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General Decay for a Viscoelastic Wave Equation with Density and Time

Delay Term in Rn

Baowei Feng

Abstract. A linear viscoelastic wave equation with density and time delay in the

whole space Rn (n ≥ 3) is considered. In order to overcome the difficulties in the non-

compactness of some operators, we introduce some weighted spaces. Under suitable

assumptions on the relaxation function, we establish a general decay result of solution

for the initial value problem by using energy perturbation method. Our result extends

earlier results.

1. Introduction

In this paper, we study the following Cauchy problem with a time delay term in the

internal feedback:

utt(x, t)− φ(x)

(
∆u(x, t)−

∫ t

0
g(t− s)∆u(x, s) ds

)
+ µ1ut(x, t) + µ2ut(x, t− τ) = 0,

(1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn,(1.2)

ut(x, t− τ) = f0(x, t− τ), x ∈ Rn, 0 < t < τ,(1.3)

where u0(x), u1(x) and f0(x, t− τ) are given initial data belonging to appropriate spaces.

The function g(t) is the relaxation function. The coefficient φ(x) := (ρ(x))−1 represents

the speed of sound at the point x ∈ Rn and the function ρ(x) is the density. The constants

µ1 and µ2 are two real numbers and τ > 0 denotes the time delay.

Equation (1.1) with the memory term
∫ t
0 g(t − s)∆u(s) ds can be regarded as a vis-

coelastic wave equation with a perturbation, and it can be also regarded as an elastoplastic

flow equation with some kind of memory effect. A more general equation of (1.1) without

delay term reads

(1.4) utt − φ(x)

(
∆u−

∫ t

0
g(t− s)∆u(s) ds

)
= 0.
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When ρ(x) = 1, i.e., φ(x) = 1, there are so many researchers studied the initial boundary

value problem of (1.4) in a bounded domain, the main results are mainly concerned with

global existence, stability and long-time dynamics, and many results may be found in the

literature. For general decay results, we refer the reader to Cao and Yao [2], Messaoudi [13–

15], Messaoudi and Al-Gharabli [16], Messaoudi and Soufyane [17], Mustafa and Messaoudi

[18], Said-Houari, Messaoudi and Guesmia [25], Tatar [26], Wu [27] and so on. For Cauchy

problem, Kafini and Messaoudi [8] studied the following problemutt −∆u+
∫ t
0 g(t− s)∆u(x, s) ds = 0, x ∈ Rn, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn.

They proved the energy decays polynomially for compactly supported initial data u0,

u1 and for an exponentially decaying relaxation function g(t). In [7], the same author

investigatedutt −∆u+
∫ t
0 g(t− s)∆u(x, s) ds+ ut = |u|p−1u, x ∈ Rn, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn,

and proved a blow-up result of the problem, and this result extended the one of [31].

When the density ρ(x) 6= 1, Karachalios and Stavrakakis [10] considered the following

semilinear hyperbolic initial value problemutt − φ(x)∆u+ δut + λf(u) = η(x), x ∈ Rn, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn.

The authors proved local existence of solutions and established the existence of a global

attractor in energy space D1,2(Rn) × L2
g(Rn) by using the compactness of embedding

D1,2(Rn) ⊂ L2
g(Rn) in the case where (φ(x))−1 := g(x) ∈ Ln/2(Rn) and n ≥ 3. Sub-

sequently, Papadopoulos and Stavrakakis [24] studied a degenerate nonlocal quasilinear

wave equation of Kirchhoff type with a weak dissipative termutt − φ(x)‖∇u(t)‖2∆u+ δut = |u|au, x ∈ Rn, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn,

and proved global existence, energy decay and blow-up results of solutions in the case

where n ≥ 3, δ ≥ 0 and the positive function (φ(x))−1 := g(x) lies in Ln/2(Rn)∩L∞(Rn).

In [6], Kafini considered the following initial-value problemρ(x)utt −∆u+
∫ t
0 g(t− s)∆u(x, s) ds = 0, x ∈ Rn, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn,
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and established general results of solutions in the case where ρ(x) is continuous function

lying in Ln/2(Rn) ∩ L∞(Rn). Recently, Zennir [30] considered the following problemρ(x)(|ut|q−1ut)t −M(‖∇u(t)‖2)∆u+
∫ t
0 g(t− s)∆u(x, s) ds = 0, x ∈ Rn, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn,

and proved a general decay result of solutions for wider class of relaxation function g(t)

in the case where q, n ≥ 2 and M is a positive C1 function satisfying some suitable

conditions. For more results in this respect, we also refer the reader to Cavalcanti et

al. [3] and Zhou [32], and so on.

In recent years, many authors studied the wave equation with time delay effects. It is

worth mentioning the work of Xu, Yung and Li [29]. In their paper, the authors studied

the following closed loop system in one dimension

utt − uxx = 0, x ∈ (0, 1), t > 0,

u(0, t) = 0, t > 0,

ux(1, t) = −kµut(1, t)− k(1− µ)ut(1, t− τ), t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, 1),

u(1, t− τ) = f(t− τ), t ∈ (0, τ),

and proved that the system is exponentially stable if µ > 1/2, and if µ < 1/2, the system is

unstable. When µ = 1/2, they claimed that if τ ∈ (0, 1) is rational, the system is unstable.

If τ ∈ (0, 1) is irrational, the system is asymptotically stable. In [19], Nicaise and Pignotti

extended the results in [29] to higher dimensions and considered the following system

utt −∆u = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0, t > 0,

∂u
∂ν = µ1ut(x, t) + µ2ut(x, t− τ), x ∈ Γ1, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t− τ) = f0(x, t− τ), x ∈ Γ1, t ∈ (0, τ).

They proved the well-posedness of the problem by using semigroup method and then

obtained that the energy decays exponentially by using an observability inequality. They

also studied the case of internal feedbacks and obtained the exponential decay of energy.

In both cases, the results hold for 0 < µ2 < µ1. If µ2 ≥ µ1 > 0, they obtained an

explicit sequence of arbitrary small delays that destabilize the system. In [11], Kirane and

Said-Houari studied the following viscoelastic wave equation with a delay term in internal

feedbacks

utt(x, t)−∆u(x, t) +

∫ t

0
g(t− s)∆u(s) ds+ µ1ut(x, t) + µ2ut(x, t− τ) = 0, x ∈ Ω, t > 0,
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where Ω ⊂ Rn (n ≥ 1) is a regular and bounded domain and µ1 and µ2 are positive

constants. They proved the global well-posedness of the initial boundary value problem

by using some suitable assumptions on the relaxation function and some restrictions on

the parameters µ1 and µ2. Furthermore, under the assumption 0 < µ2 ≤ µ1, they obtained

a general decay result of the total energy to the system. But for the case µ1 = 0, they did

not get the decay property of the energy. Based on the results in [11], Liu [12] extended

the results to a system with time-dependent delay. Dai and Yang [4] considered the same

equation as in [11] and solved the open problem proposed by Kirane and Said-Houari.

In this paper, the authors proved the global existence of solutions without restrictions

of µ1, µ2 > 0 and µ2 ≤ µ1, and obtained an exponential decay result of energy in the

case µ1 = 0. Recently, Kafini, Messaoudi and Nicaise [9] considered a nonlinear damped

second-order evolution equation with delay of the form

utt +Au+G(ut) + µG(ut(t− τ)) = F (u),

and proved the energy blows up in finite time under some suitable assumptions. Recently,

Nicaise and Pignotti [21] considered (nonlinear) abstract evolution equations with constant

time delay of the formUt(t) = AU(t) + F (U(t)) + kBU(t− τ),

U(0) = U0, BU(t− τ) = f(t),

where B is a bounded operator. They obtained that the operator associated to the part

without delay generates a strongly continuous semigroup which is exponentially stable.

They also proved that the model with delay remains exponentially stable under a smallness

condition on the time delay feedback. For more results concerning the different boundary

conditions under appropriate assumptions on µ1 and µ2, one can refer to Datko, Lagnese

and Polis [5], Nicaise and Pignotti [20], Nicaise, Valein and Fridman [23], Nicaise and

Valein [22], Wu [28], and the references therein. It is remarkable that all above results

concerning with wave equation with delay were established in a bounded domain.

Equation (1.1) is a viscoelastic wave equation with density and a time delay term in

the internal feedback. To the best of our knowledge, the general rate of decay for Cauchy

problem (1.1)–(1.3) were not previously considered. So the objective of the present work

is to establish the stability of initial value problem (1.1)–(1.3). Obviously, ρ(x) can not

be a constant here. The main contribution of this work is threefold:

(i) Since the non-compactness of some operators in unbounded domain, especially, the

Poincaré inequality and some Sobolev embedding inequalities are not valid in the

whole space, we introduce some weighted spaces as in [6, 10] to overcome these

difficulties.
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(ii) We establish a general rate of energy decay for solutions and extend the previous

results in [4,8,11], where the exponential decay and polynomial decay are only special

cases.

(iii) We consider the constants µ1 and µ2 are real numbers without restrictions of µ1, µ2 >

0 and µ2 ≤ µ1, and establish the energy decay in the case 0 < |µ2| < µ1 and in the

case µ1 = 0, |µ2| > 0.

The outline of this paper is as follows. In Section 2, we give some preparations. In

Section 3, we state our main results. In Section 4, we prove our main results. The

conclusion and open problems will be given in Section 5.

2. Space setting and assumptions

In this section, we give the space setting and some assumptions. For convenience, we use

the standard notations of Lebesgue integral and Sobolev spaces as

Lq(Rn) (1 ≤ q ≤ ∞) and H1(Rn).

In addition, ‖ · ‖B denotes the norm in the space B, we write ‖u‖ instead of ‖u‖2 when

q = 2 for simplify.

2.1. Space setting

As in [10], we introduce the weighted spaces D1,2(Rn) and Lpρ(Rn) for our system. First

we assume the density ρ(x) : Rn → R (n ≥ 3) satisfies the following conditions.

(A) ρ(x) > 0, ρ ∈ C0,γ(Rn) with γ ∈ (0, 1) and ρ ∈ Ln/2(Rn) ∩ L∞(Rn).

Now we define the weighted spaces D1,2(Rn) and Lpρ(Rn), (1 < p <∞).

(1) The space D1,2(Rn) is defined to be the closure of C∞0 (Rn) functions with respect

to which norm

D1,2(Rn) = {u ∈ L2n/(n−2)(Rn) : ∇u ∈ L2(Rn)},

equipped with the norm ‖u‖D1,2(Rn) =
∫
Rn |∇u|

2 dx.

(2) We introduce the weighted space L2
ρ(Rn) to be defined the closure of C∞0 (Rn) func-

tions with respect to the inner product

(u, v)L2
ρ(Rn) =

∫
Rn
ρuv dx,

and we know that L2
ρ(Rn) is a separable Hilbert space and ‖u‖2L2

ρ(Rn)
= (u, u)L2

ρ(Rn).
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(3) If u is a measurable function on Rn, we define

‖u‖p
Lpρ(Rn)

(Rn) =

(∫
Rn
ρ|u|p dx

)1/p

for 1 < p <∞,

and let Lpρ(Rn) consist of all u for which ‖u‖Lpρ(Rn) <∞.

From [6,10], we can get the following lemma.

Lemma 2.1. Assume the function ρ satisfies (A), then for any u ∈ D1,2(Rn),

‖u‖Lqρ ≤ ‖ρ‖Ls‖∇u‖

with s = 2n/(2n− qn+ 2q) and 2 ≤ q ≤ 2n/(n− 2).

Corollary 2.2. For q = 2, we have

‖u‖L2
ρ
≤ ‖ρ‖Ln/2‖∇u‖.

If ρ ∈ Ln/2(Rn), we have

(2.1) ‖u‖L2
ρ
≤ c∗‖∇u‖,

where c∗ > 0 is a constant.

2.2. Assumptions on relaxation function

We assume the relaxation function g satisfies the following conditions:

(G1) g : R+ → R+ is a differentiable function such that

g(0) > 0, 1−
∫ ∞
0

g(s) ds = l > 0.

(G2) There exists a nonincreasing differentiable function ζ(t) : R+ → R+ such that∫ ∞
0

ζ(s) ds = +∞, g′(t) ≤ −ζ(t)g(t) for t ≥ 0.

3. Main results

In this section, we shall give the main results of the present work. First we can establish

the global existence and uniqueness of problem (1.1)–(1.3), which is given by the following

theorem.
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Theorem 3.1. Assume that (A) and (G1) hold. Then for any initial data u0 ∈ D1,2(Rn),

u1 ∈ L2
ρ(Rn) and f0(x, t) ∈ L2(Rn × (−τ, 0)), problem (1.1)–(1.3) has a unique solution

such that for any T > 0,

u ∈ C(0, T ;D1,2(Rn)) and ut ∈ C(0, T ;L2
ρ(Rn)).

Remark 3.2. We can divide into two steps to prove the theorem. First we can prove the

global existence of the problem by using Faedo-Galerkin method restricted on BR× (0.T )

satisfying the boundary condition u = 0 in ∂BR×(0.T ), where BR is the ball with a radius

of R. One can refer to Kirane and Said-Houari [11] and Dai and Yang [4] and so on. The

next step is to extend the solutions to the whole space Rn, we can employ the method

developed by Babin and Vishik [1]. We can also refer to Karachalios and Stavrakakis [10],

and hence we omit the detail proof here.

We introduce the modified energy functional to problem (1.1)–(1.3) by

E(t) =
1

2
‖ut(t)‖2L2

ρ
+

1

2

(
1−

∫ t

0
g(s) ds

)
‖∇u(t)‖2 +

1

2
(g ◦ ∇u)(t)

+
ξ

2

∫ t

t−τ

∫
Rn
ρ(x)eσ(s−t)u2s(x, s) dxds,

(3.1)

where σ and ξ are two positive constants to be determined later, and

(g ◦ ∇u)(t) =

∫ t

0
g(t− s)‖∇u(t)−∇u(s)‖2 ds.

The main result of the present work is to establish the general decay rate of the energy,

which is given by the following theorem.

Theorem 3.3. Assume the assumptions (G1)–(G2) hold. Let u0 ∈ D1,2(Rn), u1 ∈ L2
ρ(Rn)

and f0(x, t) ∈ L2(Rn × (−τ, 0)). Then we have:

(i) If 0 < |µ2| < µ1, then there exist two constants β > 0 and γ > 0 such that the energy

E(t) defined by (3.1) satisfies

(3.2) E(t) ≤ β exp

(
−γ
∫ t

0
ζ(s) ds

)
for all t ≥ 0.

(ii) If µ1 = 0, 0 < |µ2| < a and ζ(t) > ζ0, where the constants a > 0 and ζ0 > 0 are

defined in (4.21) and (4.25), respectively. Then there exists a constant γ′ > 0 such

that the energy E(t) defined by (3.1) satisfies

(3.3) E(t) ≤ E(t0) exp

(
−γ′

∫ t

t0

ζ(s) ds

)
for all t ≥ t0.
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4. General decay of energy

In this section, we shall establish the general decay property of the solution for prob-

lem (1.1)–(1.3). For this purpose we need the following technical lemmas.

Lemma 4.1. Under the assumptions of Theorem 3.3, the modified energy functional de-

fined by (3.1) satisfies for any t ≥ 0,

E′(t) ≤
(
|µ2|
2
− µ1 +

ξ

2

)
‖ut(t)‖2L2

ρ
+

(
|µ2|
2
− ξ

2
e−στ

)∫
Rn
ρ(x)u2t (t− τ) dx

+
1

2
(g′ ◦ ∇u)(t).

(4.1)

Proof. Taking the derivative of E(t), we have

E′(t) =

∫
Rn
ρ(x)uttut dx−

1

2
g(t)‖∇u‖2 +

(
1−

∫ t

0
g(s) ds

)∫
Rn
∇u · ∇ut dx

+
1

2
(g′ ◦ ∇u) +

∫
Rn
∇ut(t)

∫ t

0
g(t− s)(∇u(s)−∇u(t)) dsdx+

ξ

2
‖ut‖2L2

ρ

− ξ

2
e−στ

∫
Rn
ρ(x)u2t (t− τ) dx− σξ

2

∫ t

t−τ

∫
Rn
ρ(x)e−σ(t−s)u2s(x, s) dxds.

By using equation (1.1) and integration by parts, we can easily get

E′(t) =
1

2
(g′ ◦ ∇u)− 1

2
g(t)‖∇u‖2 − µ1

∫
Rn
ρ(x)u2t dx+

ξ

2
‖ut‖2L2

ρ

− µ2
∫
Rn
ρ(x)utut(t− τ) dx− ξ

2
e−στ

∫
Rn
ρ(x)u2t (t− τ) dx

− σξ

2

∫ t

t−τ

∫
Rn
ρ(x)e−σ(t−s)u2s(x, s) dxds,

which, together with Young’s inequality and Assumption (G1)–(G2), gives us

E′(t) ≤
(
|µ2|
2
− µ1 +

ξ

2

)
‖ut‖2L2

ρ
+

(
|µ2|
2
− ξ

2
e−στ

)∫
Rn
ρ(x)u2t (t− τ) dx+

1

2
(g′ ◦ ∇u).

Then the proof is complete.

Lemma 4.2. Under the assumptions of Theorem 3.3, let (u, ut) be the solution of prob-

lem (1.1)–(1.3). The functional Φ(t) defined by

Φ(t) =

∫
Rn
ρuut dx,

satisfies that there exist three positive constants c1, c2 and c3 such that for any t > 0,

(4.2) Φ′(t) ≤ − l
2
‖∇u(t)‖2 + c1‖ut(t)‖2L2

ρ
+ c2

∫
Rn
ρu2t (t− τ) dx+ c3(g ◦ ∇u)(t).
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Proof. We take the derivative of Φ(t) and use equation (1.1) to get

Φ′(t) =

∫
Rn
ρu2t dx+

∫
Rn
ρuttu dx

=

∫
Rn
ρu2t dx+

∫
Rn

(
∆u−

∫ t

0
g(t− s)∆u(s) ds

)
u dx

+

∫
Rn
ρ(−µ1ut − µ2ut(t− τ))u dx

=

∫
Rn
ρu2t dx−

∫
Rn
|∇u|2 dx+

∫
Rn
∇u(t)

∫ t

0
g(t− s)∇u(s) dsdx

− µ1
∫
Rn
ρuut dx− µ2

∫
Rn
ρuut(t− τ) dx

=

∫
Rn
ρu2t dx+

(∫ t

0
g(s) ds− 1

)
‖∇u‖2 − µ1

∫
Rn
ρuut dx

+

∫
Rn
∇u(t)

∫ t

0
g(t− s)(∇u(s)−∇u(t)) dsdx− µ2

∫
Rn
ρuut(t− τ) dx.

(4.3)

By using Young’s and Hölder’s inequalities, we arrive at for any ε > 0,∫
Rn

∇u(t)

∫ t

0

g(t− s)(∇u(s)−∇u(t)) dsdx ≤ ε
∫
Rn

|∇u|2 dx+
1

4ε

(∫ t

0

g(s) ds

)
(g ◦ ∇u)

≤ ε‖∇u‖2 +
1− l

4ε
(g ◦ ∇u).

(4.4)

Similarly, by using (2.1), we obtain for any ε > 0,∣∣∣∣−µ1 ∫
Rn
ρuut dx

∣∣∣∣ ≤ |µ1|ε‖u‖2L2
ρ

+
|µ1|
4ε
‖ut‖2L2

ρ
≤ |µ1|εc2∗‖∇u‖2 +

|µ1|
4ε
‖ut‖2L2

ρ
,(4.5) ∣∣∣∣−µ2 ∫

Rn
uut(t− τ) dx

∣∣∣∣ ≤ |µ2|εc2∗‖∇u‖2 +
|µ2|
4ε

∫
Rn
u2t (t− τ) dx.(4.6)

Inserting (4.4)–(4.6) into (4.3), using Assumption (G1) and taking ε > 0 small enough,

we can get (4.2) with

c1 := 1 +
|µ1|
4ε

, c2 :=
|µ2|
4ε

, c3 :=
1− l

4ε
.

The proof is therefore complete.

Lemma 4.3. Under the assumptions of Theorem 3.3, let (u, ut) be the solution of prob-

lem (1.1)–(1.3). The functional Ψ(t) defined by

Ψ(t) = −
∫
Rn
ρut

∫ t

0
g(t− s)(u(t)− u(s)) dsdx,

satisfies that there exists a positive constant c4 such that for any δ > 0,

Ψ′(t) ≤
(

2δ −
∫ t

0
g(s) ds

)
‖ut(t)‖2L2

ρ
+ [δ + 2δ(1− l)2]‖∇u(t)‖2 + c4(g ◦ ∇u)(t)

− g(0)c2∗
4δ

(g′ ◦ ∇u)(t) + δ

∫
Rn
ρu2t (t− τ) dx.

(4.7)
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Proof. By using (1.1), it is easy to get

Ψ′(t) = −
∫
Rn
ρutt

∫ t

0
g(t− s)(u(t)− u(s)) dsdx−

∫ t

0
g(s) ds · ‖ut‖2L2

ρ

−
∫
Rn
ρut

∫ t

0
g′(t− s)(u(t)− u(s)) dsdx

= −
∫
Rn

∆u

∫ t

0
g(t− s)(u(t)− u(s)) dsdx

+

∫
Rn

(∫ t

0
g(s)∆u(s) ds

)(∫ t

0
g(t− s)(u(t)− u(s)) ds

)
dx

+ µ1

∫
Rn
ρut

∫ t

0
g(t− s)(u(t)− u(s)) dsdx

+ µ2

∫
Rn
ρut(t− τ)

∫ t

0
g(t− s)(u(t)− u(s)) dsdx

−
∫
Rn
ρut

∫ t

0
g′(t− s)(u(t)− u(s)) dsdx−

∫ t

0
g(s) ds · ‖ut‖2L2

ρ
.

(4.8)

Using integration by parts, Young’s inequality and Hölder’s inequality, we have for any

δ > 0, ∣∣∣∣−∫
Rn

∆u

∫ t

0
g(t− s)(u(t)− u(s)) dsdx

∣∣∣∣
=

∣∣∣∣∫
Rn
∇u
∫ t

0
g(t− s)(∇u(t)−∇u(s)) dsdx

∣∣∣∣
≤ δ

∫
Rn
|∇u|2 dx+

1

4δ

(∫ t

0
g(s) ds

)
(g ◦ ∇u)

≤ δ‖∇u‖2 +
1− l
4δ

(g ◦ ∇u),

(4.9)

∣∣∣∣∫
Rn

(∫ t

0

g(t− s)(u(t)− u(s)) ds

)
·
(∫ t

0

g(t− s)∆u(s) ds

)
dx

∣∣∣∣
=

∣∣∣∣−∫
Rn

(∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
·
(∫ t

0

g(t− s)∇u(s) ds

)
dx

∣∣∣∣
≤ δ

∫
Rn

(∫ t

0

g(t− s)∇u(s) ds

)2

dx+
1

4δ

∫
Rn

(∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)2

dx

≤ 2δ

∫
Rn

[(∫ t

0

g(t− s)(∇u(s)−∇u(t)) ds

)2

+

(∫ t

0

g(t− s)∇u(t) ds

)2
]
dx

+
1

4δ

∫
Rn

(∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)2

dx

≤
(

2δ +
1

4δ

)(∫ t

0

g(s) ds

)
(g ◦ ∇u) + 2δ

(∫ t

0

g(s) ds

)2

‖∇u‖2

≤
(

2δ +
1

4δ

)
(1− l)(g ◦ ∇u) + 2δ(1− l)2‖∇u‖2,

(4.10)
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(4.11)

∣∣∣∣µ1 ∫
Rn
ρut

∫ t

0
g(t− s)(u(t)− u(s)) dsdx

∣∣∣∣ ≤ δ‖ut‖2L2
ρ

+
c2∗
4δ

(g ◦ ∇u),

(4.12)

∣∣∣∣µ2 ∫
Rn
ρut(t− τ)

∫ t

0
g(t− s)(u(t)− u(s)) dsdx

∣∣∣∣ ≤ δ ∫
Rn
ρu2t (t−τ) dx+

c2∗
4δ

(g◦∇u)

and

(4.13)

∣∣∣∣−∫
Rn
ρut

∫ t

0
g′(t− s)(u(t)− u(s)) dsdx

∣∣∣∣ ≤ δ‖ut‖2L2
ρ
− g(0)c2∗

4δ
(g′ ◦ ∇u).

Combining (4.9)–(4.13) with (4.8), we can obtain (4.7) with

c4 := (1− l)
[(

2δ +
1

4δ

)
+

1

4δ

]
+
c2∗
2δ
.

The proof of the lemma is done.

Now we define the Lyapunov functional

L(t) := E(t) + ε1Φ(t) + ε2Ψ(t),

where ε1 and ε2 are positive constants.

Then we have the following lemma.

Lemma 4.4. For ε1 > 0 and ε2 > 0 small enough, we have

(4.14)
1

2
E(t) ≤ L(t) ≤ 2E(t).

Proof. By using Hölder’s inequality, Young’s inequality and (2.1), we can get for any δ > 0,

|L(t)− E(t)|

≤ ε1
∫
Rn
|ρuut| dx+ ε2

∫
Rn

∣∣∣∣ρut ∫ t

0
g(t− s)(u(t)− u(s)) ds

∣∣∣∣ dx
≤ ε1

(
δ‖ut‖2L2

ρ
+

1

4δ
‖u‖2L2

ρ

)
+ ε2

(
δ‖ut‖2L2

ρ
+

1

4δ

∫ t

0
g(t− s)‖u(t)− u(s)‖2L2

ρ
ds

)
≤ ε1

(
δ‖ut‖2L2

ρ
+
c2∗
4δ
‖∇u‖2

)
+ ε2

(
δ‖ut‖2L2

ρ
+
c2∗
4δ

(1− l)(g ◦ ∇u)

)
≤ δ(ε1 + ε2)‖ut‖2L2

ρ
+
ε1c

2
∗

4δ
‖∇u‖2 +

ε2c
2
∗

4δ
(1− l)(g ◦ ∇u),

which gives us there exists a positive constant ε > 0 such that

|L(t)− E(t)| ≤ εE(t),

i.e.,

(1− ε)E(t) ≤ L(t) ≤ (1 + ε)E(t).

Noting that ε > 0 is small enough when ε1 and ε2 are small enough, we can get (4.14)

when we choose ε1 > 0 and ε2 > 0 small enough. The proof is complete.
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Proof of Theorem 3.3. For any fixed t0 > 0, we know that for any t ≥ t0,∫ t

0
g(s) ds ≥

∫ t0

0
g(s) ds := g0.

It follows from (4.1), (4.2) and (4.7) that for any t ≥ t0,

L′(t) = E′(t) + ε1Φ
′(t) + ε2Ψ

′(t)

≤
(
|µ2|
2
− µ1 +

ξ

2
+ c1ε1 + ε2(2δ − g0)

)
‖ut(t)‖2L2

ρ

+

(
ε2(δ + 2δ(1− l)2)− lε1

2

)
‖∇u(t)‖2

+

(
|µ2|
2
− ξ

2
e−στ + c2ε1 + ε2δ

)∫
Rn
ρu2t (t− τ) dx

+ (c3ε1 + c4ε2)(g ◦ ∇u)(t) +

(
1

2
− g(0)c2∗

4δ
ε2

)
(g′ ◦ ∇u)(t).

(4.15)

Case 1: µ1 6= 0, 0 < |µ2| < µ1.

Obviously, eστ goes to 1 as σ → 0. By using the continuity of the set of real numbers,

then we can take σ so small that there exists a constant ξ > 0 such that

eστ |µ2| < ξ < µ1,

which gives us
|µ2|
2
− µ1 +

ξ

2
< 0

and
|µ2|
2
− ξ

2eστ
< 0.

At this point we first choose 0 < δ < g0/2 such that 2δ − g0 < 0. For any fixed δ > 0, we

at last choose ε2 > 0 and ε1 > 0 small enough so that (4.14) remain valid, and further,

ε2 < min

{
2δ

g(0)c2∗
,
1

δ

(
ξ

2eστ
− |µ2|

2

)}
and

2ε2
l

(
δ + 2δ(1− l)2

)
< ε1 < min

{
ε2
c1

(g0 − 2δ),
ξ

2c2
e−στ − |µ2|

2c2
− ε2δ

c2

}
,

which gives us

1

2
− g(0)c2∗ε2

4δ
> 0, ε2δ +

|µ2|
2
− ξ

2eστ
< 0,

c1ε1 + ε2(2δ − g0) < 0, ε2(δ + 2δ(1− l)2)− l

2
ε1 < 0,

and

c2ε1 + ε2δ +
|µ2|
2
− ξ

2
e−στ < 0.
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From this it follows that there exist two positive constants γ1 and γ2 such that for any

t ≥ t0,

(4.16) L′(t) ≤ −γ1E(t) + γ2(g ◦ ∇u)(t).

We multiply (4.16) by ζ(t) and use ζ(t)(g ◦ ∇u) ≤ −(g′ ◦ ∇u) ≤ −2E′(t) to obtain

ζ(t)L′(t) ≤ −γ1E(t)ζ(t) + γ2ζ(t)(g ◦ ∇u)(t)

≤ −γ1ζ(t)E(t)− 2γ2E
′(t),

which implies

(4.17) ζ(t)L′(t) + 2γ2E
′(t) ≤ −γ1ζ(t)E(t).

Let E(t) = ζ(t)L(t) + 2γ2E(t), then it is easy to get that E(t) is equivalent to the modified

energy E(t) by using (4.14), i.e., there exist two positive constants β1 and β2 such that

(4.18) β1E(t) ≤ E(t) ≤ β2E(t).

By using (4.17), (4.18) and ζ ′(t) ≤ 0, we infer that for any t ≥ t0,

E ′(t) ≤ −γ1ζ(t)E(t) ≤ −γ1
β2
ζ(t)E(t),

which gives us

E(t) ≤ E(t0) exp

(
−γ1
β2

∫ t

t0

ζ(s) ds

)
.

Thus we have

(4.19) E(t) ≤ β2
β1
E(t0) exp

(
−γ1
β2

∫ t

t0

ζ(s) ds

)
.

Therefore (3.2) follows by renaming the constants, and by the continuity and boundedness

of E(t).

Case 2: µ1 = 0, |µ2| > 0.

By using the same estimate as (4.15), we have for any t ≥ t0,

L′(t) = E′(t) + ε1Φ
′(t) + ε2Ψ

′(t)

≤
(
|µ2|
2

+
ξ

2
+ c5ε1 + ε2(2δ − g0)

)
‖ut(t)‖2L2

ρ(
ε2(δ + 2δ(1− l)2)− lε1

2

)
‖∇u(t)‖2

+

(
|µ2|
2
− ξ

2
e−στ + c5ε1 + ε2δ

)∫
Rn
ρu2t (t− τ) dx

+ (c6ε1 + c7ε2)(g ◦ ∇u)(t) +

(
1

2
− g(0)c2∗

4δ
ε2

)
(g′ ◦ ∇u)(t),
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where ci, i = 5, 6, 7, are positive constants.

At this point we first choose δ > 0 so small that

δ < min

{
g0
8
,

g0l

16c5[1 + 2(1− l)2]

}
,

which yields
g0
8c5

<
g0 − 4δ

2c5
.

For fixed δ > 0, we take ε2 such that

0 < ε2 <
δ

2g(0)c2∗
.

Then we know that
1

2
− ε2g(0)c2∗

4δ
> 0.

Next for any fixed δ > 0 and ε2 > 0, we choose ε1 > 0 so small that (4.14) holds, and

further

max

{
2

l
[ε2(δ + 2δ(1− l)2)], ε2

g0
8c5

}
< ε1 < min

{
δ2(g0 − 2δ)− ε2δ

2c5
, ε2

g0 − 4δ

2c5

}
,

which gives us

(4.20) ε2(g0 − 2δ)− ε1c5 > ε1c5 + ε2δ > 0

and

ε2(δ + 2δ(1− l)2)− lε1
2
< 0.

If we denote η1 := ε2(g0 − 2δ) − ε1c5 and η2 := ε1c5 + ε2δ, it follows from (4.20) that

η1 > η2. Note that eστ goes to 1 as σ → 0. Now we choose σ small enough so that there

exists a positive constant ξ satisfies

2η2e
στ < ξ < 2η1.

Then we can get

2η1 − ξ > 0 and
ξ

eστ
− 2η2 > 0.

We select the constant µ2 satisfies

(4.21) |µ2| < min

{
2η1 − ξ,

ξ

eστ
− 2η2

}
:= a,

which implies
|µ2|
2

+
ξ

2
< η1 and

ξ

2eστ
− |µ2|

2
> η2.
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From above it follows that

|µ2|
2

+
ξ

2
+ c5ε1 + ε2(2δ − g0) < 0, ε2(δ + 2δ(1− l)2)− lε1

2
< 0,

and
1

2
− g(0)c2∗

4δ
ε2 > 0,

|µ2|
2
− ξ

2
e−στ + c5ε1 + ε2δ < 0.

Therefore, there exist two positive constants γ1 and γ2 such that for any t ≥ t0,

(4.22) L′(t) ≤ −γ1E(t) + γ2(g ◦ ∇u)(t).

Since µ1 = 0, by (4.1), the energy E(t) satisfies

(4.23) E′(t) ≤
(
|µ2|
2

+
ξ

2

)
‖ut(t)‖2L2

ρ
+

(
|µ2|
2
− ξ

2
e−στ

)∫
Rn
ρu2t (t−τ) dx+

1

2
(g′ ◦∇u)(t).

Multiplying (4.22) by ζ(t) and using Assumption (G2) and (4.23), we shall see that for

any t ≥ t0,

ζ(t)L′(t) ≤ −γ1ζ(t)E(t) + γ2ζ(t)(g ◦ ∇u)(t)

≤ −γ1ζ(t)E(t)− γ2(g′ ◦ ∇u)(t)

≤ −γ1ζ(t)E(t)− 2γ2E
′(t) + 2η1γ2‖ut(t)‖2L2

ρ

≤ −γ1ζ(t)E(t)− 2γ2E
′(t) + 4η1γ2E(t).

(4.24)

If we assume

(4.25) ζ(t) >
5η1γ2
γ1

:= ζ0,

then we infer from (4.24) that there exists a positive constant γ3 such that for any t ≥ t0,

ζ(t)L′(t) + 2γ2E
′(t) ≤ −γ3E(t).

Therefore we can obtain (3.3) by using the similar analysis as (4.19). Then the proof of

Theorem 3.3 is complete.

Remark 4.5. By using the method in [12], our result can be easily extended to the case

which the delay τ = τ(t) is a function satisfying some suitable conditions, i.e., the delay

is time-varying delay.

Remark 4.6. As in [13, 14, 18], we illustrate several rates of energy decay through the

following examples.

1. If g decays exponentially, i.e., ζ(t) = a, then (3.2) gives us

E(t) ≤ βe−γat.
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2. If ζ(t) = a/(1 + t), then (3.2) gives us

E(t) ≤ β

(1 + t)γa
.

3. When g(t) = ae−b(1+t)
α

for a, b > 0 and 0 < α ≤ 1, then we can choose ζ(t) =

bα(1 + t)α−1. Estimate (3.2) takes the form

E(t) ≤ β exp (−bγ(1 + t)α) .

4. If g(t) = a exp(−b lnα(1 + t)) for a, b > 0 and α > 1, we take ζ(t) = bα lnα−1(1 +

t)/(1 + t). Estimate (3.2) takes the form

E(t) ≤ β exp (−γb lnα(1 + t)) .

5. Conclusion and open problems

In this work, we considered a linear viscoelastic wave equation with density and time delay

in the whole space. In order to overcome the difficulties of the non-compactness of some

operators in unbounded domains, we introduced some weighted spaces. Under suitable

assumptions on the relaxation function, we established a general decay result of solution

for the initial value problem by using the energy perturbation method. This study contains

the exponential and polynomial rates as particular cases. Our result extends some recent

works. Next we briefly discuss some possible extensions of our results and also state open

problems on the subject.

(1) For the general decay result, it only valid for 0 < |µ2| < µ1 and µ1 = 0, |µ2| > 0.

Whether the stability property holds for 0 < µ1 = |µ2| is still open.

(2) One could address the problem when the real numbers µ1 and µ2 satisfies the con-

dition 0 < µ1 < |µ2|.
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