A Short Derivation for Turán Numbers of Paths

Gerard Jennhwa Chang

Abstract

This paper gives a short derivation for a result by Faudree and Schelp that the Turán number ex $\left(n ; P_{k+1}\right)$ of a path of $k+1$ vertices is equal to $q\binom{k}{2}+\binom{r}{2}$, where $n=q k+r$ and $0 \leq r<k$, with the set $\operatorname{EX}\left(n ; P_{k+1}\right)$ of extremal graphs determined.

As said by Bollobás [1] that extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians. In particular, Paul Erdős is an important representative.

Extremal graph theory studies extremal (maximal or minimal) graphs which satisfy a certain property. Extremality can be taken with respect to different graph invariants, such as order, size or girth. More abstractly, it studies how global properties of a graph influence local substructures of the graph. For example, a simple extremal graph theory question is "which acyclic graphs on n vertices have the maximum number of edges?" The extremal graphs for this question are trees on n vertices, which have $n-1$ edges. More generally, a typical question is the following: given a graph property P, an invariant μ and a set of graphs \mathcal{G}, we wish to find the minimum value of m such that every graph in \mathcal{G} which has μ larger than m possess property P. In the example above, P is the property of being cyclic, μ is the number of edges in the graph and \mathcal{G} is the set of n-vertex graphs. Thus every graph on n vertices with more than $n-1$ edges must contain a cycle.

Extremal graph theory started in 1941 when Turán determined the maximum number of edges of an n-vertex graph that contains no complete graph K_{k} of k vertices as a subgraph. Although the special case of $k=3$ was established by Mantel in 1907, we now usually called this kind of forbidden subgraph problems as Turán-type problems. More precisely, suppose \mathcal{F} is a family of graphs, the Turán number $\operatorname{ex}(n ; \mathcal{F})$ is the maximum number of edges of a graph of n vertices not containing a subgraph in \mathcal{F}. We use $\operatorname{EX}(n, \mathcal{F})$ to denote the set of all graphs of n vertices and $\operatorname{ex}(n ; \mathcal{F})$ edges not containing a subgraph in \mathcal{F}. For the case of $\mathcal{F}=\{F\}$, we use $\operatorname{ex}(n ; F)$ for $\operatorname{ex}(n ; \mathcal{F})$ and $\operatorname{EX}(n ; F)$ for $\operatorname{EX}(n ; \mathcal{F})$.

Let $T_{n, k}$ be the complete k-partite graph each of whose partite sets is of size $\lfloor n / k\rfloor$ or $\lceil n / k\rceil$; and let $t_{n, k}$ be the number of edges of $T_{n, k}$. It can be verified that if $n=k q+r$ with $0 \leq r<k$, then $t_{n, k}=(1-1 / k) n^{2} / 2-r(k-r) /(2 k)$. Then Turán's theorem says that $\operatorname{ex}\left(n ; K_{k+1}\right)=t_{n, k}$ and $\operatorname{EX}\left(n ; K_{k+1}\right)=\left\{T_{n, k}\right\}$.

After Turán's result, various Turán numbers have been studied for different graphs. Unlike the precise value of $\operatorname{ex}\left(n ; K_{k+1}\right)$, most of the results on $\operatorname{ex}(n ; \mathcal{F})$ are of asymptotic type. For instance, Erdős and Stone [4] proved that $\operatorname{ex}\left(n ; K_{k+1[s]}\right)=\left(1-1 / k+o_{s}(1)\right) n^{2} / 2$, where $K_{k+1[s]}$ is the complete $(k+1)$-partite graph ech of whose partite set is of size s. As a consequence, we have Erdős and Simonovits's theorem [3] (now is often called Erdős-Stone-Simonovits Theorem) that if $k=\min _{F \in \mathcal{F}} \chi(F)-1>0$, then $\operatorname{ex}(n ; \mathcal{F})=$ ($\left.1-1 / k+o_{\mathcal{F}}(1)\right) n^{2} / 2$. For the case of $k=1$, the above result is of no interest. In fact, Erdős [3] conjectured that for any bipartite graph F, there are constants c and a with $1<a<2$ such that $\operatorname{ex}(n ; F) \sim c n^{a}$. This is still open now.

Even for the graph as simple as P_{k+1}, it is not easy to determine ex $\left(n ; P_{k+1}\right)$. Let $n=k q+r$ with $0 \leq r<k$. The graph $G_{n, k}:=q K_{k} \cup K_{r}$ does not contain P_{k+1} as a subgraph and has $g_{n, k}:=q\binom{k}{2}+\binom{r}{2}$ edges. Consequently, ex $\left(n ; P_{k+1}\right) \geq g_{n, k}$. In fact, this is an equality. However, the proof is not easy as $G_{n, k}$ is not the only graph in $\operatorname{EX}\left(n ; P_{k+1}\right)$. The first result on this line is Erdős and Gallai's theorem [2] that ex $\left(n ; P_{k+1}\right) \leq(k-1) n / 2$; and if the equality holds, then k is a factor of n and $\operatorname{EX}\left(n ; P_{k+1}\right)=\left\{\frac{n}{k} K_{k}\right\}$. Notice that there is a gap $(k-r) r / 2$ between $(k-1) n / 2$ and $g_{n, k}$.

For more than one decade, this was the best result on P_{k+1}, until the set $\operatorname{EX}\left(n ; P_{k+1}\right)$ was completely determined by Faudree and Schelp [5]. Besides $G_{n, k}$, another kind of graph in $\operatorname{EX}\left(n ; P_{k+1}\right)$ is $G_{n, k, \ell}:=\ell K_{k} \cup\left(K_{(k-1) / 2}+\overline{K_{n-\ell k-(k-1) / 2}}\right)$, where $k \geq 3$ is odd, $r=(k \pm 1) / 2$ and $0 \leq \ell<q$. Figure 1 shows $G_{8,5}$ and $G_{8,5,0}$ with $r=(k+1) / 2$.

Figure 1: Graphs $G_{8,5}$ and $G_{8,5,0}$.

Faudree and Schelp [5] established the following theorem with a long proof. The purpose of this note is to simplify the proof.
Theorem 1. Suppose G is a graph with n vertices, where $n=k q+r$ and $0 \leq r<k$. If G does not contain P_{k+1} as a subgraph, then $|E(G)| \leq g_{n, k}$. Furthermore, the equality holds if and only if $G=G_{n, k}$ or $G=G_{n, k, \ell}$ when $k \geq 3$ is odd, $r=(k \pm 1) / 2$ and $0 \leq \ell<q$.

Proof. We shall prove the theorem by induction. The theorem is obvious when $n \leq k$ or
$k=1$. Suppose now $n>k>1$ and the theorem holds for graphs G^{\prime} with $n^{\prime}+k^{\prime}<n+k$.
Suppose G is not connected, say $G=G_{1} \cup G_{2}$ with each G_{i} has $n_{i}=k q_{i}+r_{i}$ vertices, where $0 \leq r_{i}<k$. By the induction hypothesis, $|E(G)|=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right| \leq g_{n_{1}, r_{1}}+$ $g_{n_{2}, r_{2}} \leq g_{n, k}$. Assuming $r_{1} \leq r_{2}$, the last inequality follows from that $G_{n, k}$ can be obtained from $G_{n_{1}, k} \cup G_{n_{2}, k}$ by moving the vertices one by one from $K_{r_{1}}$ to $K_{r_{2}}$ until all vertices of $K_{r_{1}}$ are removed or $K_{r_{2}}$ becomes K_{k}. Notice that the number of edges increases at every movement. Furthermore, if $|E(G)|=g_{n, k}$, then each $\left|E\left(G_{i}\right)\right|=g_{n_{i}, k}$ and $r_{1}=0$, as no movement was done. Then $G_{1}=G_{n_{1}, k}=q_{1} K_{k}$, and $G_{2}=G_{n_{2}, k}$ or $G_{n_{2}, k, \ell}$. Therefore $G=G_{n, k}$ or $G_{n, k, \ell}$. Now we may assume that G is connected.

Suppose G contains no P_{k}. By the induction hypothesis, $|E(G)| \leq g_{n, k-1}<g_{n, k}$. The last inequality follows from that $G_{n, k-1}$ can be obtained from $G_{n, k}$ by moving one vertex from each K_{k} to a smaller clique. Notice that the number of edges decreases at every movement. Now we may assume that G contains some P_{k}.
Claim. If connected graph H has $p>h$ vertices and contains no P_{h+1} but one P_{h} called $P=\left(x_{1}, x_{2}, \ldots, x_{h}\right)$, then $\operatorname{deg}\left(x_{1}\right)+\operatorname{deg}\left(x_{h}\right) \leq h-1$ and $H-x_{1}$ and $H-x_{h}$ are connected.

Proof. The inequality $\operatorname{deg}\left(x_{1}\right)+\operatorname{deg}\left(x_{h}\right) \leq h-1$ follows from that for any $1<j \leq h$, at least one of $x_{1} x_{j}$ and $x_{h} x_{j-1}$ is not an edge, for otherwise $\left(x_{1}, x_{2}, \ldots, x_{j-1}, x_{h}, x_{h-1}, \ldots\right.$, $\left.x_{j}, x_{1}\right)$ is a C_{h}. Since $p>h$ and H is connected, this C_{h} together with some vertex outside it produce a P_{h+1}, a contradiction to the assumption. Finally, since the neighbors of x_{1} and x_{h} are all in P, we have that $H-x_{1}$ and $H-x_{h}$ are connected.

Suppose $n \geq 2 k$. Since G contains no P_{k+1} but some P_{k}. Repeatedly applying the claim k times (the h used may decrease when starts from k), we have k vertices $z_{1}, z_{2}, \ldots, z_{k}$ and $k+1$ connected graphs $G_{0}=G$ and $G_{i}=G_{i-1}-z_{i}$ for $1 \leq i \leq k$ such that $\operatorname{deg}_{G_{i-1}}\left(z_{i}\right) \leq$ $(k-1) / 2$. By the induction hypothesis, $|E(G)| \leq k(k-1) / 2+g_{n-k, k}=g_{n, k}$. Furthermore, if $|E(G)|=g_{n, k}$, then $\operatorname{deg}_{G_{i-1}}\left(z_{i}\right)=(k-1) / 2$ for $1 \leq i \leq k$ and $\left|E\left(G_{k}\right)\right|=g_{n-k, k}$. As G_{k} is connected, $G_{k}=K_{k}$ or $G_{n-k, k, 0}$. For the case of $G_{k}=K_{k}$, it together with z_{k} produces a P_{k+1}, a contradiction. Now suppose $G_{k}=G_{n-k, k, 0}$. Let X be the set of vertices of $K_{(k-1) / 2}$ and Y the remaining independent set in $G_{n-k, k, 0}$. If every z_{i} is adjacent to all vertices in X, then $z_{1}, z_{2}, \ldots, z_{k}$ together with $G_{n-k, k, 0}$ form $G_{n, k, 0}$. Otherwise, there is a minimum indexed z_{i} adjacent to some vertex in $Y \cup\left\{z_{1}, z_{2}, \ldots, z_{i-1}\right\}$. Since every vertex of $Y \cup\left\{z_{1}, z_{2}, \ldots, z_{i-1}\right\}$ is adjacent to all vertices of X, it is the end vertex of a P_{k}, which together with z_{i} form a P_{k+1}, a contradiction. Now we may assume that $k<n<2 k$, or equivalently, $n=q+r$ with $0<r<k$.

Suppose G has some vertex x of degree $\operatorname{deg}(x) \leq r-1$. By the induction hypothesis, $|E(G)| \leq|E(G-x)|+r-1 \leq g_{n-1, k}+r-1=g_{n, k}$. Furthermore, if $|E(G)|=g_{n, k}$, then $|E(G-x)|=g_{n-k, k}$ and $\operatorname{deg}(x)=r-1$. In this case, $G-x=G_{n-1, k}=K_{k}$ or
$G-x=G_{n-1, k, 0}$. For the case of $G-x=K_{k}$, it together with x produces a P_{k+1}, a contradiction. For the case of $G-x=G_{n-1, k, 0}$, we have $r-1=(k \pm 1) / 2$. Same as the proof in the previous paragraph, x can only be adjacent to all vertices in X. So $r-1=(k-1) / 2$ and then $G=G_{n, k, r}$ with $r=(k+1) / 2$. Now we may assume that $\operatorname{deg}(x) \geq r$ for all vertices x in G.

Suppose G contains some C_{k-1} called $C=\left(x_{1}, x_{2}, \ldots, x_{k-1}, x_{1}\right)$, and the remaining $r+1$ vertices form a set X. The set X is independent, for otherwise if X has two adjacent vertices x and y, then C together with $x y$ and a shortest path from $x y$ to C produce a P_{k+1}, a contradiction. Let $S=\left\{x_{i} \in C: x_{i}\right.$ is adjacent to some vertex in $\left.X\right\}$ and $S^{\prime}=\left\{x_{i-1} \in C: x_{i} \in S\right\}$ where $x_{0}=x_{k-1}$. Suppose $x_{i-1} \in S^{\prime}$ is adjacent to $x_{j-1} \in S^{\prime}$ for some $i<j$. Choose $x \in X$ adjacent to x_{i} and $y \in X$ adjacent to x_{j}. Consider $P=\left(x, x_{i}, x_{i+1}, \ldots, x_{j-1}, x_{i-1}, x_{i-2}, \ldots, x_{j}, y\right)$. For the case of $x \neq y, P$ is a P_{k+1}, a contradiction. For the case of $x=y, P$ is a C_{k} which together with some vertex outside it produces a P_{k+1}, a contradiction. Therefore, S^{\prime} is an independent set and so has no two vertices consecutively in C. Then $S \cap S^{\prime}=\emptyset$ and $s:=|S|=\left|S^{\prime}\right| \leq(k-1) / 2$ for which the equality holds only when k is odd. Therefore

$$
|E(G)| \leq\binom{ k-1}{2}-\binom{s}{2}+s(r+1) \leq\binom{ k}{2}+\binom{r}{2}=g_{n, k}
$$

The second inequality follows from that twice the later minus the the former is equal to $2(k-1)-4 s+(s-r)^{2}+(s-r)$. Notice that $s \leq(k-1) / 2$. Also, as $s-r$ is an integer, $(s-r)^{2}+(s-r) \geq 0$ with equality if and only if $r=s$ or $r=s+1$. The desired inequality then follows. Furthermore, if $|E(G)|=g_{n, k}$, then $s=(k-1) / 2$ and so k is odd, $S \cup S^{\prime}=V(C), r=s$ or $r=s+1$, and every vertex in S is adjacent to all other vertices in $V(C) \cup X$. These give that $G=G_{n, k, 0}$. Now we may assume that G has no C_{k-1}.

Having all the underlined conditions mentioned above, we now choose a P_{k} called $Q=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, and let all other r vertices form a set Y. Choose a vertex $y \in Y$ such that $T=\left\{x_{j} \in Q: y x_{j} \in E(G)\right\}$ has size t of maximum possible. Since G has no C_{k-1}, either $x_{2} \notin T$ or $x_{k-1} \notin T$, and by symmetric we may assume that $x_{k-1} \notin$ T. For any $x_{j} \in T, x_{1} x_{j+1} \notin E(G)$ for otherwise $x_{1} x_{j+1} \in E(G)$ would imply that $\left(y, x_{j}, x_{j-1}, \ldots, x_{1}, x_{j+1}, x_{j+2}, \ldots, x_{k}\right)$ is a P_{k+1}, a contradiction. Hence there are t such kind of non-edges using x_{1} as an end vertex. Besides, there is an extra non-edge $x_{1} x_{k}$, since $x_{k-1} \notin T$.

Since G has no P_{k+1}, all neighbors of x_{1} and x_{k} are in Q. Let the sets $A=\left\{x_{i} \in Q\right.$: $\left.x_{1} x_{i+1} \in E(G)\right\}$ and $B=\left\{x_{i} \in Q: x_{i-1} x_{k} \in E(G)\right\}$. If there is some $x_{i} \in A \cap B$, then $\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{k}, x_{k-1}, \ldots, x_{i+1}, x_{1}\right)$ is a C_{k-1}, a contradiction. Therefore, $A \cap B=\emptyset$ and so $|A \cup B|=|A|+|B|=\operatorname{deg}\left(x_{1}\right)+\operatorname{deg}\left(x_{k}\right) \geq 2 r$. For $x_{i} \in A$, we may rearrange Q into the $P_{k}:\left(x_{i}, x_{i-1}, \ldots, x_{1}, x_{i+1}, x_{i+2}, \ldots, x_{k}\right)$. For $x_{i} \in B$, we may rearrange Q into the
$P_{k}:\left(x_{i}, x_{i+1}, \ldots, x_{k}, x_{i-1}, x_{i-2}, \ldots, x_{1}\right)$. Hence every $x_{i} \in A \cup B$ has t non-edges using x_{i} as an end vertex. Totally, there are at least $(2 r t+1) / 2$ non-edges between the vertices in Q. Hence

$$
|E(G)| \leq\binom{ k}{2}-\frac{2 r t+1}{2}+r t+\binom{r}{2}<g_{n, k}
$$

The theorem is thus proved.

References

[1] B. Bollobás, Extremal Graph Theory, Dover Publications, Mineola, NY, 2004.
[2] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar 10 (1959), 337-356.
[3] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar 1 (1966), 51-57.
[4] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087-1091.
[5] R. J. Faudree and R. H. Schelp, Path Ramsey numbers in multicolorings, J. Combinatrial Theory Ser. B 19 (1975), no. 2, 150-160.

Gerard Jennhwa Chang
Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan and
National Center for Theoretical Sciences, Mathematics Division, Second Floor, Astronomy-Mathematics Building, National Taiwan University, Taipei 10617, Taiwan
E-mail address: gjchang@math.ntu.edu.tw

