W ∈ Γ(F−1TN ), we write

(3.5) W = P̄W + Q̄W,

where P̄W ∈ Γ(rangeF∗) and Q̄W ∈ Γ((rangeF∗)⊥).
Then

(3.6) (kerF∗)⊥ = ωRDR
2 ⊕ μR,

where μR is the orthogonal complement of ωRDR
2 in (kerF∗)⊥ and is invariant under

R.
Furthermore,

φRDR
1 = DR

1 , ωRDR
1 = 0, φRDR

2 ⊂ DR
2 , BR((kerF∗)⊥) = DR

2

φ2
R + BRωR =−id, C2

R+ωRBR =−id, ωRφR + CRωR =0, BRCR + φRBR =0.

Define the tensors T and A by

AEF = H∇HEVF + V∇HEHF(3.7)

TEF = H∇VEVF + V∇VEHF(3.8)

for E, F ∈ Γ(TM), where ∇ is the Levi-Civita connection of gM .
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For X, Y ∈ Γ(kerF∗), define

(3.9) ∇̂XY := V∇XY

(∇Xφ)Y := ∇̂XφY − φ∇̂XY(3.10)

(∇Xω)Y := H∇XωY − ω∇̂XY.(3.11)

Then we easily obtain

Lemma 3.3. Let F be an almost h-semi-slant Riemannian map from a hyperkähler
manifold (M, I, J, K, gM) to a Riemannian manifold (N, gN) such that (I, J, K) is
an almost h-semi-slant basis. Then we get

(1)

∇̂XφRY + TXωRY = φR∇̂XY + BRTXY

TXφRY + H∇XωRY = ωR∇̂XY + CRTXY

for X, Y ∈ Γ(ker F∗) and R ∈ {I, J, K}.
(2)

V∇ZBRW + AZCRW = φRAZW + BRH∇ZW

AZBRW + H∇ZCRW = ωRAZW + CRH∇ZW

for Z, W ∈ Γ((kerF∗)⊥) and R ∈ {I, J, K}.
(3)

∇̂XBRZ + TXCRZ = φRTXZ + BRH∇XZ

TXBRZ + H∇XCRZ = ωRTXZ + CRH∇XZ

V∇ZφRX + AZωRX = φRV∇ZX + BRAZX

AZφRX + H∇ZωRX = ωRV∇ZX + CRAZX

for X ∈ Γ(ker F∗), Z ∈ Γ((kerF∗)⊥), and R ∈ {I, J, K}.

Using the h-semi-slant Riemannian map F , we have

Theorem 3.4. Let F be a h-semi-slant Riemannian map from a hyperkähler man-
ifold (M, I, J, K, gM) to a Riemannian manifold (N, gN) such that (I, J, K) is a
h-semi-slant basis. Then the following conditions are equivalent:

(a) the complex distribution D1 is integrable.
(b) QI(∇̂XφIY − ∇̂Y φIX) = 0 and TXφIY = TY φIX for X, Y ∈ Γ(D1).
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(c) QJ (∇̂XφJY − ∇̂Y φJX) = 0 and TXφJY = TY φJX for X, Y ∈ Γ(D1).
(d) QK(∇̂XφKY − ∇̂Y φKX) = 0 and TXφKY = TY φKX for X, Y ∈ Γ(D1).

Proof. Given X, Y ∈ Γ(D1) and R ∈ {I, J, K}, we obtain

R[X, Y ] = R(∇XY −∇Y X) = ∇XRY −∇Y RX

= ∇̂XφRY − ∇̂Y φRX + TXφRY − TY φRX.

Hence, we get
a) ⇔ b), a) ⇔ c), a) ⇔ d).

Therefore, the result follows.

Theorem 3.5. Let F be a h-semi-slant Riemannian map from a hyperkähler man-
ifold (M, I, J, K, gM) to a Riemannian manifold (N, gN) such that (I, J, K) is a
h-semi-slant basis. Then the following conditions are equivalent:

(a) the slant distribution D2 is integrable.
(b) PI(∇̂XφIY − ∇̂Y φIX + TXωIY − TY ωIX) = 0 for X, Y ∈ Γ(D2).
(c) PJ (∇̂XφJY − ∇̂Y φJX + TXωJY − TY ωJX) = 0 for X, Y ∈ Γ(D2).
(d) PK(∇̂XφKY − ∇̂Y φKX + TXωKY − TY ωKX) = 0 for X, Y ∈ Γ(D2).

Proof. Given X, Y ∈ Γ(D2), Z ∈ Γ(D1), and R ∈ {I, J, K}, we obtain

gM(R[X, Y ], Z) = gM(∇XRY −∇Y RX, Z)

= gM(∇̂XφRY + TXφRY + TXωRY + H∇XωRY − ∇̂Y φRX

− TY φRX − TY ωRX −H∇Y ωRX, Z)

= gM(∇̂XφRY + TXωRY − ∇̂Y φRX − TY ωRX, Z).

Since [X, Y ] ∈ Γ(ker F∗), we get

a) ⇔ b), a) ⇔ c), a) ⇔ d).

Therefore, we have the result.

In the same way as in the proof of Proposition 2.6 in [13], we can show

Proposition 3.6. Let F be an almost h-semi-slant Riemannian map from an almost
quaternionicHermitian manifold (M, E, gM) to a Riemannian manifold (N, gN). Then
we have

(3.12) φ2
RX = − cos2 θRX for X ∈ Γ(DR

2 ) and R ∈ {I, J, K},

where {I, J, K} is an almost h-semi-slant basis with the almost h-semi-slant angles
{θI , θJ , θK}.
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Remark 3.7. In particular, it is easy to obtain that the converse of Proposition 3.6
is also true.

Since
gM(φRX, φRY ) = cos2 θR gM(X, Y )
gM(ωRX, ωRY ) = sin2 θR gM(X, Y )

for X, Y ∈ Γ(DR
2 ), if θR ∈ (0,

π

2
), then we can locally choose an orthonormal frame

{f1, sec θRφRf1, · · · , fs, sec θRφRfs} of DR
2 .

Using (3.12), in a similar way with Lemma 3.5 in [14], we can obtain

Lemma 3.8. Let F be an almost h-semi-slant Riemannian map from a hyperkähler
manifold (M, I, J, K, gM) to a Riemannian manifold (N, gN) such that (I, J, K) is
an almost h-semi-slant basis with the almost h-semi-slant angles {θI , θJ , θK}. If the
tensor ωR is parallel, then we have

(3.13) TφRXφRX = − cos2 θR · TXX for X ∈ Γ(DR
2 ),

where R ∈ {I, J, K}.

Given an almost h-semi-slant Riemannian map F from an almost quaternionic
Hermitian manifold (M, E, gM) to a Riemannian manifold (N, gN), for some R ∈
{I, J, K} with θR ∈ [0,

π

2
), we can define an endomorphism R̂ of kerF∗ by

R̂ := RPR + sec θRφRQR.

Then

(3.14) R̂2 = −id on ker F∗.

Note that the distribution kerF∗ is integrable. But its dimension may be odd. With the
endomorphism R̂ we get

Theorem 3.9. Let F be an almost h-semi-slant Riemannian map from an almost
quaternionic Hermitian manifold (M, E, gM) to a Riemannian manifold (N, gN) with
the almost h-semi-slant angles {θI , θJ , θK} not all π

2
. Then the fibers F−1(x) are

even dimensional submanifolds of M for x ∈ M .

Now, we consider the harmonicity of such maps. Let F be a C∞-map from a
Riemannian manifold (M, gM) to a Riemannian manifold (N, gN). We can canonically
define a function e(F ) : M �→ [0,∞) given by

(3.15) e(F )(x) :=
1
2
|(F∗)x|2, x ∈ M,
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where |(F∗)x| denotes the Hilbert-Schmidt norm of (F∗)x [1]. Then the function e(F )
is said to be the energy density of F . Let D be a compact domain of M , i.e., D is
the compact closure Ū of a non-empty connected open subset U of M . The energy
integral of F over D is the integral of its energy density:

(3.16) E(F ; D) :=
∫

D
e(F )vgM

=
1
2

∫
D
|F∗|2vgM

,

where vgM
is the volume form on (M, gM). Let C∞(M, N ) denote the space of all

C∞-maps from M to N . A C∞-map F : M �→ N is said to be harmonic if it is
a critical point of the energy functional E( ; D) : C∞(M, N ) �→ R for any compact
domain D ⊂ M . By the result of J. Eells and J. Sampson [6], we see that the map F
is harmonic if and only if the tension field τ(F ) := trace∇F∗ = 0.

Theorem 3.10. Let F be an almost h-semi-slant Riemannian map from a hy-
perkähler manifold (M, I, J, K, gM) to a Riemannian manifold (N, gN) such that
(I, J, K) is an almost h-semi-slant basis. Assume that H̃ = 0, where H̃ denotes the
mean curvature vector field of rangeF∗. Then each of the following conditions implies
that F is harmonic.

(a) DI
1 is integrable and trace(∇F∗) = 0 on DI

2.
(b) DJ

1 is integrable and trace(∇F∗) = 0 on DJ
2 .

(c) DK
1 is integrable and trace(∇F∗) = 0 on DK

2 .

Proof. Using Lemma 2.1, we get trace∇F∗|kerF∗ ∈ Γ(rangeF∗) and
trace∇F∗|(kerF∗)⊥ ∈ Γ((rangeF∗)⊥) so that from (2.7), we have

trace(∇F∗) = 0 ⇔ trace∇F∗|kerF∗ = 0 and trace∇F∗|(kerF∗)⊥ = 0.

Moreover, we easily obtain

trace∇F∗|(kerF∗)⊥ = lH̃ for l := dim(kerF∗)⊥

so that
trace∇F∗|(kerF∗)⊥ = 0 ⇔ H̃ = 0.

Given R ∈ {I, J, K}, since DR
1 = R(DR

1 ), we can choose locally an orthonormal
frame {e1, Re1, · · · , ek, Rek} of DR

1 so that

(∇F∗)(Rei, Rei) = −F∗∇ReiRei = −F∗R(∇eiRei + [Rei, ei])

= F∗∇eiei − F∗R[Rei, ei] = −(∇F∗)(ei, ei)− F∗R[Rei, ei]

for 1 ≤ i ≤ k.
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Thus,
DR

1 is integrable ⇒ trace∇F∗|DR
1

= 0.

Since DR
2 is the orthogonal complement of DR

1 in kerF∗, we have the result.

Using Lemma 3.8, we obtain

Corollary 3.11. Let F be an almost h-semi-slant Riemannian map from a hy-
perkähler manifold (M, I, J, K, gM) to a Riemannian manifold (N, gN) such that
(I, J, K) is an almost h-semi-slant basis with the almost h-semi-slant angles {θI , θJ ,

θK}. Assume that H̃ = 0. Then each of the following conditions implies that F is
harmonic.

(a) DI
1 is integrable, the tensor ωI is parallel, and θI ∈ [0, π

2 ).
(b) DJ

1 is integrable, the tensor ωJ is parallel, and θJ ∈ [0, π
2 ).

(c) DK
1 is integrable, the tensor ωK is parallel, and θK ∈ [0, π

2 ).

We now investigate the condition for such a map F to be totally geodesic.

Theorem 3.12. Let F be an almost h-semi-slant Riemannian map from a hy-
perkähler manifold (M, I, J, K, gM) to a Riemannian manifold (N, gN) such that
(I, J, K) is an almost h-semi-slant basis. Assume that Q̄(∇F

Z1
F∗Z2) = 0 for Z1, Z2 ∈

Γ((kerF∗)⊥). Then the following conditions are equivalent:

(a) F is a totally geodesic map.
(b)

ωI(∇̂XφIY + TXωIY ) + CI (TXφIY + H∇XωIY ) = 0

ωI(∇̂XBIZ + TXCIZ) + CI (TXBIZ + H∇XCIZ) = 0

for X, Y ∈ Γ(ker F∗) and Z ∈ Γ((kerF∗)⊥).
(c)

ωJ(∇̂XφJY + TXωJY ) + CJ (TXφJY + H∇XωJY ) = 0

ωJ(∇̂XBJZ + TXCJZ) + CJ (TXBJZ + H∇XCJZ) = 0

for X, Y ∈ Γ(ker F∗) and Z ∈ Γ((kerF∗)⊥).
(d)

ωK(∇̂XφKY + TXωKY ) + CK(TXφKY + H∇XωKY ) = 0

ωK(∇̂XBKZ + TXCKZ) + CK(TXBKZ + H∇XCKZ) = 0

for X, Y ∈ Γ(ker F∗) and Z ∈ Γ((kerF∗)⊥).
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Proof. If Z1, Z2 ∈ Γ((kerF∗)⊥), then by Lemma 2.1, we get

(∇F∗)(Z1, Z2) = 0 ⇔ Q̄((∇F∗)(Z1, Z2)) = Q̄(∇F
Z1

F∗Z2) = 0.

For X, Y ∈ Γ(ker F∗), we obtain

(∇F∗)(X, Y ) = −F∗(∇XY ) = F∗(I∇X(φIY + ωIY ))

= F∗(φI∇̂XφIY + ωI ∇̂XφIY + BITXφIY + CITXφIY + φITXωIY

+ ωITXωIY + BIH∇XωIY + CIH∇XωIY ).
Thus,

(∇F∗)(X, Y ) = 0 ⇔ ωI(∇̂XφIY + TXωIY ) + CI(TXφIY + H∇XωIY ) = 0.

Given X ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥), since (∇F∗)(X, Z) = (∇F∗)(Z, X), it
is sufficient to consider the following case:

(∇F∗)(X, Z) = −F∗(∇XZ) = F∗(I∇X(BIZ + CIZ))

= F∗(φI∇̂XBIZ + ωI ∇̂XBIZ + BITXBIZ + CITXBIZ + φITXCIZ

+ ωITXCIZ + BIH∇XCIZ + CIH∇XCIZ)
so that

(∇F∗)(X, Z) = 0 ⇔ ωI (∇̂XBIZ + TXCIZ) + CI(TXBIZ + H∇XCIZ) = 0.

Hence,
a) ⇔ b).

Similarly,
a) ⇔ c) and a) ⇔ d).

Therefore, we get the result.

Let F : (M, gM) �→ (N, gN) be a Riemannian map. The map F is called a
Riemannian map with totally umbilical fibers if

(3.17) TXY = gM(X, Y )H for X, Y ∈ Γ(ker F∗),

where H is the mean curvature vector field of the fiber.
In a similar way with Lemma 2.17 in [13], we have

Lemma 3.13. Let F be an almost h-semi-slant Riemannian map with totally um-
bilical fibers from a hyperkähler manifold (M, I, J, K, gM) to a Riemannian manifold
(N, gN) such that (I, J, K) is an almost h-semi-slant basis. Then we get

(3.18) H ∈ Γ(ωRDR
2 ) for R ∈ {I, J, K}.
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Using Lemma 3.13, we obtain

Corollary 3.14. Let F be an almost h-semi-slant Riemannian map with totally um-
bilical fibers from a hyperkähler manifold (M, I, J, K, gM) to a Riemannian manifold
(N, gN) such that (I, J, K) is an almost h-semi-slant basis with the almost h-semi-
slant angles {θI , θJ , θK}. Assume that θR = 0 for some R ∈ {I, J, K}. Then the
fibers of F are minimal submanifolds of M .

4. DECOMPOSITION THEOREMS

Let (M, gM) be a Riemannian manifold and D a (C∞-) distribution on M . The
distributionD is said to be autoparallel (or a totally geodesic foliation) if∇XY ∈ Γ(D)
for X, Y ∈ Γ(D). Given an autoparallel distributionD onM , it is easy to see that D is
integrable and its leaves are totally geodesic inM . Moreover, we call the distributionD
parallel if ∇ZY ∈ Γ(D) for Y ∈ Γ(D) and Z ∈ Γ(TM). Given a parallel distribution
D on M , we easily obtain that its orthogonal complementary distribution D⊥ is also
parallel. In this case, M is locally a Riemannian product manifold of the leaves of D
and D⊥. We can also obtain that if the distributions D and D⊥ are simultaneously
autoparallel, then they are also parallel. Using this fact, we have

Theorem 4.1. Let F be an almost h-semi-slant Riemannian map from a hy-
perkähler manifold (M, I, J, K, gM) to a Riemannian manifold (N, gN) such that
(I, J, K) is an almost h-semi-slant basis. Then the following conditions are equiva-
lent:

(a) (M, gM) is locally a Riemannian product manifold of the leaves of ker F∗ and
(kerF∗)⊥

(b)

ωI(∇̂XφIY + TXωIY ) + CI(TXφIY + H∇XωIY ) = 0 for X, Y ∈ Γ(ker F∗),

φI(V∇ZBIW+AZCIW )+BI (AZBIW+H∇ZCIW ) = 0 for Z, W ∈ Γ((ker F∗)⊥).

(c)

ωJ(∇̂XφJY + TXωJY ) + CJ(TXφJY + H∇XωJY ) = 0 for X, Y ∈ Γ(kerF∗),

φJ(V∇ZBJW+AZCJW )+BJ (AZBJW+H∇ZCJW ) = 0 for Z, W ∈ Γ((kerF∗)⊥).

(d)

ωK(∇̂XφKY + TXωKY ) + CK(TXφKY + H∇XωKY ) = 0 for X, Y ∈ Γ(ker F∗),

φK(V∇ZBKW+AZCKW )+BK(AZBKW+H∇ZCKW ) = 0 forZ, W ∈ Γ((kerF∗)⊥).
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Proof. Given R ∈ {I, J, K}, for X, Y ∈ Γ(kerF∗), we get

∇XY = −R∇XRY = −R(∇̂XφRY + TXφRY + TXωRY + H∇XωRY )

= −(φR∇̂XφRY + ωR∇̂XφRY + BRTXφRY + CRTXφRY + φRTXωRY

+ ωRTXωRY + BRH∇XωRY + CRH∇XωRY ).

Thus,

∇XY ∈ Γ(ker F∗) ⇔ ωR(∇̂XφRY + TXωRY ) + CR(TXφRY + H∇XωRY ) = 0.

For Z, W ∈ Γ((kerF∗)⊥), we have

∇ZW = −R∇ZRW = −R(V∇ZBRW + AZBRW + AZCRW + H∇ZCRW )

= −(φRV∇ZBRW + ωRV∇ZBRW + BRAZBRW + CRAZBRW

+ φRAZCRW + ωRAZCRW + BRH∇ZCRW + CRH∇ZCRW ).

Thus,

∇ZW ∈ Γ((kerF∗)⊥) ⇔ φR(V∇ZBRW + AZCRW )

+ BR(AZBRW + H∇ZCRW ) = 0.

Hence, we obtain
a) ⇔ b), a) ⇔ c), a) ⇔ d).

Therefore, the result follows.

Theorem 4.2. Let F be a h-semi-slant Riemannian map from a hyperkähler man-
ifold (M, I, J, K, gM) to a Riemannian manifold (N, gN) such that (I, J, K) is a
h-semi-slant basis. Then the following conditions are equivalent:

(a) the fibers of F are locally Riemannian product manifolds of the leaves of D1

and D2

(b)
QI(φI∇̂UφIV + BITUφIV ) = 0 and ωI∇̂UφIV + CITUφIV = 0

for U, V ∈ Γ(D1),

PI(φI(∇̂XφIY + TXωIY ) + BI (TXφIY + H∇XωIY )) = 0

ωI(∇̂XφIY + TXωIY ) + CI(TXφIY + H∇XωIY ) = 0

for X, Y ∈ Γ(D2).
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(c)
QJ(φJ∇̂UφJV + BJTUφJV ) = 0 and ωJ ∇̂UφJV + CJTUφJV = 0

for U, V ∈ Γ(D1),

PJ (φJ(∇̂XφJY + TXωJY ) + BJ(TXφJY + H∇XωJY )) = 0

ωJ (∇̂XφJY + TXωJY ) + CJ (TXφJY + H∇XωJY ) = 0

for X, Y ∈ Γ(D2).
(d)

QK(φK∇̂UφKV + BKTUφKV ) = 0 and ωK∇̂UφKV + CKTUφKV = 0

for U, V ∈ Γ(D1),

PK(φK(∇̂XφKY + TXωKY ) + BK(TXφKY + H∇XωKY )) = 0

ωK(∇̂XφKY + TXωKY ) + CK(TXφKY + H∇XωKY ) = 0

for X, Y ∈ Γ(D2).

Proof. Given R ∈ {I, J, K}, for U, V ∈ Γ(D1), we get

∇UV = −J∇U JV = −J(∇̂UφV + TUφV )

= −(φ∇̂UφV + ω∇̂UφV + BTUφV + CTUφV ).

Thus,

∇UV ∈ Γ(D1) ⇔ Q(φ∇̂UφV + BTUφV ) = 0 and ω∇̂UφV + CTUφV = 0.

For X, Y ∈ Γ(D2), we have

∇XY = −R∇XRY = −R(∇̂XφRY + TXφRY + TXωRY + H∇XωRY )

= −(φR∇̂XφRY + ωR∇̂XφRY + BRTXφRY + CRTXφRY + φRTXωRY

+ ωRTXωRY + BRH∇XωRY + CRH∇XωRY ).

Thus,
∇XY ∈ Γ(D2) ⇔{

PR(φR(∇̂XφRY + TXωRY ) + BR(TXφRY + H∇XωRY )) = 0,

ωR(∇̂XφRY + TXωRY ) + CR(TXφRY + H∇XωRY ) = 0.

Hence, we have
a) ⇔ b), a) ⇔ c), a) ⇔ d).

Therefore, we obtain the result.
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5. EXAMPLES

Note that given an Euclidean space R
4m with coordinates (x1, x2, · · · , x4m), we

can canonically choose complex structures I, J, K on R
4m as follows:

I( ∂
∂x4k+1

) = ∂
∂x4k+2

, I( ∂
∂x4k+2

) = − ∂
∂x4k+1

, I( ∂
∂x4k+3

) = ∂
∂x4k+4

, I( ∂
∂x4k+4

) = − ∂
∂x4k+3

,

J( ∂
∂x4k+1

) = ∂
∂x4k+3

, J( ∂
∂x4k+2

) = − ∂
∂x4k+4

, J( ∂
∂x4k+3

) = − ∂
∂x4k+1

, J( ∂
∂x4k+4

) = ∂
∂x4k+2

,

K( ∂
∂x4k+1

) = ∂
∂x4k+4

, K( ∂
∂x4k+2

) = ∂
∂x4k+3

, K( ∂
∂x4k+3

) = − ∂
∂x4k+2

, K( ∂
∂x4k+4

) = − ∂
∂x4k+1

for k ∈ {0, 1, · · · , m−1}. Then it is easy to check that (I, J, K, < , >) is a hyperkähler
structure on R

4m, where < , > denotes the Euclidean metric on R
4m. Throughout this

section, we will use these notations.

Example 5.1. [12]. Let F be an almost h-slant submersion from an almost quater-
nionic Hermitian manifold (M, E, gM) onto a Riemannian manifold (N, gN). Then the
map F : (M, E, gM) �→ (N, gN) is a h-semi-slant Riemannian map with D2 = kerF∗.

Example 5.2. [13]. Let F be an almost h-semi-slant submersion from an almost
quaternionic Hermitian manifold (M, E, gM) onto a Riemannian manifold (N, gN).
Then the map F : (M, E, gM) �→ (N, gN) is an almost h-semi-slant Riemannian map.

Example 5.3. [10]. Let (M, E, g) be an almost quaternionic Hermitian manifold.
Let π : TM �→ M be the natural projection. Then the map π is a strictly h-semi-slant
Riemannian map such that D1 = kerπ∗ and the strictly h-semi-slant angle θ = 0.

Example 5.4. [10]. Let (M, EM , gM) and (N, EN , gN) be almost quaternionic
Hermitian manifolds. Let F : M �→ N be a quaternionic submersion. Then the map
F is a strictly h-semi-slant Riemannian map such that D1 = kerF∗ and the strictly
h-semi-slant angle θ = 0.

Example 5.5. Define a map F : R
8 �→ R

4 by

F (x1, · · · , x8) = (x2, x1 sinα − x3 cos α, 1968, x4),

where α is constant. Then the map F is a strictly h-semi-slant Riemannian map such
that

D1 =<
∂

∂x5
,

∂

∂x6
,

∂

∂x7
,

∂

∂x8
> and D2 =< cosα

∂

∂x1
+ sin α

∂

∂x3
>

with the strictly h-semi-slant angle θ = π
2 .

Example 5.6. Let (M, E, gM) be a 4m−dimensional almost quaternionic Her-
mitian manifold and (N, gN) a (4m − 1)−dimensional Riemannian manifold. Let
F : (M, E, gM) �→ (N, gN) be a Riemannian map with rankF = 4m − 1. Then the
map F is a strictly h-semi-slant Riemannian map such that D2 = kerF∗ and the strictly
h-semi-slant angle θ = π

2 .
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Example 5.7. Define a map F : R
12 �→ R

5 by

F (x1, · · · , x12) = (x6,
x1 − x3√

2
, c, x4,

x5 − x7√
2

),

where c is constant. Then the map F is a h-semi-slant Riemannian map such that

D1 =<
∂

∂x9
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12
> and D2 =<

∂

∂x2
,

∂

∂x8
,

∂

∂x1
+

∂

∂x3
,

∂

∂x5
+

∂

∂x7
>

with the h-semi-slant angles {θI = π
4 , θJ = π

2 , θK = π
4}.

Example 5.8. Define a map F : R
12 �→ R

7 by

F (x1, · · · , x12) = (x5 cosα − x7 sin α, γ, x6 sinβ − x8 cosβ, x9, x11, x12, x10),

where α, β, and γ are constant. Then the map F is a h-semi-slant Riemannian map
such that

D1 =<
∂

∂x1
,

∂

∂x2
,

∂

∂x3
,

∂

∂x4
>

and
D2 =< sinα

∂

∂x5
+ cos α

∂

∂x7
, cosβ

∂

∂x6
+ sinβ

∂

∂x8
>

with the h-semi-slant angles {θI , θJ = π
2 , θK} such that cos θI = | sin(α + β)| and

cos θK = | cos(α + β)|.

Example 5.9. Define a map F : R
12 �→ R

7 by

F (x1, · · · , x12) = (x3, x4, 0, x7, x5, x6, x8).

Then the map F is an almost h-semi-slant Riemannian map such that

DI
1 =<

∂

∂x1
,

∂

∂x2
,

∂

∂x9
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12
>,

DJ
1 = DK

1 =<
∂

∂x9
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12
>,

DI
2 = 0, DJ

2 = DK
2 =<

∂

∂x1
,

∂

∂x2
> .

with the almost h-semi-slant angles {θI = 0, θJ = π
2 , θK = π

2 }.

Example 5.10. Define a map F : R
12 �→ R

6 by

F (x1, · · · , x12) = (x2, x5, α, x1, β, x7),
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where α and β are constant. Then the map F is an almost h-semi-slant Riemannian
map such that

DI
1 =<

∂

∂x3
,

∂

∂x4
,

∂

∂x9
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12
>,

DJ
1 =<

∂

∂x6
,

∂

∂x8
,

∂

∂x9
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12
>,

DK
1 =<

∂

∂x9
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12
>,

DI
2 =<

∂

∂x6
,

∂

∂x8
>, DJ

2 =<
∂

∂x3
,

∂

∂x4
>,

DK
2 =<

∂

∂x3
,

∂

∂x4
,

∂

∂x6
,

∂

∂x8
>

with the almost h-semi-slant angles {θI = π
2 , θJ = π

2 , θK = π
2}.

Example 5.11. Let F̃ be a h-semi-slant Riemannian map from an almost quater-
nionic Hermitian manifold (M1, E1, gM1) to a Riemannian manifold (N, gN) with
D2 = ker F̃∗. Let (M2, E2, gM2) be an almost quaternionic Hermitian manifold. De-
note by (M, E, gM) the warped product of (M1, E1, gM1) and (M2, E2, gM2) by a
positive function g on M1 [8], where E = E1 × E2.
Define a map F : (M, E, gM) �→ (N, gN) by

F (x, y) = F̃ (x) for x ∈ M1 and y ∈ M2.

Then the map F is a h-semi-slant Riemannian map such that

D1 = TM2 and D2 = ker F̃∗

with the h-semi-slant angles {θI , θJ , θK}, where {I, J, K} is a h-slant basis for the
map F̃ with the h-semi-slant angles {θI , θJ , θK}.
Note that as a generalization of an almost h-slant submersion [12], we call the map

F̃ an almost h-slant Riemannian map.

ACKNOWLEDGMENTS

The author is grateful to the referees for their valuable comments and suggestions.

REFERENCES

1. P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds, Oxford
science publications, 2003.



956 Kwang-Soon Park

2. B. Y. Chen, Differential geometry of real submaniflods in a Kähler manifold, Monatsh.
Math., 91 (1981), 257-274.

3. B. Y. Chen, Slant immersions, Bull. Austral. Math. Soc., 41(1) (1990), 135-147.

4. B. Y. Chen, Geometry of slant submaniflods, Katholieke Universiteit Leuven, Leuven,
1990.

5. V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of Euclidean
supersymmetry 1, Vector multiplets, J. High Energy Phys., 03 (2004), 028.

6. J. Eells and J. M. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J.
Math., 86 (1964), 109-160.

7. A. E. Fischer, Riemannian maps between Riemannian manifolds, Contemporary Math.,
132 (1992), 331-366.

8. M. Falcitelli, S. Ianus and A. M. Pastore, Riemannian submersions and related topics,
World Scientific Publishing Co., 2004.

9. A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech.,
16 (1967), 715-737.

10. S. Ianus, R. Mazzocco and G. E. Vilcu, Riemannian submersions from quaternionic
manifolds, Acta. Appl. Math., 104 (2008), 83-89.

11. B. O’Neill, The fundamental equations of a submersion, Mich. Math. J., 13 (1966),
458-469.

12. K. S. Park, H-slant submersions, Bull. Korean Math. Soc., 49(2) (2012), 329-338.

13. K. S. Park, H-semi-slant submersions, Preprint, 2011.

14. K. S. Park, Semi-slant Riemannian maps, arXiv:1208.5362v2 [math.DG].

15. K. S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc., Accepted,
arXiv:1201.0814v2 [math.DG].

16. B. Sahin, Invariant and anti-invariant Riemannian maps to Kahler manifolds, Int. J.
Geom. Methods Mod. Phys., 7(3) (2010), 337-355.

17. B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci.
Math. Roumanie Tome, 54(1)(102) (2011), 93-105.

18. B. Sahin, Slant Riemannian maps from almost Hermitian manifolds, arXiv:1206.3563v1
[math.DG].

19. B. Watson, Almost Hermitian submersions, J. Differential Geom., 11(1) (1976), 147-165.

Kwang-Soon Park
Department of Mathematical Sciences
Seoul National University
Seoul 151-747
Republic of Korea
E-mail: parkksn@gmail.com


