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MULTIPLICITY OF SOLUTIONS FOR PERIODIC AND NEUMANN
PROBLEMS INVOLVING THE DISCRETE p(·)-LAPLACIAN

Călin Şerban

Abstract. Using critical point theory, we study the multiplicity of solutions for
some periodic and Neumann boundary value problems involving the discrete p(·)-
Laplacian.

1. INTRODUCTION

Let T be a positive integer, [a, b] be the discrete interval {a, a + 1, . . . , b} for
a, b ∈ N (a < b) and λ be a positive parameter. For given s ∈ (1,∞), hs will
stand for the homeomorphism defined by hs(x) = |x|s−2x, for all x ∈ R. Also, let
p : [0, T ] → (1,∞), q : [1, T ] → (1,∞), r : [1, T ] → (0,∞) and b : [1, T ] → R be
given functions. We denote

Ak(x) := −Δp(k−1)x(k − 1) + r(k)hp(k)(x(k)), (k ∈ [1, T ], x ∈ R),

where Δx(k) = x(k + 1) − x(k) is the forward difference operator and Δp(·) is the
discrete p(·)-Laplacian operator, i.e.,

Δp(k−1)x(k − 1) := Δ(hp(k−1)(Δx(k − 1))) = hp(k)(Δx(k))− hp(k−1)(Δx(k − 1)).

In this paper we use the critical point theory [22], [19], to obtain the existence
of multiple nontrivial solutions for the one-parameter periodic, respectively, Neumann
problems:

(PP )

{ Ak(x) = f(k, x(k)) + λb(k)hq(k)(x(k)), (∀) k ∈ [1, T ],

x(0)− x(T + 1) = 0 = Δx(0)− Δx(T )

Received September 4, 2012, accepted February 5, 2013.
Communicated by Biagio Ricceri.
2010 Mathematics Subject Classification: 39A12, 39A23, 39A70, 65Q10.
Key words and phrases: Discrete p(·)-Laplacian operator, Variational methods, Critical point, Palais-
Smale condition, Mountain Pass Theorem.

1425
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and

(PN)

{ Ak(x) = f(k, x(k)) + λb(k)hq(k)(x(k)), (∀) k ∈ [1, T ],

Δx(0) = 0 = Δx(T ),

with f : [1, T ]× R → R a continuous function.

Also, we deal with the existence of at least two positive solutions for the problems:

(P ′
P )

{ Ak(x) = λf(k, x(k)), (∀) k ∈ [1, T ],

x(0)− x(T + 1) = 0 = Δx(0)− Δx(T )

and

(P ′
N)

{ Ak(x) = λf(k, x(k)), (∀) k ∈ [1, T ],

Δx(0) = 0 = Δx(T ).

Throughout the paper, we assume that the variable exponent p satisfies

(1.1) p(0) = p(T )

whenever we refer to the periodic problems (PP ) and (P ′
P ). From now on, we also

employ the notations:

p− = min
k∈[0,T ]

p(k), p+ = max
k∈[0,T ]

p(k) and p = min
k∈[1,T ]

p(k), p = max
k∈[1,T ]

p(k)

and we shall assume that

(1.2) q < p−.

In recent years, equations involving the discrete p-Laplacian operator, subjected
to classical or less classical boundary conditions, have been widely studied by many
authors using various techniques. The variational method appears as being a very
fruitful one. In this direction we mention the papers [1, 2, 6, 10, 14, 15, 23, 25, 26].
In [18], using a variational approach, the author has obtained the existence of periodic
solutions for systems involving a general discrete φ-Laplacian operator.
Also, boundary value problems with discrete p(·)-Laplacian were studied in recent

time; we refer the reader to [11, 13, 16, 17, 20, 21]. Existence results for discrete
p(·)-Laplacian equations subjected to a general potential type boundary condition were
obtained in [5], using Szulkin’s critical point theory [24]. By mountain pass type
arguments and the Karush-Kuhn-Tucker theorem, in [12], the existence of at least two
positive solutions is established, in the case of Dirichlet boundary conditions. In the
recent paper [4], the authors have obtained the existence of ground state and saddle
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point solutions for problems (P ′
P ) and (P ′

N) with λ = 1; also, they give an alternative
variational proof of the upper and lower solutions theorem for both of the problems.
Here, we obtain the existence of at least two nontrivial solutions for problems

(PP ), (PN) (see Theorems 3.5 and 3.6) in the presence of an Ambrosetti-Rabinowitz
type condition. In this view, we employ some ideas from [3], combined with specific
technicalities due to the discrete and anisotropic character of the problems. Also,
for sufficiently large values of the parameter λ, the existence of at least two positive
solutions for problems (P ′

P ), (P ′
N) is established in Theorems 4.1 and 4.4.

The rest of the paper is organized as follows. The functional framework and the
variational setting are presented in Section 2. In Section 3 we establish the existence
of at least two nontrivial solutions for problems (PP ) and (PN), if λ is small enough.
Sections 4 is devoted to problems (P ′

P ) and (P ′
N); we obtain the existence of at least

two positive solutions, for λ sufficiently large.

2. THE FUNCTIONAL FRAMEWORK

To establish the main results we shall use a variational approach. With this aim,
to treat the periodic problems (PP ) and (P ′

P ), we introduce the space

XP := {x : [0, T + 1] → R | x(0) = x(T + 1)} ,

while in the case of Neumann problems (PN) and (P ′
N), we shall use

XN := {x : [0, T + 1] → R} .

Further, for the convenience in notations we generically denote by X one of the
spaces XP or XN . The space X will be endowed with the Luxemburg norm

‖x‖η,p(·) = inf

{
ν > 0 :

T+1∑
k=1

1
p(k − 1)

∣∣∣∣Δx(k − 1)
ν

∣∣∣∣
p(k−1)

+ η

T∑
k=1

1
p(k)

∣∣∣∣x(k)
ν

∣∣∣∣
p(k)

≤ 1

}
,

for some η > 0. Also, we shall make use of the usual sup-norm

‖x‖∞ = max
k∈[0,T+1]

|x(k)| (x ∈ X).

It is easy to check that for all x ∈ X and any η > 0, one has

(2.1)
‖x‖p+

η,p(·) ≤
T+1∑
k=1

|Δx(k − 1)|p(k−1)

p(k − 1)
+ η

T∑
k=1

|x(k)|p(k)

p(k)

≤ ‖x‖p−
η,p(·), if ‖x‖η,p(·) < 1
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and

(2.2)
‖x‖p−

η,p(·) ≤
T+1∑
k=1

|Δx(k − 1)|p(k−1)

p(k − 1)
+ η

T∑
k=1

|x(k)|p(k)

p(k)

≤ ‖x‖p+

η,p(·), if ‖x‖η,p(·) > 1.

Now, let ϕX,λ : X → R be defined by

ϕX,λ(x) =
T+1∑
k=1

|Δx(k − 1)|p(k−1)

p(k − 1)
+

T∑
k=1

r(k)
p(k)

|x(k)|p(k) − λ

T∑
k=1

b(k)
q(k)

|x(k)|q(k),

for all x ∈ X. Standard arguments show that ϕX,λ ∈ C1(X, R) and

(2.3)

〈ϕ′
X,λ(x), y〉

=
T+1∑
k=1

hp(k−1)(Δx(k − 1))Δy(k − 1)

+
T∑

k=1

r(k)hp(k)(x(k))y(k)− λ

T∑
k=1

b(k)hq(k)(x(k))y(k), (∀) x ∈ X.

Next, denoting by F : [1, T ]× R → R the primitive of f , i.e.,

F (k, t) =
∫ t

0
f(k, τ)dτ, (∀) k ∈ [1, T ], (∀) t ∈ R,

we define

FX(x) =
T∑

k=1

F (k, x(k)), (∀) x ∈ X.

It is a simple matter to see that FX ∈ C1(X, R) and

(2.4) 〈F ′
X(x), y〉 =

T∑
k=1

f(k, x(k))y(k), (∀) x, y ∈ X.

The energy functional corresponding to problem (PP ) (resp. (PN )) is

ΦX(x) = ϕX,λ(x)− FX(x), (∀) x ∈ X,

with X = XP (resp. X = XN ). Therefore, ΦX ∈ C1(X, R) and by (2.3) and (2.4),
one has

〈Φ′
X(x), y〉 =

T+1∑
k=1

hp(k−1)(Δx(k − 1))Δy(k − 1) +
T∑

k=1

r(k)hp(k)(x(k))y(k)
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(2.5) −λ

T∑
k=1

b(k)hq(k)(x(k))y(k)−
T∑

k=1

f(k, x(k))y(k), (∀) x, y ∈ X.

In the case of the problem (P ′
P ) (resp. (P ′

N )), instead of ϕX,λ, one works with
ϕX : X → R given by

(2.6) ϕX(x) =
T+1∑
k=1

1
p(k − 1)

|Δx(k − 1)|p(k−1) +
T∑

k=1

r(k)
p(k)

|x(k)|p(k)

and the corresponding Euler-Lagrange functional will be now

ΨX(x) = ϕX(x) − λFX(x), (∀) x ∈ X,

with X = XP (resp. X = XN ). Also, ΨX ∈ C1(X, R) and

〈Ψ′
X(x), y〉 =

T+1∑
k=1

hp(k−1)(Δx(k − 1))Δy(k − 1)

+
T∑

k=1

r(k)hp(k)(x(k))y(k)− λ

T∑
k=1

f(k, x(k))y(k), (∀) x, y ∈ X.

The search of solutions of problem (PP ) (resp. (P ′
P )) reduces to finding critical

points of the energy functional ΦXP
(resp. ΨXP

) by the following

Proposition 2.1. (see [4, Proposition 2.1]). Assume that hypothesis (1.1) holds
true. A function x ∈ XP is solution of problem (PP ) (resp. (P ′

P )) if and only if it is
a critical point of ΦXP

(resp. ΨXP
).

Also, we have

Proposition 2.2. (see [4, Proposition 2.3]). A function x ∈ XN is solution of
problem (PN ) (resp. (P ′

N)) if and only if it is a critical point of ΦXN
(resp. ΨXN

).

3. NONTRIVIAL SOLUTIONS FOR PROBLEMS (PP ) AND (PN)

Assuming an Ambrosetti-Rabinowitz type condition and controlling the asymptotic
behavior of the primitive F (k, ·) near 0, we obtain that problems (PP ) and (PN) have
at least two nontrivial solutions, for small enough values of the parameter λ. To do
this we need an abstract result, which is proved in [3].
Let (Y, ‖ ·‖) be a real Banach space and I ∈ C1(Y, R). For σ > 0, we shall denote

Bσ = {y ∈ Y : ‖y‖ < σ} and by Bσ its closure.

Proposition 3.1. (see [3, Proposition 2]). Suppose that I satisfies the Palais-Smale
(in short, (PS)) condition, together with
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(i1) I(0) = 0 and there exists ρ > 0 such that

−∞ < inf
Bρ

I < 0 < inf
∂Bρ

I ;

(i2) I(e) ≤ 0 for some e ∈ Y \ Bρ.

Then I has at least two nontrivial critical points.

Toward the application of Proposition 3.1, we first have to know that the energy
functional ΦX satisfies the (PS) condition.

Lemma 3.2. Assume that (1.2) holds true. If there are constants θ > p+ and
ρ > 0 such that

(3.1) 0 < θF (k, t) ≤ tf(k, t), (∀) k ∈ [1, T ], (∀) t ∈ R with |t| > ρ,

then ΦX satisfies the (PS) condition and

ΦX(c) → −∞ as |c| → ∞, c ∈ R,

for any λ > 0.

Proof. Let {xn} ⊂ X be a sequence for which {ΦX(xn)} is bounded and
(3.2) Φ′

X(xn) → 0, as n → ∞.

Since X is finite dimensional, it suffices to prove that {xn} is bounded. Without loss
of generality, we may assume that ‖xn‖r,p(·) > 1, for all n ∈ N. Using (3.1), we
deduce that, for all n ∈ N, it holds

(3.3)

θFX(xn) − 〈F ′
X(xn), xn〉 =

T∑
k=1

[θF (k, xn(k))− xn(k)f(k, xn(k))]

≤
∑

|xn(k)|≤ρ

[θF (k, xn(k)) − xn(k)f(k, xn(k))]

≤
T∑

k=1

max
|x|≤ρ

|θF (k, x) − xf(k, x)| =: C1.

From (1.2), (2.2), (2.3), (2.5) and (3.3), for all n ∈ N, we have(
θ

p+
− 1
)

p−‖xn‖p−
r,p(·)

≤
(

θ

p+
− 1
)[T+1∑

k=1

|Δxn(k − 1)|p(k−1) +
T∑

k=1

r(k)|xn(k)|p(k)

]

≤ θ

(
T+1∑
k=1

1
p(k − 1)

|Δxn(k − 1)|p(k−1) +
T∑

k=1

r(k)
p(k)

|xn(k)|p(k)

)
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−
(

T+1∑
k=1

|Δxn(k − 1)|p(k−1) +
T∑

k=1

r(k)|xn(k)|p(k)

)

= θΦX(xn) − 〈Φ′
X(xn), xn〉 +

T∑
k=1

[θF (k, xn(k))− xn(k)f(k, xn(k))]

+λ

T∑
k=1

[
θ
b(k)
q(k)

|xn(k)|q(k) − b(k)|xn(k)|q(k)

]

≤ θΦX(xn) − 〈Φ′
X(xn), xn〉 + λ

(
θ

q
− 1
) T∑

k=1

|b(k)||xn(k)|q(k) + C1

≤ θΦX(xn) − 〈Φ′
X(xn), xn〉

+λ‖b‖∞
(

θ

q
− 1
) T+1∑

k=0

(|xn(k)|q + |xn(k)|q)+ C1.

Then, the equivalence of the norms on X yields

(3.4)

(
θ

p+
− 1
)

p−‖xn‖p−
r,p(·)

≤ θΦX(xn) − 〈Φ′
X(xn), xn〉

+λC2‖b‖∞
(

θ

q
− 1
)(

‖xn‖q
r,p(·) + ‖xn‖q

r,p(·)
)

+ C1

≤ θΦX(xn) + ‖Φ′
X(xn)‖‖xn‖r,p(·) + C3

(
‖xn‖q

r,p(·) + ‖xn‖q

r,p(·)
)

+ C1,

with C2 > 0 and C3 := λC2‖b‖∞
(

θ
q − 1

)
> 0.

As {ΦX(xn)} is bounded and on account of (3.2), from (3.4), we get that {xn} is
bounded and hence, ΦX satisfies the (PS) condition.

It is easy to check that, by virtue of (3.1), there exist a1, a2 > 0 such that

(3.5) F (k, t) ≥ a1|t|θ − a2, (∀) k ∈ [1, T ], (∀) t ∈ R.

From (3.5), we infer

ΦX(c) =
T∑

k=1

r(k)
p(k)

|c|p(k) −
T∑

k=1

F (k, c)− λ
T∑

k=1

b(k)
q(k)

|c|q(k)

≤ rT

p−
|c|p+ − a1T |c|θ + a2T − λ|c|q

q

∑
{k∈[1,T ]; b(k)≥0}

b(k)

−λ|c|q
q

∑
{k∈[1,T ]; b(k)<0}

b(k),
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for all c ∈ R, with |c| > 1. Then, since θ > p+ > q ≥ q, the result follows.

Lemma 3.3. Assume hypothesis (1.2) and that b > 0. If either

(3.6) lim inf
t→0−

F (k, t)
|t|p(k)

≥ 0, (∀) k ∈ [1, T ]

or

(3.7) lim inf
t→0+

F (k, t)
tp(k)

≥ 0, (∀) k ∈ [1, T ],

then

(3.8) inf
Bζ

ΦX < 0,

for all ζ, λ > 0.

Proof. First, note that b > 0 means b > 0 on [1, T ]. Let us suppose that (3.6)
holds true. A similar argument works under assumption (3.7). Condition (3.6) means
that

lim
ε→0+

inf
t∈(−ε,0)

F (k, t)
|t|p(k)

≥ 0, (∀) k ∈ [1, T ].

This yields the existence of some ε1 > 0 so that

(3.9) F (k, t) ≥ −|t|p(k), (∀) k ∈ [1, T ], (∀) t ∈ (−ε1, 0],

and we may assume that ζ < ε1. For c ∈ (−ζ, 0) ⊂ (−ε1, 0], using (3.9), (1.2) and
b > 0, we estimate ΦX as follows

ΦX(c) =
T∑

k=1

r(k)
p(k)

|c|p(k) −
T∑

k=1

F (k, c)− λ

T∑
k=1

b(k)
q(k)

|c|q(k)

≤ rT

p−
|c|p− + T |c|p− − λbT

q
|c|q = |c|qT

[(
r

p−
+ 1
)
|c|p−−q − λb

q

]
< 0,

provided that |c| ∈ (0, 1) is small enough, which imply (3.8) and the proof is com-
plete.

Lemma 3.4. If

(3.10) lim sup
|t|→0

p(k)F (k, t)
|t|p(k)

< r, (∀) k ∈ [1, T ],

then there exist ρ, λ0 > 0 such that

(3.11) inf
∂Bρ

ΦX > 0,
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for all λ ∈ (0, λ0).

Proof. By the equivalence of the norms on X , for each η > 0, there exists same
Cη > 0, such that

(3.12) ‖x‖∞ ≤ Cη‖x‖η,p(·), (∀) x ∈ X.

From (3.10), we can find constants σ ∈ (0, r), ρ ∈ (0, 1) and Cσ > 0 such that

(3.13) F (k, t) ≤ r − σ

p(k)
|t|p(k), (∀) k ∈ [1, T ], (∀) t ∈ R with |t| ≤ ρCσ.

Let x ∈ X , with ‖x‖σ,p(·) = ρ, be arbitrarily chosen. By (3.12) and (3.13) one has

F (k, x(k)) ≤ r − σ

p(k)
|x(k)|p(k), (∀) k ∈ [1, T ],

which implyies that

FX(x) ≤ (r − σ)
T∑

k=1

1
p(k)

|x(k)|p(k)

and hence, from (2.1) and the equivalence of the norms on X , we get

ΦX(x) ≥
T+1∑
k=1

1
p(k − 1)

|Δx(k − 1)|p(k−1) + r

T∑
k=1

1
p(k)

|x(k)|p(k)

+(σ − r)
T∑

k=1

1
p(k)

|x(k)|p(k) − λ

T∑
k=1

b(k)
q(k)

|x(k)|q(k)

≥ ‖x‖p+

σ,p(·) −
λ‖b‖∞

q

T+1∑
k=0

(|x(k)|q + |x(k)|q) ≥
‖x‖p+

σ,p(·) −
λC‖b‖∞

q

(
‖x‖q

σ,p(·) + ‖x‖q

σ,p(·)
)

= ρp+ − λC‖b‖∞
q

(
ρq + ρq

)
,

with C > 0. Setting

λ0 :=
qρp+

‖b‖∞ (ρq + ρq)C
> 0,

one has

ΦX(x) ≥ ‖b‖∞
(
ρq + ρq

)
C

q
(λ0 − λ) =: cλ > 0,

for arbitrary λ ∈ (0, λ0) and (3.11) follows.

Theorem 3.5. Assume (1.1), (1.2), (3.10) and that b > 0. If there are constants
θ > p+ and ρ > 0 such that (3.1) holds and either (3.6) or (3.7) is satisfied, then
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there exists λ0 > 0 such that problem (PP ) has at least two nontrivial solutions for
any λ ∈ (0, λ0).

Proof. The conclusion follows from Proposition 3.1, Lemmas 3.2 - 3.4 with X =
XP , and Proposition 2.1.

In the same way, but with X = XN and Proposition 2.2 instead of Proposition 2.1,
we obtain the following

Theorem 3.6. Assume hypotheses (1.2), (3.10) and that b > 0. If there are
constants θ > p+ and ρ > 0 such that (3.1) is satisfied and either (3.6) or (3.7) holds
true, then there exists λ0 > 0 such that problem (PN) has at least two nontrivial
solutions for any λ ∈ (0, λ0).

Remark 3.7. (i) On account of [3, Remark 1(i)] it is easy to see that under the
hypotheses of Theorem 3.5 (resp. Theorem 3.6), if, in addition, f(k, ·) is odd for
all k ∈ [1, T ], then (PP ) (resp. (PN)) has at least four nontrivial solutions for any
λ ∈ (0, λ0).
(ii) It is worth to point out that if q =constant, then Theorems 3.5 and 3.6 remain

valid with the weaker hypothesis
∑T

k=1 b(k) > 0 instead of b > 0.

Example 3.8. If θ > p+ and b > 0, then there exists λ0 > 0 such that the Neumann
problem { Ak(x) = khθ(x(k)) + λb(k)hq(k)(x(k)), (∀) k ∈ [1, T ],

Δx(0) = 0 = Δx(T )

has at least four nontrivial solutions for any λ ∈ (0, λ0).

4. TWO POSITIVE SOLUTIONS FOR PROBLEMS (P ′
P ) AND (P ′

N)

In this Section we deal with the existence of positive solutions for problems (P ′
P )

and (P ′
N), for sufficiently large values of the parameter λ. The main tool in obtaining

such a result will be the classical Mountain Pass Theorem [22].

Theorem 4.1. Assume (1.1) and that there is some ξ > 0 such that f(k, ·) > 0 on
(0, ξ) and f(k, ξ) = 0, for all k ∈ [1, T ]. If

(4.1) lim
t→0

f(k, t)
|t|p(k)−1

= 0, (∀) k ∈ [1, T ],

then there exists λ	 > 0 such that for all λ > λ	, problem (P ′
P ) has at least two

positive solutions.
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Proof. We set f̃(k, t) = f(k, t) for 0 ≤ t ≤ ξ and f̃(k, t) = 0 otherwise (k ∈
[1, T ]), and let us consider the problem

(P̃ ′
P )

{ Ak(x) = λf̃(k, x(k)), (∀) k ∈ [1, T ],

x(0)− x(T + 1) = 0 = Δx(0)− Δx(T ).

Its energy functional is

Ψ̃XP
(x) = ϕXP

(x) − λ

T∑
k=1

F̃ (k, x(k)), (∀) x ∈ XP ,

where ϕXP
is defined in (2.6) and F̃ is the primitive of f̃ .

For x ∈ XP , setting x+ := max{x, 0} and x− := min{x, 0}, it is straightforward
to check that

|Δx(k)||Δx±(k)| = Δx(k)Δx±(k) and |Δx(k)| ≥ |Δx±(k)|,
which imply

(4.2)

|Δx±(k)|p(k)

= |Δx±(k)|p(k)−1|Δx±(k)| ≤ |Δx(k)|p(k)−1|Δx±(k)|

= |Δx(k)|p(k)−2|Δx(k)||Δx±(k)| = |Δx(k)|p(k)−2Δx(k)Δx±(k),

for all k ∈ [0, T ].
Now, assume that x is a nontrivial solution of problem (P̃ ′

P ). Then, using (1.1),
(4.2), the summation by parts formula and the fact that r > 0 on [1, T ], we obtain

0 = 〈Ψ̃′
XP

(x), (x− ξ)+〉

=
T∑

k=1

Ak(x)(x(k)− ξ)+ − λ
T∑

k=1

f̃(k, x(k))(x(k)− ξ)+

=
T∑

k=0

hp(k)(Δx(k))Δ(x(k)− ξ)+ +
T∑

k=1

r(k)hp(k)(x(k))(x(k)− ξ)+

=
T∑

k=0

|Δ(x(k)− ξ)|p(k)−2Δ(x(k)− ξ)Δ(x(k)− ξ)+

+
T∑

k=1

r(k)hp(k)(x(k))(x(k)− ξ)+

≥
T∑

k=0

|Δ(x(k)− ξ)+|p(k) +
T∑

k=1

r(k)|x(k)|p(k)−2[(x(k)− ξ)+]2,
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which implies that x ≤ ξ. In a similar way, with x− instead of (x − ξ)+, we obtain
that x ≥ 0. Moreover, if there exists k0 ∈ [0, T + 1] such that x(k0) = 0, then using
that x solves problem (P̃ ′

P ), by a simple computation we get that x(k) = 0, for all
k ∈ [0, T+1], a contradiction because x is assumed to be nontrivial. Hence, 0 < x ≤ ξ.
By virtue of these remarks and Proposition 2.1, to find positive solutions of problem
(P ′

P ), it suffices to produce nontrivial critical points of the functional Ψ̃XP
.

Next, we show that Ψ̃XP
satisfies the (PS) condition. With this aim, let {xn} ⊂ XP

be a sequence with Ψ̃XP
(xn) ≤ M , for all n ∈ N. Since XP is finite dimensional, it

suffices to prove that {xn} is bounded. The boundedness of f̃ implies that there exists
C1 > 0 such that

|F̃ (k, t)| ≤ C1|t|, (∀) k ∈ [1, T ], (∀) t ∈ R

and using the equivalence of the norms on XP and (2.2), if ‖xn‖r,p(·) > 1, one has

(4.3)

M ≥ Ψ̃XP
(xn) ≥

T+1∑
k=1

|Δxn(k − 1)|p(k−1)

p(k − 1)

+r

T∑
k=1

|xn(k)|p(k)

p(k)
− λC1

T∑
k=1

|xn(k)|

≥ ‖xn‖p−
r,p(·) − λC1T‖xn‖∞ ≥ ‖xn‖p−

r,p(·) − λC1C2T‖xn‖r,p(·),

with C2 a positive constant. Thus, we get that {xn} is bounded in XP .
Also, note that (see (4.3))

Ψ̃XP
(x) ≥ ‖x‖p−

r,p(·) − λC1C2T‖x‖r,p(·), (∀) x ∈ XP , ‖x‖r,p(·) > 1,

which implies that Ψ̃XP
is bounded from below. Hence, by [22, Theorem 2.7],

cλ = inf
x∈XP

Ψ̃XP
(x)

is a critical value of Ψ̃XP
, for all λ > 0.

Let y ∈ XP \ {0} such that y(k) ∈ (0, ξ), for all k ∈ [1, T ]. As
T∑

k=1

F̃ (k, y(k)) > 0,

we can find λ	 > 0 sufficiently large, such that Ψ̃XP
(y) < 0, for all λ > λ	. For

such λ, the functional Ψ̃XP
has a critical value cλ < 0 and a corresponding nontrivial

critical point x1, which is a positive solution of problem (P ′
P ).

Next, we shall prove that Ψ̃XP
has a ”mountain pass” geometry, namely:

(a) there exist α, ρ > 0 such that Ψ̃XP
|∂Bρ≥ α;
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(b) Ψ̃XP
(e) ≤ 0 for some e ∈ XP \ Bρ,

where Bρ denote the open ball in XP of radius ρ centered at 0 and Bρ its closure.
As in the proof of Lemma 3.4, by the equivalence of the norms on XP , for any

η > 0, there is some Cη > 0 such that (3.12) holds true. From (4.1), we can find
constants σ ∈ (0, r), ρ ∈ (0, min{1, ‖x1‖σ,p(·)/2}) and Cσ > 0 such that

(4.4) F̃ (k, t) ≤ r − σ

λp(k)
|t|p(k), (∀) k ∈ [1, T ], (∀) t ∈ R with |t| ≤ ρCσ .

For x ∈ XP with ‖x‖σ,p(·) ≤ ρ, from (3.12) and (4.4), one has

F̃ (k, x(k)) ≤ r − σ

λp(k)
|x(k)|p(k), (∀) k ∈ [1, T ],

which, together with (2.1), imply

Ψ̃XP
(x) = ϕXP

(x) − λ

T∑
k=1

F̃ (k, x(k)) ≥ ϕXP
(x) + (σ − r)

T∑
k=1

1
p(k)

|x(k)|p(k)

≥
T+1∑
k=1

1
p(k − 1)

|Δx(k − 1)|p(k−1) + σ

T∑
k=1

1
p(k)

|x(k)|p(k) ≥ ‖x‖p+

σ,p(·)

and condition (a) is fulfilled with α = ρp+ . Since ‖x1‖σ,p(·) > ρ and Ψ̃XP
(x1) < 0,

condition (b) is also satisfied. Consequently, the Mountain Pass Theorem yields a
second nontrivial critical point x2 of Ψ̃XP

such that Ψ̃XP
(x2) > 0 > Ψ̃XP

(x1).
Clearly x2 is distinct from x1. Hence, x2 is a second positive solution of problem
(P ′

P ) and the proof is complete.

Remark 4.2. It is worth to point out that Theorem 3.1 proved in [6] for p =constant
is an immediate consequence of Theorem 4.1.

Example 4.3. If (1.1) holds, then there exists λ	 > 0 such that, for every λ > λ	,
the problem { Ak(x) = λk

(
xθ(k)− xθ+1(k)

)
, (∀) k ∈ [1, T ],

x(0)− x(T + 1) = 0 = Δx(0)− Δx(T )

has at least two positive solutions for any θ > p+ − 1.

For the Neumann problem (P ′
N), as in Theorem 4.1 by no longer than ”mutatis

mutandis” arguments, we have the following

Theorem 4.4. If there is some ξ > 0 such that f(k, ·) > 0 on (0, ξ) and f(k, ξ) =
0, for all k ∈ [1, T ] and (4.2) holds true, then there exists λ	 > 0 such that for all
λ > λ	, problem (P ′

N) has at least two positive solutions in XN .
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Călin Şerban
Department of Mathematics
West University of Timişoara
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