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STATISTICAL CONVERGENCE OF GENERALIZED DIFFERENCE
SEQUENCE SPACE OF FUZZY NUMBERS

P. D. Srivastava and S. Mohanta

Abstract. In this paper, we introduce and study the concept of Δm−summable
sequence of fuzzy numbers by using a modulus function and Δm−statistical
convergence of sequences fuzzy numbers. Also we have defined Δm−statistical
pre-Cauchy sequences of fuzzy numbers.

1. INTRODUCTION

The concept of fuzzy sets and fuzzy set operations were first introduced by Zadeh
[31] and subsequently several authors have discussed various aspects of the theory and
applications of fuzzy sets such as topological spaces, similarity relations and fuzzy
orderings, fuzzy mathematical programming. Matloka [18] introduced bounded and
convergent sequences of fuzzy numbers. Later on Nanda [20], Nuray and Savaş [21],
Mursaleen and Basarır [19], Savaş [26], Raj et al. [22, 23, 24], Tripathy and Sarma
[29] and several authors studied the sequence spaces in an analogous way as Simons
[27], Maddox [16], Kızmaz [13], Et and Çolak [9] and several authors studied for
scalar valued sequence spaces.
The notion of statistical convergence was introduced by Fast [11] and Schoenberg

[28] independently. Fast introduced the idea of statistical convergence of real or com-
plex numbers and Schoenberg [28] studied statistical convergence as a summability
method and listed some of the properties of statistical convergence. From the point of
view of sequence spaces, this concept has been generalized and developed by Fridy
[12], Šalát [25], Connor [6], Connor et al. [7], Et and Nuray [10] and many others.
The existing literature on statistical convergence appears to have been restricted to

real or complex sequences, but Nuray and Savaş [21] extended the idea to apply to
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sequences of fuzzy numbers. Later on, Aytar and Pehlivan [2], Bilgin [5], Çolak et
al. [8], Kwon [14], Tripathy and Baruah [30] and many authors extended the idea of
statistical convergence to the sequences of fuzzy numbers.
In this paper, we introduce and study the concept of strongly Δm−summable se-

quence of fuzzy numbers by using a modulus function and Δm−statistical convergence
of sequences of fuzzy numbers. Also we have discussed Δm−statistical pre-Cauchy
sequences of fuzzy numbers.

2. DEFINITIONS AND PRELIMINARIES

Definition 2.1. A fuzzy number is a fuzzy set on the real axis, i.e. a mapping
X : R→ [0, 1] which satisfies the following four conditions:

(i) X is normal, i.e. there exists an t0 ∈ R such that X(t0) = 1.

(ii) X is fuzzy convex, i.e. X(λs + (1 − λ)t) ≥ min{X(s), X(t)} for all s, t ∈ R
and for all λ ∈ [0, 1].

(iii) X is upper semi-continuous.
(iv) The set [X ]α = {t ∈ R : X(t) > 0} is compact, where {t ∈ R : X(t) > 0} de-

notes the closure of the set {t ∈ R : X(t) > 0} in the usual topology of R.

We denote the set of all fuzzy numbers by L(R).

Definition 2.2. The set L(R) forms a linear space under addition and scalar mul-
tiplication in terms of α− level sets as defined below:

[X + Y ]α = [X ]α + [Y ]α and [λX ]α = λ[X ]α for each 0 ≤ α ≤ 1.

where Xα is given as

Xα =

{
t : X(t) ≥ α if α ∈ (0, 1]

t : X(t) > 0 if α = 0

For each α ∈ [0, 1], the set Xα is a closed, bounded and nonempty interval of R.
Let D denote the set of all closed and bounded intervals A = [a1, a2] on the real

line R. For A, B ∈ D, (D, d) is a complete metric space where the metric d is defined
as

d(A, B) = max{|a1 − b1|, |a2 − b2|}
for any A = [a1, a2] and B = [b1, b2].
It is easy to verify that d : L(R)× L(R) → R be defined by

d(X, Y ) = sup
0≤α≤1

d(Xα, Y α).

is a metric on L(R).
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Definition 2.3. A metric d on L(R) is said to be translation invariant if d(X +
Z, Y + Z) = d(X, Y ) for all X, Y, Z ∈ L(R).

Definition 2.4. Let X = (Xk) be a sequence of fuzzy numbers. Then the sequence
X = (Xk) is said to be Δ−bounded if the set {ΔXk : k ∈ N} of fuzzy numbers is
bounded.

Definition 2.5. Let X = (Xk) be a sequence of fuzzy numbers. Then the sequence
X = (Xk) is said to beΔ−convergent to the fuzzy numberX0, written as lim

k→∞
ΔXk =

X0, if for every ε > 0 there exists a positive integer k0 such that d(ΔXk, X0) < ε for
all k > k0.

Definition 2.6. Let X = (Xk) be a sequence of fuzzy numbers. Then the se-
quence X = (Xk) is said to be Δm−convergent to the fuzzy number X0, written
as lim

k→∞
ΔmXk = X0, if for every ε > 0 there exists a positive integer k0 such that

d(ΔmXk, X0) < ε for all k > k0.

Definition 2.7. A metric d on L(R) is said to be translation invariant if d(X +
Z, Y + Z) = d(X, Y ) for all X, Y, Z ∈ L(R).

Lemma 2.1. (Basarır and Mursaleen [3]). If d is a translation invariant metric on
L(R), then

(i) d(X + Y, 0) ≤ d(X, 0) + d(Y, 0)
(ii) d(λX, 0) ≤ |λ| d(X, 0), |λ| > 1

Lemma 2.2. (Maddox [15]). Let ak, bk for all k be sequences of complex numbers
and (pk) be a bounded sequence of positive real numbers, then

|ak + bk|pk ≤ C(|ak|pk + |bk|pk)

and
|λ|pk ≤ max(1, |λ|H)

where C = max(1, 2H−1), H = sup pk and λ is any complex number.

3. MAIN RESULTS

Let (Ek, dk) be a sequence of fuzzy linear metric spaces under the translation invari-
ant metrices dk’s such that Ek+1 ⊆ Ek for each k ∈ N where Xk = ((Xk,s)∞s=1) ∈ Ek

for each k ∈ N. We define W (E) = {X = (Xk) : Xk ∈ Ek for each k ∈ N}. It is
easy to verify that the space W (E) is a linear space of fuzzy numbers under coordi-
natewise addition and scalar multiplication. For X = (Xk) ∈ W (E) and λ = (λk) a
sequence of real numbers, we define λX = (λkXk).
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Let f be a modulus function and p = (pk) is a bounded sequence of strictly positive
real numbers. Then we define the following sequence space

wF (Δm, f, p)

=
{
X = (Xk) ∈ W (E) :

1
n

n∑
s=1

(
f(sup

k
dk(ΔmXk,s, Lk))

)pk → 0 as n → ∞
}

where

ΔmXk,s =
m∑

i=0

(−1)i

(
m

i

)
Xk+i,s.

Theorem 3.1. Let (pk) be a bounded sequence of positive real numbers. Then
wF (Δm, f, p) is a linear space over R.

Proof. Using Lemma 2.1, Lemma 2.2, the subadditivity property of modulus
function f and the result f(λx) ≤ (1+[|λ|])f(x), it is easy to show that wF (Δm, f, p)
is a linear space over the real field R.

Theorem 3.2. Let (Ek, dk) be a sequence of complete metric spaces and (pk) be
a bounded sequence of positive real numbers such that inf pk > 0. Then the sequence
space wF (Δm, f, p) is a complete metric space with respect to the metric

g(X, Y )=
m∑

i=1

f(sup
k

dk(Xk,i, Yk,i))+sup
n

( 1
n

n∑
s=1

(
f(sup

k
dk(ΔmXk,s, ΔmYk,s))

)pk
) 1

M

Proof. Let (X (u)) be a Cauchy sequence in wF (Δm, f, p), where X (u) =(
(X (u)

k,s )∞s=1

)∞
k=1

∈ wF (Δm, f, p) for each u ∈ N. Then

g(X (u), X (v)) → 0 as u, v → ∞.

i.e.
m∑

i=1

f(sup
k

dk(X
(u)
k,i , X

(v)
k,i ))

+ sup
n

( 1
n

n∑
s=1

(
f(sup

k
dk(ΔmX

(u)
k,s , ΔmX

(v)
k,s ))

)pk
) 1

M → 0 as u, v → ∞.

Which implies

(3.1)
m∑

i=1

f(sup
k

dk(X
(u)
k,i , X

(v)
k,i )) → 0 as u, v → ∞.
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and

(3.2) sup
n

( 1
n

n∑
s=1

(
f(sup

k
dk(ΔmX

(u)
k,s , ΔmX

(v)
k,s ))

)pk
) 1

M → 0 as u, v → ∞.

From equation (3.1),

f(sup
k

dk(X
(u)
k,i , X

(v)
k,i )) → 0 as u, v → ∞ for each i = 1, 2, . . . , m.

But f is a modulus function, so we have supk dk(X
(u)
k,i , X

(v)
k,i ) → 0 as u, v → ∞

for each i = 1, 2, . . . , m. i.e.

(X (u)
k,i ) is a Cauchy sequence in Ei for each i = 1, 2, . . . , m.(3.3)

Again, from equation (3.2), since f is a modulus function, we have

sup
k

dk(ΔmX
(u)
k,s , ΔmX

(v)
k,s ) → 0 as u, v → ∞ and for each s = 1, 2, . . . , n.

i.e.

(ΔmX
(u)
k,s ) is a Cauchy sequence in Ek for each k ∈ N.(3.4)

Now (X (u)
k,i ) is a Cauchy sequence in Ei, for each i = 1, 2, . . . , m and Ei is complete

so let X (u)
k,i → Xk,i in Ei as u → ∞, i = 1, 2, . . . , m. Further (ΔmX

(u)
k,s ) is a Cauchy

sequence in Ek for each k. Since Ek is complete for each k, so sequence (ΔmX
(u)
k,s )

is convergent for each k.
Keeping u fixed and letting v → ∞ in equation (3.1) and equation (3.2), we get

m∑
i=1

f(sup
k

dk(X
(u)
k,i , Xk,i)) → 0 as u → ∞.

and

(3.5) sup
n

( 1
n

n∑
s=1

(
f(sup

k
dk(ΔmX

(u)
k,s , ΔmXk,s))

)pk
) 1

M → 0 as u → ∞.

i.e.
g(X (u), X) → 0 as u → ∞.

Now, we have to show that X ∈ wF (Δm, f, p).

From equation (3.5), we have
1
n

n∑
s=1

(
f(sup

k
dk(ΔmX

(u)
k,s , ΔmXk,s))

)pk →0 as u→∞
for all n∈N. i.e. given ε > 0, there exists u0 ∈ N such that
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1
n

n∑
s=1

(
f(sup

k
dk(ΔmX

(u)
k,s , ΔmXk,s))

)pk

<
ε

3
for all u ≥ u0 and for all n ∈ N.

Since X (u) ∈ wF (Δm, f, p), so for each u we can find L(u) and n0 ∈ N such that

1
n

n∑
s=1

(
f(sup

k
dk(ΔmX

(u)
k,s , L

(u)
k ))

)pk

<
ε

3
for all n ≥ n0 where L

(u)
k ∈ Ek.

Similarly, for X (v) ∈ wF (Δm, f, p), so for each v we can find L(v) and n1 ∈ N such
that

1
n

n∑
s=1

(
f(sup

k
dk(ΔmX

(v)
k,s , L

(v)
k ))

)pk

<
ε

3
for all n ≥ n1 where L

(v)
k ∈ Ek.

Consider u, v ≥ u0 and n2 = max(n0, n1). Then

(3.6)

1
n

n∑
s=1

(
f(sup

k
dk(L

(u)
k , L

(v)
k ))

)pk

≤ C
1
n

n∑
s=1

(
f(sup

k
dk(ΔmX

(u)
k,s , L

(u)
k ))

)pk

+C
1
n

n∑
s=1

(
f(sup

k
dk(ΔmX

(u)
k,s , ΔmX

(v)
k,s ))

)pk

+C
1
n

n∑
s=1

(
f(sup

k
dk(ΔmX

(v)
k,s , L

(v)
k ))

)pk

< εC for all u, v ≥ n2.

For suitable choice of ε and using the fact that the modulus function is monotone, we
get

dk(L
(u)
k , L

(v)
k ) < ε1 for all u, v ≥ n2.

i.e. (L(u)
k ) is a Cauchy sequence in Ek. But given that Ek is complete. So let

L
(u)
k → Lk as u → ∞. Using in equation (3.6), we get

1
n

n∑
s=1

(
f(supkdk(L

(u)
k , Lk))

)pk

< εC for all u ≥ n2.

Hence we get
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1
n

n∑
s=1

(
f(sup

k
dk(ΔmXk,s, Lk))

)pk ≤ C
1
n

n∑
s=1

(
f(sup

k
dk(ΔmX

(u0)
k,s , ΔmXk,s))

)pk

+C
1
n

n∑
s=1

(
f(sup

k
dk(ΔmX

(u0)
k,s , L

(u0)
k ))

)pk

+C
1
n

n∑
s=1

(
f(sup

k
dk(L

(u0)
k , Lk))

)pk

< C
ε

3
+ C

ε

3
+ εC for all n ≥ n2.

i.e.
1
n

n∑
s=1

(
f(sup

k
dk(ΔmXk,s, Lk))

)pk

<
2εC

3
+ εC for all n ≥ n2.

Which implies X ∈ wF (Δm, f, p) and hence the sequence space wF (Δm, f, p) is a
complete metric space.

Theorem 3.3. Let (pk), (tk) be two sequences of positive real numbers and as-
sume that for each k ∈ N, 0 < pk ≤ tk and the sequence ( tk

pk
) be bounded. Then

wF (Δm, f, t) ⊂ wF (Δm, f, p).

Proof. LetX ∈ wF (Δm, f, t) which implies
1
n

n∑
s=1

(
f(sup

k
dk(ΔmXk,s, Lk))

)tk →
0 as n → ∞.

Consider μk =
(
f(sup

k
dk(ΔmXk,s, Lk))

)tk
and λk = pk

tk
be such that 0 < λ ≤

λk ≤ 1. Define

uk =

{
μk if μk ≥ 1

0 if μk < 1
and vk =

{
0 if μk ≥ 1

μk if μk < 1

Then we have μk = uk + vk and μλk
k = uλk

k + vλk
k and it follows that uλk

k ≤ uk ≤
μk and vλk

k ≤ vλ
k . Therefore

(3.7)

1
n

n∑
s=1

(
f(sup

k
dk(ΔmXk,s, Lk))

)pk

≤ 1
n

n∑
s=1

(
f(sup

k
dk(ΔmXk,s, Lk))

)tk
+

1
n

n∑
s=1

vλ
k

and the right hand side of equation (3.7) → 0 as n → ∞ which implies X ∈
wF (Δm, f, p).

Theorem 3.4. Let f and g be two modulus functions. Then we have
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(i) wF (Δm, f, p) ∩ wF (Δm, g, p) ⊆ wF (Δm, f + g, p).

(ii) wF (Δm, f, p) = wF (Δm, g, p) if 0 < inf f(x)
g(x)

≤ sup f(x)
g(x)

< ∞.

Proof. The proof is very easy. So we omit it.

4. Δm−STATISTICAL CONVERGENCE

The idea of statistical convergence depends on the density of subsets of the set N
of natural numbers.
The natural density of a subsetK of N is defined by δ(K) = lim

n→∞
1
n
|{k ≤ n : k ∈

K}|, where |{k ≤ n : k ∈ K}| denotes the number of elements of K not exceeding
n. We shall be concerned with integer sets having natural density zero.
If X = (Xk) is a sequence that satisfies a property P for almost all k except a set

of natural density zero, then we say that Xk satisfies P for almost all k and we write
it by a.a.k.

Definition 4.1. The sequence X = (((Xk,s)∞s=1)k) of fuzzy numbers is said to be
Δm−statistically convergent to the fuzzy number L = (L1, L2, L3, . . .) where Lk ∈
Ek, if for every ε > 0,

lim
n→∞

1
n
|{s ≤ n : sup

k
dk(ΔmXk,s, Lk) ≥ ε}| = 0.

Let SF (Δm) denotes the set of all Δm−statistically convergent sequences of fuzzy
numbers.

Definition 4.2. The sequence X = (((Xk,s)∞s=1)k) of fuzzy numbers is said to be
Δm−statistically Cauchy sequence, if for any ε > 0, there exists a positive integer s0

(depends upon ε only) such that

lim
n→∞

1
n
|{s ≤ n : sup

k
dk(ΔmXk,s, ΔmXk,s0) ≥ ε}| = 0.

Definition 4.3. The sequence X = (((Xk,s)∞s=1)k) of fuzzy numbers is said to be
Δm−statistically pre-Cauchy sequence, if for all ε > 0,

lim
n→∞

1
n2

|{(i, j) : i, j ≤ n, sup
k

dk(ΔmXk,i, ΔmXk,j) ≥ ε}| = 0.

Remark 4.1. If a sequence is Δm−convergent, then it is Δm−statistically conver-
gent. But the converse is not true. This is clear from the following example.
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Example 4.1. Let Ek = L(R) for each k ∈ N, m = 1 and consider the sequence
X as
when k = 10n

Xk(t) =

⎧⎪⎨
⎪⎩

k
k−1 (t + 2 − 1

k ) if 1−2k
k ≤ t ≤ −1

k
k+1 ( 1

k − t) if − 1 ≤ t ≤ 1
k

0 otherwise

and when k 
= 10n

Xk(t) =

⎧⎪⎪⎨
⎪⎪⎩

t − 5 if 5 ≤ t ≤ 6

7− t if 6 ≤ t ≤ 7

0 otherwise

The figure for the sequence (Xk) looks like as below:

��

�

1

0-2 2 5 7

Xk when k 
= 10nXk when k = 10n

L
��

�

1
k

-2+ 1
k

Figure 4.1

Then

[Xk]α =

{
[ 1−2k+kα−α

k , 1−kα−α
k ] when k = 10n

[5 + α, 7 − α] otherwise

i.e.

[ΔXk]α =

⎧⎪⎪⎨
⎪⎪⎩

[ 1−9k+2kα−α
k , 1−2kα−5k−α

k ] when k = 10n

[ 5k+2kα+4+3α
k+1 , 9k−2kα+8−α

k+1 ] when k + 1 = 10n

[−2 + 2α, 2− 2α] otherwise

which implies that ΔXk → L statistically, where L = [−2 + 2α, 2− 2α], but (ΔXk)
is not a convergent sequence.
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Theorem 4.5. Let f be any modulus function and 0 < h = inf pk ≤ pk ≤
sup pk = H < ∞. Then wF (Δm, f, p) � SF (Δm).

Proof. Let X ∈ wF (Δm, f, p) and ε > 0 be given. Then

1
n

n∑
s=1

(
f(sup

k
dk(ΔmXk,s, Lk))

)pk

=
1
n

n∑
s=1,

supk dk(ΔmXk,s,Lk)≥ε

(
f(sup

k
dk(ΔmXk,s, Lk))

)pk

+
1
n

n∑
s=1,

supk dk(ΔmXk,s,Lk)<ε

(
f(sup

k
dk(ΔmXk,s, Lk))

)pk

≥ 1
n

n∑
s=1,

supk dk(ΔmXk,s,Lk)≥ε

(
f(sup

k
dk(ΔmXk,s, Lk))

)pk

≥ min(f(ε)h, f(ε)H)
1
n
|{s ≤ n : sup

k
dk(ΔmXk,s, Lk) ≥ ε}|

which implies X is Δm−statistically convergent sequence.

Remark 4.2. The inclusion is strict. This is clear from the following example.

Example 4.2. Let f(x) = x, m = 1, pk = 1 for each k ∈ N, Ek = L(R) for
each k ∈ N and consider the sequence Xk as
when k = 5n

Xk(t) =

⎧⎪⎪⎨
⎪⎪⎩

k(t + 1
k ) if −1

k ≤ t ≤ 0

k( 1
k − t) if 0 ≤ t ≤ 1

k

0 otherwise

and when k 
= 5n

Xk(t) =

⎧⎪⎪⎨
⎪⎪⎩

t − 5 if 5 ≤ t ≤ 6

7− t if 6 ≤ t ≤ 7

0 otherwise

The figure for the sequence (Xk) looks like as below:
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��

�

0 1
k

−1
k 5 7

Figure 4.2

1
Xk when k 
= 5n

Xk when k = 5n

��

Then

[Xk]α =

{
[α−1

k , 1−α
k ] when k = 5n

[5 + α, 7 − α] otherwise

i.e.

[ΔXk]α =

⎧⎪⎨
⎪⎩

[α−1−7k+αk
k , 1−5k−α−αk

k ] when k = 5n

[ 5k+kα+2α+4
k+1 , 7k−kα+8−2α

k+1 ] when k + 1 = 5n

[−2 + 2α, 2− 2α] otherwise

ThenΔXk → L statistically, whereL = [−2+2α, 2−2α], but (ΔXk) /∈ wF (Δm, f, p).

Theorem 4.6. If f is a bounded modulus function, then SF (Δm) ⊆ wF (Δm, f, p).

Proof. Let ε > 0 be given and f be any modulus function. Since f is a bounded
modulus function, there exists an integer K such that f(x) < K for all x ≥ 0.

Let X is Δm−statistically convergent sequence. Consider

1
n

n∑
s=1

(
f(sup

k
dk(ΔmXk,s, Lk))

)pk

=
1
n

n∑
s=1,

supk dk(ΔmXk,s,Lk)≥ε

(
f(sup

k
dk(ΔmXk,s, Lk))

)pk

+
1
n

n∑
s=1,

supk dk(ΔmXk,s,Lk)<ε

(
f(sup

k
dk(ΔmXk,s, Lk))

)pk



1670 P. D. Srivastava and S. Mohanta

≤ max(Kh, KH)
1
n
|{s ≤ n : sup

k
dk(ΔmXk,s, Lk) ≥ ε}|

+ max(f(ε)h, f(ε)H)
→ 0 as n → ∞.

i.e. X ∈ wF (Δm, f, p) which implies SF (Δm) ⊆ wF (Δm, f, p).

Theorem 4.7. If the sequence X is Δm−statistically convergent, then X is
Δm−statistically Cauchy.
Proof. Let X is Δm−statistically convergent sequence and let ε > 0 be given.

Then we have

lim
n→∞

1
n
|{s ≤ n : sup

k
dk(ΔmXk,s, Lk) ≥ ε}| = 0.

i.e.
sup

k
dk(ΔmXk,s, Lk) < ε a.a.s.

In particular choose s1 ∈ N such that
sup

k
dk(ΔmXk,s1, Lk) < ε.

sup
k

dk(ΔmXk,s, ΔmXk,s1) ≤ sup
k

dk(ΔmXk,s, Lk) + sup
k

dk(ΔmXk,s1 , Lk)

< ε + ε = 2ε a.a.s.

which implies X is a Δm−statistically Cauchy sequence.
Theorem 4.8. If X = (((Xk,s)∞s=1)k) is a sequence for which there is a

Δm−statistically convergent sequence Y = (((Yk,s)∞s=1)k) such that ΔmXk,s =
ΔmYk,s a.a.s. Then the sequence X is also Δm−statistically convergent sequence.
Proof. Let ΔmXk,s = ΔmYk,s a.a.s and Y is Δm−statistically convergent se-

quence. Let ε > 0 be given. Then for each n,

{s ≤ n : supk dk(ΔmXk,s, Lk) ≥ ε}
⊆ {s ≤ n : supk dk(ΔmYk,s, Lk) ≥ ε} ∪ {s ≤ n : ΔmXk,s � ΔmYk,s}.

Since Y is Δm−statistically convergent sequence, which implies the set {s ≤ n :
sup

k
dk(ΔmYk,s, Lk) ≥ ε} contains a fixed number of elements say s0 = s0(ε). Then,

1
n
|{s ≤ n : sup

k
dk(ΔmXk,s, Lk) ≥ ε}|

≤ s0

n
+

1
n
|{s ≤ n : ΔmXk,s � ΔmYk,s}|

→ 0 as n → ∞ (because ΔmXk,s = ΔmYk,s a.a.s.)

which implies X is a Δm−statistically convergent sequence.
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Theorem 4.9. IfX be a sequence of fuzzy numbers such thatX isΔm−statistically
convergent sequence. Then X is Δm−statistically bounded sequence.

Proof. Let X is Δm−statistically convergent sequence. Then given ε > 0, we
have

lim
n→∞

1
n
|{s ≤ n : sup

k
dk(ΔmXk,s, Lk) ≥ ε}| = 0.

Since L is a fuzzy number, so we have sup
k

dk(Lk, 0) < T (say). Then, we have

sup
k

dk(ΔmXk,s, 0) ≤ sup
k

dk(ΔmXk,s, Lk) + sup
k

dk(Lk, 0)

≤ ε + T a.a.k.

which implies X is Δm−statistically bounded sequence.

Remark 4.3. In general the converse is not true. This is clear from the following
example.

Example 4.3. Let f(x) = x, m = 1, pk = 1 for each k ∈ N, Ek = L(R) for
each k ∈ N and consider the sequence Xk as
when k = 10n

Xk(t) =

⎧⎪⎪⎨
⎪⎪⎩

kt + 1 if −1
k ≤ t ≤ 0

1 − kt if 0 ≤ t ≤ 1
k

0 otherwise

when k 
= 10n and k is odd

Xk(t) =

⎧⎪⎪⎨
⎪⎪⎩

t + 7 if − 7 ≤ t ≤ −6

−t − 5 if − 6 ≤ t ≤ −5

0 otherwise

and when k 
= 10n and k is even

Xk(t) =

⎧⎪⎪⎨
⎪⎪⎩

t − 5 if 5 ≤ t ≤ 6

7− t if 6 ≤ t ≤ 7

0 otherwise

The figure for the sequence (Xk) looks like as below:
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Figure 4.3

1

Xk when k 
= 10n

and k is evenXk when k 
= 10nand k is odd

Xk when k = 10n

	



�

Then

[Xk]α =

⎧⎪⎪⎨
⎪⎪⎩

[α−1
k , 1−α

k ] when k = 10n

[−7 + α,−5− α] when k 
= 10nand k is odd

[5 + α, 7 − α] when k 
= 10nand k is even

i.e.

[ΔXk]α =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[α−1+αk+5k
k , 1−α+7k−αk

k ] when k = 10n

[−7k+kα+2α−8
k+1 , −5k−kα−4−2α

k+1 ] when k + 1 = 10n

[−14 + 2α,−10− 2α] when k 
= 10nand k is odd

[10 + 2α, 14− 2α] when k 
= 10nand k is even

which impliesX is Δm−statistically bounded sequence, but not Δm−statistically con-
vergent sequence.

Remark 4.4. A sequence X is Δm−statistically pre-Cauchy sequence, but not
Δm−statistically convergent sequence.
Example 4.4. Let f(x) = x, pk = 1 for each k ∈ N, Ek = L(R) for each k ∈ N

and consider the sequence Xk as
when k is odd

Xk(t) =

⎧⎪⎪⎨
⎪⎪⎩

t + 7 if − 7 ≤ t ≤ −6

−t − 5 if − 6 ≤ t ≤ −5

0 otherwise



Statistical Convergence of Generalized Difference Sequence Space of Fuzzy Numbers 1673

and when k is even

Xk(t) =

⎧⎪⎪⎨
⎪⎪⎩

t − 5 if 5 ≤ t ≤ 6

7− t if 6 ≤ t ≤ 7

0 otherwise

Then

[Xk]α =

{
[−7 + α,−α − 5] when k is odd

[5 + α, 7− α] when k is even

i.e.

[ΔmXk]α =

{
[2m(−7 + α), 2m(−α − 5)] when k is odd

[2m(5 + α), 2m(7 − α)] when k is even

which implies the sequence X is Δm−statistically pre-Cauchy sequence, but not
Δm−statistically convergent sequence.
Theorem 4.10. Let X be a sequence of fuzzy numbers such that (ΔmXk) is

bounded. Then X is said to be Δm−statistically pre-Cauchy if and only if
lim

n→∞
1
n2

∑
i,j≤n

f(sup
k

dk(ΔmXk,i, ΔmXk,j)) = 0, for any bounded modulus function

f.

Proof. Let lim
n→∞

1
n2

∑
i,j≤n

f(sup
k

dk(ΔmXk,i, ΔmXk,j)) = 0.

Given ε > 0 and for any n ∈ N, we have

1
n2

∑
i,j≤n

f(sup
k

dk(ΔmXk,i, ΔmXk,j))

=
1
n2

∑
i,j≤n

supk dk(ΔmXk,i,Δ
mXk,j )<ε

f(sup
k

dk(ΔmXk,i, ΔmXk,j))

+
1
n2

∑
i,j≤n

supk dk(ΔmXk,i,Δ
mXk,j)≥ε

f(sup
k

dk(ΔmXk,i, ΔmXk,j))

≥ 1
n2

∑
i,j≤n

supk dk(ΔmXk,i,Δ
mXk,j )≥ε

f(sup
k

dk(ΔmXk,i, ΔmXk,j))

≥ f(ε)
1
n2

|{(i, j) : i, j ≤ n, sup
k

dk(ΔmXk,i, ΔmXk,j) ≥ ε}|

and thus X is Δm−statistically pre-Cauchy sequence.
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Conversely, let X is Δm−statistically pre-Cauchy sequence and ε > 0 be given.
Choose δ > 0 such that f(δ) < ε

2 . Since f is a bounded modulus function, so there
exist an integer B such that f(sup

k
dk(ΔmXk,i, ΔmXk,j)) < B. Now for each n ∈ N,

consider

1
n2

∑
i,j≤n

f(sup
k

dk(ΔmXk,i, ΔmXk,j))

=
1
n2

∑
i,j≤n

supk dk(ΔmXk,i,Δ
mXk,j )<δ

f(sup
k

dk(ΔmXk,i, ΔmXk,j))

+
1
n2

∑
i,j≤n

supk dk(ΔmXk,i,Δ
mXk,j )≥δ

f(sup
k

dk(ΔmXk,i, ΔmXk,j))

≤ f(δ) + B
1
n2

|{(i, j) : i, j ≤ n, sup
k

dk(ΔmXk,i, ΔmXk,j) ≥ δ}|

≤ ε

2
+ B

1
n2

|{(i, j) : i, j ≤ n, sup
k

dk(ΔmXk,i, ΔmXk,j) ≥ δ}|

Since let X is Δm−statistically pre-Cauchy sequence, so we have
1
n2

|{(i, j) : i, j ≤ n, sup
k

dk(ΔmXk,i, ΔmXk,j) ≥ δ}| → 0 as n → ∞.

i.e. there exist n0 ∈ N such that
1
n2

|{(i, j) : i, j ≤ n, sup
k

dk(ΔmXk,i, ΔmXk,j) ≥ δ}| <
ε

2B
for all n ≥ n0.

i.e.
1
n2

∑
i,j≤n

f(sup
k

dk(ΔmXk,i, ΔmXk,j)) ≤ ε for all n ≥ n0.

Hence we have lim
n→∞

1
n2

∑
i,j≤n

f(sup
k

dk(ΔmXk,i, ΔmXk,j)) = 0.
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