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The Order Properties and Karcher Barycenters of Probability Measures on

the Open Convex Cone

Sejong Kim

Abstract. We study the probability measures on the open convex cone of positive def-

inite operators equipped with the Loewner ordering. We show that two crucial push-

forward measures derived by the congruence transformation and power map preserve

the stochastic order for probability measures. By the continuity of two push-forward

measures with respect to the Wasserstein distance, we verify several interesting prop-

erties of the Karcher barycenter for probability measures with finite first moment such

as the invariant properties and the inequality for unitarily invariant norms. Moreover,

the characterization for the stochastic order of uniformly distributed probability mea-

sures has been shown.

1. Introduction

K.-T. Sturm [22] has developed a theory of barycenters of probability measures on the

Hadamard spaces, which are complete metric spaces satisfying the semi-parallelogram law.

One of the important and typical examples of a Hadamard space is the open convex cone

Ω of positive definite (Hermitian) matrices equipped with the Riemannian trace metric

d(A,B) =
∥∥logA−1/2BA−1/2

∥∥
2

(see [3, Chapter 6]). For a probability measure µ on Ω

with finite first moment, the Cartan barycenter Γ is given by

Γ(µ) = arg min
X∈Ω

∫
Ω

[
d2(X,A)− d2(Y,A)

]
dµ(A).

This barycenter is independent of Y and coincides with Λ(µ) = arg minX∈Ω

∫
Ω δ

2(X,A)

dµ(A) if µ has a finite second moment. Especially, for a uniformly distributed probability

measure µ = 1
n

∑n
j=1 δAj , where δA is a point measure at A ∈ Ω, the Cartan barycenter Γ

is the unique minimzer of the sum of Riemannian distances to each point Aj . Moreover,

H. Karcher [11] has proved that it is the unique solution X in Ω of the Karcher equation

n∑
j=1

log(X−1/2AjX
−1/2) = 0.
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Since then we also call it the Karcher mean or least squares mean. Recently, many research

topics about the Karcher mean such as finding properties and computing efficiently it have

been arisen (see [9, 18,19]).

On the setting of positive definite (bounded) operators on a Hilbert space, however,

one has neither such Riemannian metric nor non-positive curvature metric. So a natural

question to generalize the properties of the matrix Cartan barycenter to the Hilbert space

setting is arisen. Lawson and Lim [16] have shown that operator power means are mono-

tonically decreasing and have the limit as t → 0+, which satisfies the Karcher equation.

It allows us to establish the existence of Karcher mean of positive definite operators on

a Hilbert space. Recently, M. Pálfia [21] has generalized the operator Karcher mean on

the setting of bounded probability measures. By the fundamental relationship between

contractive intrinsic (symmetric and multiplicative) means and barycentric maps in a com-

plete metric space appeared in [17], one can extend the Karcher mean to the barycenter

on the probability measure space of positive definite operators equipped with the Thomp-

son metric. We call in this article such a barycenter Karcher barycenter. By showing

the continuity of push-forward measures constructed by congruence transformations and

power maps with respect to the Wasserstein distance, we verify the invariant properties of

the Karcher barycenters on the probability measure space of positive definite operators.

Furthermore, we show a remarkable inequality of Karcher barycenters of positive definite

matrices for log-majorization and unitarily invariant norms.

Furthermore, we investigate the stochastic order relation of probability measures on the

open convex cone of positive definite operators. We show that two push-forward measures

constructed by congruence transformations and power maps preserve the stochastic order,

which generalize the Loewner-Heinz inequality. The relationship between the stochastic

order of uniformly distributed probability measures and the Loewner order of supporting

elements has been established by using the max-flow and min-cut theorem in the graph

theory.

2. Probability measures on a metric space

Let (X, d) be a metric space with the algebra B(X) of Borel sets, the smallest σ-algebra

containing the open sets. Let P(X) be the set of all probability measures on (X,B(X))

with separable support. Let P0(X) be the set of all discrete measures µ ∈ P(X), of which

form is the convex combination of point measures δx of mass 1 at x ∈ X. For p ∈ [1,∞)

let Pp(X) ⊆ P(X) be the set of all probability measures with finite p-th moment: for

some (and hence, for all) y ∈ X ∫
X
dp(x, y) dµ(x) <∞.
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For p = ∞, P∞(X) denotes the set of all probability measures with bounded separable

support.

We introduce a pushforward measure that allows to get new measure from the given

one. For metric spaces X and Y , a continuous function f : X → Y induces a push-forward

map f∗ : P(X)→ P(Y ) defined by

f∗(µ)(B) = µ(f−1(B))

for any µ ∈ P(X) and B ∈ B(Y ). Note that supp(f∗(µ)) = f(supp(µ)), the closure of the

image of the support of µ under f . The following is called the change of variables formula.

Theorem 2.1. Let µ ∈ P(X) and let f : X → Y be a continuous function between

metric spaces. A measurable function g on Y is integrable with respect to the push-forward

measure f∗(µ) if and only if the composition g ◦ f is integrable with respect to µ. In this

case, ∫
Y
g d(f∗(µ)) =

∫
X
g ◦ f dµ.

We say that ω ∈ P(X × X) is a coupling of µ, ν ∈ P(X), or µ, ν ∈ P(X) are the

marginals of ω ∈ P(X ×X), if

ω(B ×X) = µ(B) and ω(X ×B) = ν(B)

for all B ∈ B(X). Equivalently, µ and ν are the push-forward measures of any coupling ω

under the projection maps π1 and π2, respectively. Note that supp(ω) ⊆ supp(µ)×supp(ν)

for any coupling ω. We denote the set of all couplings for µ and ν by Π(µ, ν).

For p ∈ [1,∞) the p-Wasserstein distance dWp , alternatively Kantorovich-Rubinstein

distance, on Pp(X) is defined by

dWp (µ, ν) :=

(
inf

ω∈Π(µ,ν)

∫
X×X

dp(x, y) dω(x, y)

)1/p

.

It is known that dWp is a complete metric on Pp(X) whenever X is a complete metric

space, and P0(X) is dWp -dense in Pp(X) [5, 22]. The limit limp→∞ d
W
p (µ, ν) is finite on

P∞(X) and yields a complete metric space. So the ∞-Wasserstein distance is given by

dW∞(µ, ν) = inf
ω∈Π(µ,ν)

sup{d(x, y) : (x, y) ∈ supp(ω)}.

Lemma 2.2. [17, Lemma 2.2] Let f : X → Y be a Lipschitz map with Lipschitz constant

C. Then f∗ : Pp(X)→ Pp(Y ) is Lipschitz with Lipschitz constant C for 1 ≤ p ≤ ∞.
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3. The open convex cone of positive definite operators

We switch our point of view to the open convex cone of positive definite operators. For a

Hilbert space H with inner product 〈 · , · 〉, let B(H) be the Banach space of all bounded

linear operators on H equipped with the operator norm. Let S(H) ⊆ B(H) be the closed

subspace of all self-adjoint operators, and let P ⊆ S(H) be the open convex cone of all

positive definite operators. Note that A ∈ P means that 〈x,Ax〉 > 0 for all nonzero

x ∈ H. For X,Y ∈ S(H) we denote X ≤ Y if and only if Y −X is positive semidefinite,

and X < Y if and only if Y −X is positive definite.

We equip the open convex cone P with the Thompson metric

d(A,B) =
∥∥∥log(A−1/2BA−1/2)

∥∥∥ ,
where ‖ · ‖ denotes the operator norm. It is known that d is a complete metric on P and

that

d(A,B) = max{logM(B/A), logM(A/B)},

where M(B/A) = inf{α > 0 : B ≤ αA}, the largest eigenvalue of A−1/2BA−1/2, see

[6, 20,23].

Lemma 3.1. [6, 15] Basic properties of the Thompson metric on P include

(i) d(A,B) = d(A−1, B−1) = d(MAM∗,MBM∗) for any invertible M , and

(ii) d(At, Bt) ≤ td(A,B), t ∈ [0, 1].

For p ∈ [1,∞), Pp(P) is the set of all probability measures with finite p-th moment

with respect to the Thompson metric d. We give two important push-forward measures

obtained by the congruence transformation and power map. Let O ∈ B(P) and µ ∈ P(P).

For M ∈ GL, the general linear group, and t ∈ R \ {0},

(M.µ)(O) = µ(M−1O(M−1)∗), µt(O) = µ(O1/t),

where

MOM∗ = {MAM∗ : A ∈ O}, Ot = {At : A ∈ O}.

Note that M.µ, µt ∈ P1(P) whenever µ ∈ P1(P). One can see that M.µ and µt are

push-forward measures such that

M.µ = f∗(µ) and µt = g∗(µ),

where f(X) = MXM∗ and g(X) = Xt are continuous functions on P.

A set U ⊆ P is called an upper set if whenever A ∈ U and A ≤ B, then B ∈ U
(see [12]). Note that U =

⋃n
i=1 Ui ⊆ P is the upper set whenever Ui’s are all upper sets in
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P. Indeed, if A ∈ U and A ≤ B, then A ∈ Uj for some 1 ≤ j ≤ n. Since Uj is an upper set,

B ∈ Uj ⊂ U . We define the order of probability measures such as µ ≤ ν for probability

measures µ and ν on P if µ(U) ≤ ν(U) for any upper set U ⊆ P. We see some interesting

properties of the order relation for probability measures in the following.

Proposition 3.2. Let µ, ν ∈ P1(P) with µ ≤ ν. Then M.µ ≤ M.ν and µt ≤ νt for any

M ∈ GL and t ∈ (0, 1].

Proof. Let U ∈ B(P) be any upper set of P.

We first claim that MUM∗ is an upper set of P. Indeed, let A ∈MUM∗ and A ≤ B.

Then M−1A(M−1)∗ ∈ U , and M−1A(M−1)∗ ≤ M−1B(M−1)∗ by Theorem 7.7.2 in [10].

Since U is the upper set, M−1B(M−1)∗ ∈ U , that is, B ∈ MUM∗. Thus, (M.µ)(U) =

µ(M−1U(M−1)∗) ≤ ν(M−1U(M−1)∗) = (M.ν)(U), since µ ≤ ν.

Moreover, U1/t is also an upper set of P for t ∈ (0, 1]. Indeed, let A ∈ U1/t and A ≤ B.

Then At ∈ U , and At ≤ Bt by the Loewner-Heinz inequality in [3, Theorem 1.5.9]. Since

U is the upper set, Bt ∈ U , that is, B ∈ U1/t. Thus, µt(U) = µ(U1/t) ≤ ν(U1/t) = νt(U),

since µ ≤ ν.

Remark 3.3. The following is known as the Loewner-Heinz inequality : for A,B ∈ P

A ≤ B implies At ≤ Bt for any t ∈ (0, 1].

See [7] and the references therein. We assert that µt ≤ νt whenever µ ≤ ν for µ, ν ∈ P1

and t ∈ (0, 1]. Let µ = δA and ν = δB satisfying µ ≤ ν, where δX is a point measure of

mass 1 at X ∈ P. Then µ ≤ ν means that A ≤ B, and hence,

At = µt(P) ≤ νt(P) = Bt.

We now see the properties of probability measures obtained by a convex combination

of given measures. From the definition of the order for probability measures, the following

is obvious.

Proposition 3.4. Let µ1 = (1 − t)µ + tν1 and µ2 = (1 − t)µ + tν2 for t ∈ (0, 1], where

µ, ν1, ν2 ∈ P(P). Then µ1 ≤ µ2 if and only if ν1 ≤ ν2.

Corollary 3.5. Let µ = (1 − t)δA + tδB and ν = (1 − t)δA + tδC for t ∈ (0, 1], where

A,B,C ∈ P. Then µ ≤ ν if and only if B ≤ C.

We show the convexity of the measure µt for t ∈ [−1, 1] \ {0} with respect to the

Wasserstein distance.

Lemma 3.6. For any µ, ν ∈ Pp(P), 1 ≤ p ≤ ∞, and t ∈ [−1, 1] \ {0},

(3.1) dWp (µt, νt) ≤ |t|dWp (µ, ν).
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Proof. Let t ∈ [−1, 1] \ {0}. The power map f : P → P given by f(A) = At for any

A ∈ P gives us a push-forward measure µt for µ ∈ Pp(P). Moreover, it is Lipschitz

for the Thompson metric with Lipschitz constant |t| by Lemma 3.1. By Lemma 2.2

f∗ : Pp(P) → Pp(P) is Lipschitz with Lipschitz constant |t|, that is, the property (3.1)

holds.

Remark 3.7. We have seen in Lemma 3.6 that the map µ 7→ µt on Pp(P) is continuous

for t ∈ [−1, 1] \ {0} with respect to the p-Wasserstein metric. The continuity of the map

µ 7→ µt on Pp(P) for |t| > 1 is an open problem.

Lemma 3.8. For any µ, ν ∈ Pp(P), 1 ≤ p ≤ ∞, and M ∈ GL

dWp (M.µ,M.ν) = dWp (µ, ν).

Proof. Let µ, ν ∈ Pp(P). By the change of variables in Theorem 2.1 and Lemma 3.1(1),

dWp (M.µ,M.ν) =

[
inf

ω∈Π(M.µ,M.ν)

∫
P×P

dp(A,B) dω(A,B)

]1/p

=

[
inf

M−1.ω∈Π(µ,ν)

∫
P×P

dp(A,B) dω(A,B)

]1/p

=

[
inf

φ∈Π(µ,ν)

∫
P×P

dp(A,B) d(M.φ)(A,B)

]1/p

=

[
inf

φ∈Π(µ,ν)

∫
P×P

dp(M.A,M.B) dφ(A,B)

]1/p

=

[
inf

φ∈Π(µ,ν)

∫
P×P

dp(A,B) dφ(A,B)

]1/p

= dWp (µ, ν).

4. Order relations of uniformly distributed probability measures

We here see the characterization of order relation for uniformly distributed probability

measures µ = 1
n

∑n
i=1 δAi and ν = 1

n

∑n
i=1 δBi satisfying µ ≤ ν. The following shows the

relationship for n = 2.

Proposition 4.1. Let µ = 1
2(δA1 + δA2) and ν = 1

2(δB1 + δB2), where A1, A2, B1, B2 ∈ P.

Then µ ≤ ν if and only if at least one of the following holds:

(i) A1 ≤ B1 and A2 ≤ B2,

(ii) A1 ≤ B2 and A2 ≤ B1.

Proof. Assume that µ ≤ ν for µ = 1
2(δA1+δA2) and ν = 1

2(δB1+δB2), whereA1, A2, B1, B2 ∈
P. Note that

1

2
≤ µ([Ai,∞)) ≤ ν([Ai,∞))
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for all i = 1, 2, where [A,∞) := {X ∈ P : A ≤ X} is the upper set in P. So we have the

following four cases:

(1) If ν([A1,∞)) = ν([A2,∞)) = 1, then B1, B2 ∈ [Ai,∞) for all i = 1, 2. That is,

Ai ≤ B1, B2 for all i = 1, 2, and hence, both (i) and (ii) hold.

(2) If ν([A1,∞)) = 1 and ν([A2,∞)) = 1/2, then A1 ≤ Bj for all j = 1, 2, and either B1

or B2 belongs to the upper set [A2,∞). That is, either A2 ≤ B1 or A2 ≤ B2, and

hence, one of (i) and (ii) holds.

(3) If ν([A1,∞)) = 1/2 and ν([A2,∞)) = 1, then one of (i) and (ii) holds by the similar

proof of the case (2).

(4) If ν([A1,∞)) = 1/2 and ν([A2,∞)) = 1/2, then either B1 or B2 belongs to the upper

set [Ai,∞) for each i = 1, 2. So we have the following cases:

(a) If B1 ∈ [Ai,∞) and B2 /∈ [Ai,∞) for all i = 1, 2, then

µ([A1,∞) ∪ [A2,∞)) = 1 >
1

2
= ν([A1,∞) ∪ [A2,∞))

for the upper set [A1,∞) ∪ [A2,∞), and it is a contradiction to µ ≤ ν.

(b) If B1 /∈ [Ai,∞) and B2 ∈ [Ai,∞) for all i = 1, 2, it contradicts by the similar

proof of (a).

(c) If B1 ∈ [A1,∞), B1 /∈ [A2,∞) and B2 /∈ [A1,∞), B2 ∈ [A2,∞), then (i) holds.

(d) If B1 /∈ [A1,∞), B1 ∈ [A2,∞) and B2 ∈ [A1,∞), B2 /∈ [A2,∞), then (ii) holds.

It is obvious that if at least one of the items (i) and (ii) holds, then µ ≤ ν.

By the similar proof of Proposition 4.1, we may prove the order relation of uniformly

distributed probability measures µ and ν supporting on {A1, . . . , An} and {B1, . . . , Bn}
for n > 2, respectively. However, the cases are very complicated. In order to general-

ize Proposition 4.1 we recall the Max-Flow and Min-Cut Theorem in the graph theory.

Consider a directed graph with two distinguished vertices, a source s with only outgoing

arrows and a sink t with only incoming arrows. We associate with all directed edges a

number in [0,∞), called the capacity of the edge. For example, we may think of s as

a water provider, t as a water consumer, the edges as pipes that can carry up to their

individual capacities of water, and the direction of the edge as the direction of water flow.
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Figure 4.1: Directed graph.

Let V be the set of all vertices on a directed graph. A cut is a partition of the vertices

into subsets P and Q such that s ∈ P and t ∈ Q. We add up the capacities of all directed

edges that start in P and end in Q, and we denote the sum as cut(P,Q). A minimal cut

is the cut having a minimum value of cut(P,Q) for all partitions (P,Q), which we call the

value of the minimal cut. On the directed graph in Figure 4.1 the value of the minimal

cut is 8 when (P,Q) = ({s}, V \ {s}).
A flow is an assignment to each edge of a value from [0,∞) that

(i) does not exceed the capacity of that edge, and

(ii) has the property that the sum of the values flowing into any vertex, excluding the

source s and sink t, is equal to the sum of the values flowing out.

A maximal flow is one having a maximum sum of the values flowing out from the source,

which we call the value of the maximal flow. Note that the value of the maximal flow is

equal to the maximum sum of the values flowing into the sink.

(a) (b)

Figure 4.2: Maximal flows.

The following is called the Max-Flow and Min-Cut Theorem, known as a special case

of the duality theorem for linear programs and used to derive Menger’s theorem and the

König-Egerváry theorem.
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Theorem 4.2. [13, Section 4.5] On a directed graph the value of the maximal flow is

equal to the value of the minimal cut.

Figure 4.2 shows that the value of the maximal flow is 8, which is the same as the

value of the minimal cut, and a maximal flow is not unique.

Assume that µ = 1
n

∑n
i=1 δAi , ν = 1

n

∑n
i=1 δBi ∈ P0(P) with µ ≤ ν. Construct a

directed graph with vertices labeled A1, . . . , An from the source s and vertices labeled

B1, . . . , Bn into the sink t of capacity 1 on each arrow.

Remark 4.3. Note that for each i, Ai ≤ Bj for some j ∈ {1, . . . , n} since ν([Ai,∞)) ≥
µ([Ai,∞)) ≥ 1/n.

We put a directed edge Ai → Bj with capacity n on the graph if Ai ≤ Bj . We denote

the directed graph constructed in this way as G. See Figure 4.3.

Figure 4.3: Measure order and graph G.

Lemma 4.4. On the directed graph G in Figure 4.3, cut(P,Q) ≥ n for any partition

(P,Q) satisfying that (P,Q) 6= ({s}, V \ {s}) and (P,Q) 6= (V \ {t}, {t}), where V =

{s,A1, . . . , An, B1, . . . , Bn, t}.

Proof. We have four cases of the partition (P,Q) satisfying that (P,Q) 6= ({s}, V \ {s})
and (P,Q) 6= (V \ {t}, {t}).

(1) If a subset P contains a nontrivial subset of {A1, . . . , An} and no elements of

{B1, . . . , Bn}, then clearly cut(P,Q) ≥ n since there is an arrow Ai → Bj with

capacity n for some j ∈ {1, . . . , n} by Remark 4.3.

(2) If a subset P contains a nontrivial proper subset X of {A1, . . . , An} and a nontrivial

proper subset Y of {B1, . . . , Bn}, then we consider two cases. Let |X| = p and

|Y | = q, where |X| denotes the cardinality of the set X.

(a) If there is an arrow from an element of X to an element of {B1, . . . , Bn} \ Y ,

then obviously cut(P,Q) ≥ n.
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(b) If there are no arrows from any element of X to any element of {B1, . . . , Bn}\Y ,

then cut(P,Q) = n − p + q since we add up all capacities of arrows from s to

{A1, . . . , An} \X and from {B1, . . . , Bn} \ Y to t. Suppose p− q > 0, that is, p > q.

Let X = {Ai1 , . . . , Aip}. Then

µ

(
p⋃
l=1

[Ail ,∞)

)
≥ p

n
>
q

n
= ν

(
p⋃
l=1

[Ail ,∞)

)
.

The equality follows from the assumption. It is a contradiction to µ ≤ ν. So p ≤ q,
and hence, cut(P,Q) = n− p+ q ≥ n.

(3) If a subset P contains {A1, . . . , An} and a nontrivial proper subset of {B1, . . . , Bn},
then there is an element Bk /∈ P for some k ∈ {1, . . . , n}. Since

ν

(
n⋃
i=1

[Ai,∞)

)
≥ µ

(
n⋃
i=1

[Ai,∞)

)
= 1,

ν (
⋃n
i=1[Ai,∞)) = 1. It means that there must exist an arrow with capacity n

pointing into Bk from some of {A1, . . . , An}. So cut(P,Q) ≥ n.

(4) If a subset P contains a proper subset of {A1, . . . , An} and all elements of {B1, . . .,

Bn}, then each arrow Bj → t has the capacity 1, and so cut(P,Q) ≥ n.

Remark 4.5. By Lemma 4.4, cut(P,Q) = n is the value of the minimal cut when the

partition (P,Q) = ({s}, V \ {s}) or (P,Q) = (V \ {t}, {t}). By Theorem 4.2 the value of

the maximal flow is n, and thus, the value of each flow s→ Ai and Bi → t for all i must

be 1.

Theorem 4.6. Let µ = 1
n

∑n
i=1 δAi and ν = 1

n

∑n
i=1 δBi be discrete measures, where

Ai, Bi ∈ P for all i = 1, 2, . . . , n. Then µ ≤ ν if and only if there exists a permutation σ

on {1, 2, . . . , n} such that

Ai ≤ Bσ(i), i = 1, . . . , n.

Proof. Assume that there is a permutation σ on {1, . . . , n} such that Ai ≤ Bσ(i) for all i.

Then we can easily see that µ(U) ≤ ν(U) for any upper set U ⊆ P, and hence, µ ≤ ν.

Conversely, we use the directed graph G constructed as above. Since the flow value

from the source s into Ai is 1, there do not exist two different arrows with flow value 1

from Ai into two different vertices, so each Ai has exactly one arrow leaving it. Suppose

that there are arrows with flow value 1 from two different vertices Ai, Ak into the same

vertex Bj for some j ∈ {1, . . . , n}. Then the value of the flow from Bj into the sink t



The Order Properties and Karcher Barycenters of Probability Measures 89

must be at least 2. Since Bj → t has capacity 1, it contradicts the definition of a flow. So

there are different arrows from two distinguished vertices Ai and Ak into two distinguished

vertices Bj and Bl. Since

ν

(
n⋃
i=1

[Ai,∞)

)
= 1,

there must exist an arrow pointing into each Bj from {A1, . . . , An}. Therefore, there is a

permutation σ on {1, . . . , n} such that Ai → Bσ(i), i.e., Ai ≤ Bσ(i) for all i.

5. Properties of Karcher barycenter

The Karcher mean Λ = {Λn}n≥2 on the open convex cone P of positive definite operators

is defined as the unique solution in P of the Karcher equation

X = Λn(A1, . . . , An) ⇐⇒
n∑
j=1

log(X−1/2AjX
−1/2) = 0.

It has been shown in [16] that the Karcher equation has a unique solution in P and the

Karcher mean Λn for n ≥ 2 satisfies

(i) Λn is invariant under permutation, that is, for any permutation σ on {1, . . . , n}

Λn(Aσ(1), . . . , Aσ(1)) = Λn(A1, . . . , An),

(ii) Λn is multiplicative, that is,

Λnk(A1, . . . , An, . . . , A1, . . . , An) = Λn(A1, . . . , An),

where the number of blocks is k (≥ 2),

(iii) Λn is invariant under congruence transformation and inversion, that is, for any

M ∈ GL

Λn(MA1M
∗, . . . ,MAnM

∗) = MΛn(A1, . . . , An)M∗,

Λn(A−1
1 , . . . , A−1

n ) = Λn(A1, . . . , An)−1,

(iv) Λn is monotonic, that is,

Λn(A1, . . . , An) ≤ Λn(B1, . . . , Bn)

whenever Ai ≤ Bi for all i = 1, . . . , n,
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(v) Λn is contractive, that is,

d(Λn(A1, . . . , An),Λn(B1, . . . , Bn)) ≤ 1

n

n∑
j=1

d(Aj , Bj),

where d is the Thompson metric.

Since the Karcher mean Λ is an intrinsic (invariant under permutation and multiplicative)

mean in a complete metric space P with the Thompson metric d, we have the following

by Proposition 3.7 in [17].

Proposition 5.1. A barycentric map βΛ : P1(P)→ P determined by

βΛ

 1

n

n∑
j=1

δAj

 = Λn(A1, . . . , An)

uniquely exists and satisfies the contraction property: for any µ, ν ∈ P1(P)

(5.1) d(βΛ(µ), βΛ(ν)) ≤ dW1 (µ, ν).

Definition 5.2. The barycentric map βΛ in Proposition 5.1 determined by the Karcher

mean Λ is called the Karcher barycenter on P1(P).

The following shows the invariant properties of the Karcher barycenter, which gener-

alize those of the Karcher mean Λ.

Theorem 5.3. The Karcher barycenter βΛ : P1(P)→ P satisfies that for any µ ∈ P1(P),

M ∈ GL

βΛ(M.µ) = M.βΛ(µ), βΛ(µ−1) = βΛ(µ)−1.

Proof. Let µ ∈ P1(P). Since P0(P) is dW1 -dense in P1(P) [5, 22], there exists a sequence

{µn} ⊂ P0(P) of the form µn = 1
n

∑n
j=1 δAj such that dW1 (µn, µ) < ε for any ε > 0. Then

M.µn, µ
−1
n ∈ P0(P), and by the contraction property (5.1), Lemmas 3.8 and 3.6

d(βΛ(M.µn), βΛ(M.µ)) ≤ dW1 (M.µn,M.µ) = dW1 (µn, µ) < ε,

d(βΛ(µ−1
n ), βΛ(µ−1)) ≤ dW1 (µ−1

n , µ−1) ≤ dW1 (µn, µ) < ε.

Since the Karcher barycenter βΛ satisfies βΛ(µn) = Λn(A1, . . . , An) by Proposition 5.1

and (iii) the Karcher mean Λ is invariant under congruence transformation and inversion

by Theorem 6.8 in [16], we obtain the following:

βΛ(M.µ) = lim
n→∞

βΛ(M.µn) = lim
n→∞

M.βΛ(µn) = M.βΛ(µ),

βΛ(µ−1) = lim
n→∞

βΛ(µ−1
n ) =

[
lim
n→∞

βΛ(µn)
]−1

= βΛ(µ)−1.
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Remark 5.4. The monotonicity of Karcher barycenter corresponding to the intrinsic means

on a metric space with a closed partial order has been shown in [14]. Thus, the Karcher

barycenter βΛ : P1(P)→ P determined by the Karcher mean Λ is monotonic, i.e.,

µ ≤ ν =⇒ βΛ(µ) ≤ βΛ(ν).

Since the Karcher mean Λ satisfies many properties such as the joint concavity and

the arithmetic-Karcher-harmonic mean inequalities, many interesting problems for the

Karcher barycenter βΛ on the setting of probability measures remain still open.

As application of the Karcher barycenter of positive definite matrices, we see the

remarkable property with the log-majorization and unitarily invariant norms. Let A be

an m×m positive semidefinite (Hermitian) matrix with eigenvalues λj(A) for j = 1, . . . ,m

arranged in decreasing order, i.e., λ1(A) ≥ · · · ≥ λm(A). Let A,B ≥ 0. We say that B

weakly log-majorizes A, written as A ≺(w log) B, if and only if

k∏
i=1

λi(A) ≤
k∏
i=1

λi(B) for k = 1, 2, . . . ,m.

If the equality holds for k = m, in addition, then we say that B log-majorizes A, written

as A ≺(log) B.

A norm ||| · ||| on Mm, the set of all m × m matrices with complex entries, is said

to be unitarily invariant if and only if |||UAV ||| = |||A||| for any A ∈ Mm and unitary

matrices U, V ∈Mm. A typical example of unitarily invariant norms is the Ky Fan k-norm:

see [10, Chapter 5, Chapter 7] for more information. It is well known that A ≺(log) B

implies |||A||| ≤ |||B||| for all unitarily invariant norms ||| · |||.

Theorem 5.5. Let µ ∈ P1(Pm), where Pm is the open convex cone of all m×m positive

definite matrices. Then

|||βΛ(µ)1/p||| ≤ |||βΛ(µ1/p)|||

for all p ≥ 1 and all unitarily invariant norms ||| · |||.

Proof. Let µ ∈ P1(Pm). Since P0(Pm) is dW1 -dense in P1(Pm), there exists a sequence

{µn} ⊂ P0(Pm) of the form µn = 1
n

∑n
j=1 δAj such that µn → µ as n→∞.

For 1 ≤ k ≤ m, let Γk be the k-th asymmetric tensor power: see [2, 4] for basic

properties of Γk. Then for A,A1, . . . , An > 0

Λn(ΓkA1, . . . ,Γ
kAn) = ΓkΛn(A1, . . . , An),

λ1(ΓkA) =

k∏
i=1

λi(A),

Γk(Ap) = (ΓkA)p, p > 0.
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Using these properties, one can see from [8] that for µn ∈ P0(Pm) and p ≥ 1

Λn(Ap1, . . . , A
p
n)1/p ≺(log) Λn(A1, . . . , An).

Substituting Aj by A
1/p
j for all j, we have

Λn(A1, . . . , An)1/p ≺(log) Λn(A
1/p
1 , . . . , A1/p

n ),

and thus, |||Λn(A1, . . . , An)1/p||| ≤ |||Λn(A
1/p
1 , . . . , A

1/p
n )|||. By continuity of the norm

function, the contraction property (5.1), and Lemma 3.6, we conclude

|||βΛ(µ)1/p||| = ||| lim
n→∞

βΛ(µn)1/p||| = lim
n→∞

|||Λn(A1, . . . , An)1/p|||

≤ lim
n→∞

|||Λn(A
1/p
1 , . . . , A1/p

n )||| = ||| lim
n→∞

βΛ(µ1/p
n )||| = |||βΛ(µ1/p)|||.

Remark 5.6. It has been shown in [1, 2] that

(A#tB)α ≺(log) A
α#tB

α

for any A,B ∈ Pm, 0 < t < 1 and 0 < α < 1. This implies that

(5.2) |||(A#tB)α||| ≤ |||Aα#tB
α|||

for all unitarily invariant norm |||·|||. The inequality (5.2) is the special case of Theorem 5.5

when µ = (1−t)δA+tδB for 0 < t < 1 and α = 1/p for p ≥ 1. In other words, Theorem 5.5

is a generalization of the result (5.2).
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