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A Short Derivation for Turán Numbers of Paths

Gerard Jennhwa Chang

Abstract. This paper gives a short derivation for a result by Faudree and Schelp that

the Turán number ex(n;Pk+1) of a path of k+ 1 vertices is equal to q
(
k
2

)
+
(
r
2

)
, where

n = qk + r and 0 ≤ r < k, with the set EX(n;Pk+1) of extremal graphs determined.

As said by Bollobás [1] that extremal graph theory, in its strictest sense, is a branch

of graph theory developed and loved by Hungarians. In particular, Paul Erdős is an

important representative.

Extremal graph theory studies extremal (maximal or minimal) graphs which satisfy

a certain property. Extremality can be taken with respect to different graph invariants,

such as order, size or girth. More abstractly, it studies how global properties of a graph

influence local substructures of the graph. For example, a simple extremal graph theory

question is “which acyclic graphs on n vertices have the maximum number of edges?” The

extremal graphs for this question are trees on n vertices, which have n − 1 edges. More

generally, a typical question is the following: given a graph property P , an invariant µ

and a set of graphs G, we wish to find the minimum value of m such that every graph in

G which has µ larger than m possess property P . In the example above, P is the property

of being cyclic, µ is the number of edges in the graph and G is the set of n-vertex graphs.

Thus every graph on n vertices with more than n− 1 edges must contain a cycle.

Extremal graph theory started in 1941 when Turán determined the maximum number

of edges of an n-vertex graph that contains no complete graph Kk of k vertices as a

subgraph. Although the special case of k = 3 was established by Mantel in 1907, we now

usually called this kind of forbidden subgraph problems as Turán-type problems. More

precisely, suppose F is a family of graphs, the Turán number ex(n;F) is the maximum

number of edges of a graph of n vertices not containing a subgraph in F . We use EX(n,F)

to denote the set of all graphs of n vertices and ex(n;F) edges not containing a subgraph

in F . For the case of F = {F}, we use ex(n;F ) for ex(n;F) and EX(n;F ) for EX(n;F).
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Let Tn,k be the complete k-partite graph each of whose partite sets is of size bn/kc or

dn/ke; and let tn,k be the number of edges of Tn,k. It can be verified that if n = kq + r

with 0 ≤ r < k, then tn,k = (1 − 1/k)n2/2 − r(k − r)/(2k). Then Turán’s theorem says

that ex(n;Kk+1) = tn,k and EX(n;Kk+1) = {Tn,k}.
After Turán’s result, various Turán numbers have been studied for different graphs.

Unlike the precise value of ex(n;Kk+1), most of the results on ex(n;F) are of asymptotic

type. For instance, Erdős and Stone [4] proved that ex(n;Kk+1[s]) = (1−1/k+os(1))n2/2,

where Kk+1[s] is the complete (k + 1)-partite graph ech of whose partite set is of size

s. As a consequence, we have Erdős and Simonovits’s theorem [3] (now is often called

Erdős-Stone-Simonovits Theorem) that if k = minF∈F χ(F ) − 1 > 0, then ex(n;F) =

(1 − 1/k + oF (1))n2/2. For the case of k = 1, the above result is of no interest. In fact,

Erdős [3] conjectured that for any bipartite graph F , there are constants c and a with

1 < a < 2 such that ex(n;F ) ∼ cna. This is still open now.

Even for the graph as simple as Pk+1, it is not easy to determine ex(n;Pk+1). Let

n = kq + r with 0 ≤ r < k. The graph Gn,k := qKk ∪ Kr does not contain Pk+1 as a

subgraph and has gn,k := q
(
k
2

)
+
(
r
2

)
edges. Consequently, ex(n;Pk+1) ≥ gn,k. In fact, this

is an equality. However, the proof is not easy as Gn,k is not the only graph in EX(n;Pk+1).

The first result on this line is Erdős and Gallai’s theorem [2] that ex(n;Pk+1) ≤ (k−1)n/2;

and if the equality holds, then k is a factor of n and EX(n;Pk+1) = {nkKk}. Notice that

there is a gap (k − r)r/2 between (k − 1)n/2 and gn,k.

For more than one decade, this was the best result on Pk+1, until the set EX(n;Pk+1)

was completely determined by Faudree and Schelp [5]. Besides Gn,k, another kind of

graph in EX(n;Pk+1) is Gn,k,` := `Kk ∪ (K(k−1)/2 + Kn−`k−(k−1)/2), where k ≥ 3 is odd,

r = (k ± 1)/2 and 0 ≤ ` < q. Figure 1 shows G8,5 and G8,5,0 with r = (k + 1)/2.

Figure 1: Graphs G8,5 and G8,5,0.

Faudree and Schelp [5] established the following theorem with a long proof. The

purpose of this note is to simplify the proof.

Theorem 1. Suppose G is a graph with n vertices, where n = kq+ r and 0 ≤ r < k. If G

does not contain Pk+1 as a subgraph, then |E(G)| ≤ gn,k. Furthermore, the equality holds

if and only if G = Gn,k or G = Gn,k,` when k ≥ 3 is odd, r = (k ± 1)/2 and 0 ≤ ` < q.

Proof. We shall prove the theorem by induction. The theorem is obvious when n ≤ k or
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k = 1. Suppose now n > k > 1 and the theorem holds for graphs G′ with n′ + k′ < n+ k.

Suppose G is not connected, say G = G1 ∪G2 with each Gi has ni = kqi + ri vertices,

where 0 ≤ ri < k. By the induction hypothesis, |E(G)| = |E(G1)| + |E(G2)| ≤ gn1,r1 +

gn2,r2 ≤ gn,k. Assuming r1 ≤ r2, the last inequality follows from that Gn,k can be obtained

from Gn1,k ∪Gn2,k by moving the vertices one by one from Kr1 to Kr2 until all vertices of

Kr1 are removed or Kr2 becomes Kk. Notice that the number of edges increases at every

movement. Furthermore, if |E(G)| = gn,k, then each |E(Gi)| = gni,k and r1 = 0, as no

movement was done. Then G1 = Gn1,k = q1Kk, and G2 = Gn2,k or Gn2,k,`. Therefore

G = Gn,k or Gn,k,`. Now we may assume that G is connected.

Suppose G contains no Pk. By the induction hypothesis, |E(G)| ≤ gn,k−1 < gn,k. The

last inequality follows from that Gn,k−1 can be obtained from Gn,k by moving one vertex

from each Kk to a smaller clique. Notice that the number of edges decreases at every

movement. Now we may assume that G contains some Pk.

Claim. If connected graph H has p > h vertices and contains no Ph+1 but one Ph called

P = (x1, x2, . . . , xh), then deg(x1)+deg(xh) ≤ h−1 and H−x1 and H−xh are connected.

Proof. The inequality deg(x1) + deg(xh) ≤ h− 1 follows from that for any 1 < j ≤ h, at

least one of x1xj and xhxj−1 is not an edge, for otherwise (x1, x2, . . . , xj−1, xh, xh−1, . . . ,

xj , x1) is a Ch. Since p > h and H is connected, this Ch together with some vertex outside

it produce a Ph+1, a contradiction to the assumption. Finally, since the neighbors of x1

and xh are all in P , we have that H − x1 and H − xh are connected.

Suppose n ≥ 2k. SinceG contains no Pk+1 but some Pk. Repeatedly applying the claim

k times (the h used may decrease when starts from k), we have k vertices z1, z2, . . . , zk and

k+ 1 connected graphs G0 = G and Gi = Gi−1 − zi for 1 ≤ i ≤ k such that degGi−1
(zi) ≤

(k−1)/2. By the induction hypothesis, |E(G)| ≤ k(k−1)/2+gn−k,k = gn,k. Furthermore,

if |E(G)| = gn,k, then degGi−1
(zi) = (k − 1)/2 for 1 ≤ i ≤ k and |E(Gk)| = gn−k,k. As Gk

is connected, Gk = Kk or Gn−k,k,0. For the case of Gk = Kk, it together with zk produces

a Pk+1, a contradiction. Now suppose Gk = Gn−k,k,0. Let X be the set of vertices of

K(k−1)/2 and Y the remaining independent set in Gn−k,k,0. If every zi is adjacent to all

vertices in X, then z1, z2, . . . , zk together with Gn−k,k,0 form Gn,k,0. Otherwise, there is a

minimum indexed zi adjacent to some vertex in Y ∪ {z1, z2, . . . , zi−1}. Since every vertex

of Y ∪ {z1, z2, . . . , zi−1} is adjacent to all vertices of X, it is the end vertex of a Pk, which

together with zi form a Pk+1, a contradiction. Now we may assume that k < n < 2k, or

equivalently, n = q + r with 0 < r < k.

Suppose G has some vertex x of degree deg(x) ≤ r − 1. By the induction hypothesis,

|E(G)| ≤ |E(G − x)| + r − 1 ≤ gn−1,k + r − 1 = gn,k. Furthermore, if |E(G)| = gn,k,

then |E(G − x)| = gn−k,k and deg(x) = r − 1. In this case, G − x = Gn−1,k = Kk or
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G − x = Gn−1,k,0. For the case of G − x = Kk, it together with x produces a Pk+1,

a contradiction. For the case of G − x = Gn−1,k,0, we have r − 1 = (k ± 1)/2. Same

as the proof in the previous paragraph, x can only be adjacent to all vertices in X. So

r − 1 = (k − 1)/2 and then G = Gn,k,r with r = (k + 1)/2. Now we may assume that

deg(x) ≥ r for all vertices x in G.

Suppose G contains some Ck−1 called C = (x1, x2, . . . , xk−1, x1), and the remaining

r+1 vertices form a set X. The set X is independent, for otherwise if X has two adjacent

vertices x and y, then C together with xy and a shortest path from xy to C produce

a Pk+1, a contradiction. Let S = {xi ∈ C : xi is adjacent to some vertex in X} and

S′ = {xi−1 ∈ C : xi ∈ S} where x0 = xk−1. Suppose xi−1 ∈ S′ is adjacent to xj−1 ∈ S′

for some i < j. Choose x ∈ X adjacent to xi and y ∈ X adjacent to xj . Consider

P = (x, xi, xi+1, . . . , xj−1, xi−1, xi−2, . . . , xj , y). For the case of x 6= y, P is a Pk+1, a

contradiction. For the case of x = y, P is a Ck which together with some vertex outside it

produces a Pk+1, a contradiction. Therefore, S′ is an independent set and so has no two

vertices consecutively in C. Then S ∩S′ = ∅ and s := |S| = |S′| ≤ (k− 1)/2 for which the

equality holds only when k is odd. Therefore

|E(G)| ≤
(
k − 1

2

)
−
(
s

2

)
+ s(r + 1) ≤

(
k

2

)
+

(
r

2

)
= gn,k.

The second inequality follows from that twice the later minus the the former is equal to

2(k − 1)− 4s+ (s− r)2 + (s− r). Notice that s ≤ (k − 1)/2. Also, as s− r is an integer,

(s − r)2 + (s − r) ≥ 0 with equality if and only if r = s or r = s + 1. The desired

inequality then follows. Furthermore, if |E(G)| = gn,k, then s = (k−1)/2 and so k is odd,

S ∪ S′ = V (C), r = s or r = s+ 1, and every vertex in S is adjacent to all other vertices

in V (C) ∪X. These give that G = Gn,k,0. Now we may assume that G has no Ck−1.

Having all the underlined conditions mentioned above, we now choose a Pk called

Q = (x1, x2, . . . , xk), and let all other r vertices form a set Y . Choose a vertex y ∈ Y

such that T = {xj ∈ Q : yxj ∈ E(G)} has size t of maximum possible. Since G has

no Ck−1, either x2 /∈ T or xk−1 /∈ T , and by symmetric we may assume that xk−1 /∈
T . For any xj ∈ T , x1xj+1 /∈ E(G) for otherwise x1xj+1 ∈ E(G) would imply that

(y, xj , xj−1, . . . , x1, xj+1, xj+2, . . . , xk) is a Pk+1, a contradiction. Hence there are t such

kind of non-edges using x1 as an end vertex. Besides, there is an extra non-edge x1xk,

since xk−1 /∈ T .

Since G has no Pk+1, all neighbors of x1 and xk are in Q. Let the sets A = {xi ∈ Q :

x1xi+1 ∈ E(G)} and B = {xi ∈ Q : xi−1xk ∈ E(G)}. If there is some xi ∈ A ∩ B, then

(x1, x2, . . . , xi−1, xk, xk−1, . . . , xi+1, x1) is a Ck−1, a contradiction. Therefore, A ∩ B = ∅
and so |A ∪ B| = |A| + |B| = deg(x1) + deg(xk) ≥ 2r. For xi ∈ A, we may rearrange Q

into the Pk : (xi, xi−1, . . . , x1, xi+1, xi+2, . . . , xk). For xi ∈ B, we may rearrange Q into the
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Pk : (xi, xi+1, . . . , xk, xi−1, xi−2, . . . , x1). Hence every xi ∈ A∪B has t non-edges using xi

as an end vertex. Totally, there are at least (2rt+ 1)/2 non-edges between the vertices in

Q. Hence

|E(G)| ≤
(
k

2

)
− 2rt+ 1

2
+ rt+

(
r

2

)
< gn,k.

The theorem is thus proved.

References

[1] B. Bollobás, Extremal Graph Theory, Dover Publications, Mineola, NY, 2004.
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