
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 21, No. 6, pp. 1265–1276, December 2017

DOI: 10.11650/tjm/8042

Extended Bicolorings of Steiner Triple Systems of Order 2h − 1
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Abstract. A bicoloring of a Steiner triple system STS(n) on n vertices is a coloring

of vertices in such a way that every block receives precisely two colors. The maxi-

mum (resp. minimum) number of colors in a bicoloring of an STS(n) is denoted by χ

(resp. χ). All bicolorable STS(2h − 1)s have upper chromatic number χ ≤ h; also, if

χ = h < 10, then lower and upper chromatic numbers coincide, namely, χ = χ = h.

In 2003, M. Gionfriddo conjectured that this equality holds whenever χ = h ≥ 2.

In this paper we discuss some extensions of bicolorings of STS(v) to bicoloring of

STS(2v+ 1) obtained by using the ‘doubling plus one construction’. We prove several

necessary conditions for bicolorings of STS(2v+1) provided that no new color is used.

In addition, for any natural number h we determine a triple system STS(2h+1 − 1)

which admits no extended bicolorings.

1. Introduction

A Steiner triple system STS(v) is a pair (X,B), where X is a finite set of vertices, |X| = v,

and B is a family of subsets of X, called blocks, such that each block contains three vertices,

and any two distinct vertices of X appear together in precisely one block of B. It is well

known since the 1850’s that an STS(v) exists if and only if v ≡ 1 or 3 (mod 6).

A k-coloring of (X,B) is a surjective mapping φ from X onto a finite set C, with

|C| = k, whose elements are called colors. It is customary to assume that C = {1, 2, . . . , k}.
For each i ∈ C, the set φ−1(i) = {x : φ(x) = i} is a color class. A k-coloring of (X,B)

is called a k-bicoloring if the vertices of each b ∈ B are colored with exactly two colors.

Given a k-bicoloring C, if the cardinalities of color classes are n1 ≤ n2 ≤ · · · ≤ nk (always

assuming n1 ≥ 1), then for brevity we write C = C(n1, n2, . . . , nk).

The systems STS(2v+ 1) obtained by doubling plus one construction are fundamental

in the bicoloring theory of Steiner triple systems. A system STS(2v + 1) = (X,B) is

obtained from an STS(v) = (X ′,B′) by a doubling plus one construction in the following
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way. For vertices, we write X ′ = {x1, x2, . . . , xv}, and introduce a new set of vertices

X ′′ such that |X ′′| = v + 1 and X ′ ∩ X ′′ = ∅. We set X = X ′ ∪ X ′′, and denote the

vertices in X ′′ by y1, y2, . . . , yv+1. Next we consider a factorization F = (F1, F2, . . . , Fv) of

the complete graph whose vertex set is X ′′. (Note that |X ′′| is even whenever an STS(v)

exists.) For blocks, we set B to include all the blocks of B′, moreover all the blocks of type

{xi, yl, ym} where xi ∈ X ′ and (yl, ym) is an edge in the factor Fi. The system STS(2v+1)

is then defined as the pair (X,B).

Historically, the concept of bicoloring is originated from the theory of mixed hyper-

graph coloring, which was introduced in [12, 13]. The maximum (resp. minimum) k for

which there exists a k-bicoloring of an STS is called the upper (resp. lower) chromatic

number, and it is denoted by χ (resp. by χ). The first results on bicolorings of STSs were

published in [9]; further early works on this subject are [3, 6, 8, 10]. For a survey we refer

to [11].

The following theorem summarizes key results from [9] which are important for the

proofs in next sections.

Theorem 1.1. [9] If S is a bicolorable STS(v) with v ≤ 2h−1, then χ(S) ≤ h. Moreover,

for any k-bicoloring C = C(n1, n2, . . . , nk) of S, the following inequalities hold: n1 ≥
20, n2 ≥ 21, n3 ≥ 22, . . . , nk ≥ 2k−1. In particular, if χ(S) = h, then:

(1) v = 2h − 1;

(2) in any h-bicoloring of S the cardinalities of the color classes are

20, 21, 22, . . . , 2h−1;

(3) S is obtained from the STS(3) by repeated applications of a ‘doubling plus one con-

struction’.

Let S′ = (X ′,B′) = STS(v) be an h-bicolorable system with a bicoloring C′ =

{n′1, n′2, . . . , n′h}, and let S = (X,B) = STS(2v + 1) be a system obtained by doubling

plus one construction from S′. The system S certainly is (h+ 1)-bicolorable with a bicol-

oring C′′ =
¶
n′′1, n

′′
2, . . . , n

′′
h, n
′′
h+1

©
where n′′h+1 = v + 1 and n′′i = n′i for all 1 ≤ i ≤ h. This

bicoloring is obtained by coloring the subsystem S′ with C′ and the vertices in X ′′ = X−X ′

with a new color denoted by h+ 1, where |X ′′| = v+ 1. It is absolutely non-obvious, how-

ever, what happens if one intends to color S with the same number, only h, of colors with

which S′ has been colored.

It was proved in [1] that if an STS(2h − 1) is obtained by a sequence of doubling plus

one constructions starting from STS(3), then χ = χ = h with all h < 10; i.e., their upper

chromatic number and lower chromatic number are equals.
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The ‘sequence of doubling plus one constructions’ condition above is substantial. For

example, as proved in [7, Theorem 9], among the 80 pairwise non-isomorphic Steiner

triple systems of order 15 there are only 23 which are bicolorable, and each of them is

obtained from STS(3) by iterating the doubling plus one construction. (For the history

of enumerating all STS(15) systems, see [2, p. 15].) Moreover, there exists a bicolorable

STS(19) with χ = 3 and χ = 4 [7, Theorem 12].

In [4], M. Gionfriddo raised a challenging related conjecture, which is the main moti-

vation of our current work.

Conjecture 1.2. [4] If an S = STS(2h − 1) is obtained by a sequence of doubling plus

one constructions from STS(3), then χ(S) = χ(S) = h.

Should there exist counterexamples to this conjecture, an (h−1)-bicoloring of a smallest

counterexample would induce an (h−1)-bicoloring of an STS(2h−1−1) as well. This leads

to the notion of ‘extended bicoloring’. Suppose that the system S = (X,B) of order 2v+1

is obtained from its subsystem S′ = (X ′,B′) by doubling plus one construction, and that

C′ is a k-bicoloring of S′ (for any k). We say that a k-bicoloring C = {n1, n2, . . . , nk} of S

with the same number k of colors is an extended bicoloring or extended k-bicoloring of S′

if C coincides with C′ on the vertices of S′. It is important to emphasize that no new color

is allowed on S \ S′. In [5] the authors found the first STS(v)s with extended bicolorings

for v ≡ 3 or 7 (mod 12) and v > 3.

Assuming that C is an extended bicoloring of C′ = {n′1, . . . , n′k}, we will denote the

ith color class of C′ by C ′i. Hence, |C ′i| = n′i for i = 1, 2, . . . , k, and n′1 ≤ · · · ≤ n′k is

assumed. With a slight abuse of notation, the color classes C1, . . . , Ck of C are ordered

such that C ′i ⊆ Ci holds for each i = 1, 2, . . . , k. Then, let ni denote |Ci|. (But here it

would certainly make a loss of generality to assume that the values ni are in increasing

order.) For 1 ≤ i ≤ k we shall write

ci = ni − n′i

to denote the number of vertices in X ′′ = X \X ′ which belong to Ci.

Concerning extended bicolorings the following important results were proved in [1, 5];

they will be useful in the next sections.

Theorem 1.3. [1,5] If C is an extended h-bicoloring of an STS(2h+1−1) then it satisfies

the following equalities:

(1.1)
h∑

i=1

c2
i +

h∑
i=1

2ici = 22h and
h∑

i=1

ci = 2h.

Theorem 1.4. [1] If C is an extended h-bicoloring of an STS(2h+1 − 1) with ci > 0 and

cj > 0 for some 1 ≤ i < j ≤ h, then ci ≤ 2i−1 + 2j−1 and cj ≤ 2i−1 + 2j−1.



1268 Csilla Bujtás, Mario Gionfriddo, Elena Guardo, Lorenzo Milazzo, Zsolt Tuza and Vitaly Voloshin

Theorem 1.5. [1] If C is an extended h-bicoloring of an STS(2h+1−1), then there exists

at least one ci = 0 and all the cj > 0 are even.

Theorem 1.6. [1] Let C be an extended h-bicoloring of an STS(2h+1 − 1), and let 1 ≤
i < j − 1 ≤ h− 1 such that ci > 0, cj > 0, and ck = 0 for every k ∈ {1, 2, . . . , j − 1} \ {i}.
Then, cj+t > 0 for every t ≥ 0.

Our goal in Section 2 is to strengthen the necessary conditions listed above; our results

will restrict the possible candidates of (c1, . . . , ch)-sequences to only two basic types. In

Section 3 we explicitly construct an infinite class of Steiner triple systems STS(2h+1 − 1)

obtained by a sequence of doubling plus one constructions from STS(3), which do not

admit any extended h-bicolorings.

2. Necessary conditions

Throughout this section we assume that C is an extended h-bicoloring of an STS(2h+1 −
1) which corresponds to a solution (c1, . . . , ch) of the system (1.1). We will strengthen

Theorem 1.6 by excluding some further subclasses of the possible solutions (c1, . . . , ch).

To state our first observation we introduce the notation I0 = {q : cq = 0}.

Lemma 2.1. Let C be an extended h-bicoloring of an STS(2h+1 − 1) which corresponds

to a solution (c1, . . . , ch) of the system (1.1). Then, for every i with ci > 0,∑
q∈I0

2q−1 + 1 ≤ ci

must hold.

Proof. Since the system STS(2h+1 − 1) is obtained by doubling plus one construction,

there is a corresponding factorization F of X ′′. If x′ ∈ X ′′ ∩ Ci and xl ∈
⋃

q∈I0 Cq, then

the only way to bicolor the unique triple containing the vertex pair (x′, xl) is that its

third vertex — which is the other end of the edge incident to x′ in Fl ∈ F — belongs to

X ′′ ∩ Ci. By definition, for distinct vertices of
⋃

q∈I0 Cq the corresponding third vertices

are distinct.

Proposition 2.2. Let C be an extended h-bicoloring of an STS(2h+1−1) which corresponds

to a solution (c1, . . . , ch) of the system (1.1). Then, (c1, . . . , ch) must be one of the following

two types.

(a) (0, . . . , 0, cj , . . . , ch) where j ≥ 2 and 0 < ck for every j ≤ k ≤ h;

(b) (0, . . . , 0, ci, 0, . . . , 0, cj , . . . , ch) where 2 ≤ i ≤ j − 2, 0 < ci, and 0 < ck for every

j ≤ k ≤ h.
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Proof. Assume that ck and c` are positive entries and k 6= `. Lemma 2.1 and Theorem 1.4

imply that ∑
q∈I0

2q−1 + 1 ≤ 2k−1 + 2`−1.

In particular, for any s with cs = 0

2s−1 < 2k−1 + 2`−1,

and k < ` < s cannot be valid. In other words, in the sequence (c1, . . . , ch) none of the zero

entries are preceded by more than one positive entry. If all zeros precede every positive

entry, we get case (a). Note that j ≥ 2 follows from Theorem 1.5.

If there is exactly one positive entry ci which precedes one or more zeros, we have a

sequence (0, . . . , 0, ci, 0, . . . , 0, cj , . . . , ch) where 1 ≤ i ≤ j − 2, 0 < ci, and 0 < ck for every

j ≤ k ≤ h. To obtain case (b), it suffices to prove that i ≥ 2. Suppose for a contradiction

that i = 1 that is, c1 > 0 holds. By Theorem 1.4, c1 ≤ 2j−1 + 1 and by Theorem 1.5 c1

must be even. Hence, c1 ≤ 2j−1. Let x′ be a vertex from C1 ∩X ′′, and consider a ck with

k ≥ j. By Theorems 1.4 and 1.5 we have that ck ≤ 2k−1. Thus,

2h =
∣∣X ′′∣∣ = c1 +

h∑
k=j

ck ≤ 2j−1 +
h∑

k=j

2k−1 = 2h.

Consequently, c1 = 2j−1 and ck = 2k−1 for all j ≤ k ≤ h. Plugging in, we derive that the

left-hand side of (1.1) is equal to

h∑
k=1

c2
k +

h∑
k=1

2kck = 22j−2 +
h∑

k=j

22k−2 + 2j +
h∑

k=j

22k−1.

But this is 22h + 2j , rather than 22h, a contradiction.

We proceed with two propositions related to the solutions of type (0, . . . , 0, ci, 0, . . . , 0,

cj , cj+1, . . . , ch) with i ≥ 2. They are of a technical nature; their eventual goal is to exclude

the possibility of c2 > 0.

Proposition 2.3. Let C be an extended h-bicoloring of an STS(2h+1− 1), associated with

a solution (0, . . . , 0, ci, 0, . . . , 0, cj , cj+1, . . . , ch), for some i ≥ 2 and j ≥ i+ 2. Then there

exist nonnegative integers T ≤ 2i−1, Pk ≤ 2i−1, and P ′k ≤ 2T (for k = j, . . . , h), such that

ci = 2j−1 − 2i−1 + 2T and ck = 2k−1 + Pk − P ′k

hold. Moreover,
∑h

k=j Pk = 2i−1 and
∑h

k=j P
′
k = 2T .



1270 Csilla Bujtás, Mario Gionfriddo, Elena Guardo, Lorenzo Milazzo, Zsolt Tuza and Vitaly Voloshin

Proof. Consider an extended h-bicoloring C of S satisfying the conditions, and fix a vertex

x′ ∈ Ci∩X ′′. This vertex x′ is in 2j−1−2i−1−1 monochromatic pairs of X ′′, all contained

in factors of F corresponding to vertices of X ′ colored with k such that 1 ≤ k ≤ j − 1

and k 6= i. So, ci ≥ 2j−1 − 2i−1. By Theorem 1.5 it is necessary that ci ≤ 2j−1 + 2i−1,

therefore ci = 2j−1 − 2i−1 + 2T holds for some 0 ≤ T ≤ 2i−1. Note that 2T is the

number of monochromatic pairs containing x′ inside factors belonging to the vertices from

X ′ ∩ ⋃h
k=j Ck; or equivalently, 2T is the number of blocks B = {x′, x′′, u} in S with

x′′ ∈ Ci ∩X ′′ and u ∈ X ′ ∩ Ck for some j ≤ k ≤ h.

Since C is a bicoloring, each block B of S meets exactly two color classes. Moreover,

|B ∩X ′′| is either 0 or 2, as S is obtained by doubling plus one construction from S′.

Now, consider a color class Ck with j ≤ k ≤ h. We may have three types of blocks B ∈ B
incident with x′ and contained entirely in Ci ∪ Ck.

1. B = {x′, y, z} with y ∈ Ck ∩ X ′′ and z ∈ Ci ∩ X ′. The number of these blocks is

denoted by Pk.

2. B = {x′, y, u} with y ∈ Ck ∩ X ′′ and u ∈ Ck ∩ X ′. The number of these blocks is

denoted by Yk.

3. B = {x′, x′′, u} with x′′ ∈ Ci ∩X ′′ and u ∈ Ck ∩X ′. The number of these blocks is

denoted by P ′k.

There exist n′i = 2i−1 pairs (x′, z) with z ∈ Ci ∩ X ′, and each of them is covered by

exactly one block B of type 1. Hence,
∑h

k=j Pk = 2i−1. We have already observed that

2T is the total number of blocks belonging to type 3. This implies
∑h

k=j P
′
k = 2T .

The number of pairs (x′, u) with u ∈ Ck ∩ X ′ is exactly n′k = 2k−1, each of them is

covered by a block of type 2 or 3. Hence, Yk+P ′k = 2k−1 holds for every j ≤ k ≤ h. On the

other hand, each of the ck pairs (x′, y) with y ∈ Ck∩X ′′ is contained in a block of type 1 or

2. Hence, Pk +Yk = ck follows. From these equalities, we obtain ck = 2k−1 +Pk−P ′k.

In the proposition above, by Theorem 1.5 we have that ci and all ck must be even. It

means that if some Pk is odd (j ≤ k ≤ h), then the corresponding P ′k must be odd as well;

and vice versa.

Proposition 2.4. If an extended h-bicoloring is defined by a solution of type (0, . . . , 0, ci, 0,

. . . , 0, cj , cj+1, . . . , ch), then with the notation above, the following equation holds:

(2.1) 4T 2 + 2j+1T +
h∑

k=j

[(Pk − P ′k)2 + 2k+1(Pk − P ′k)] = 22i−2

where i ≥ 2, 0 < T ≤ 2i−1, 0 ≤ Pk ≤ 2i−1, and 0 ≤ P ′k ≤ 2T .
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Proof. The proposition is easily derived from the first equation of system (1.1), by replac-

ing ci and ck (for j ≤ k ≤ h) with the values obtained in the previous proposition.

It is easy to verify that T must be positive. In fact, if T = 0, then, since
∑h

k=j(P
2
k +

2k+1Pk) > 22i−2, (2.1) does not hold for any i ≥ 2.

Proposition 2.5. If ci > 0 and ci+1 = 0, then i = 2 is not possible.

Proof. We have that 0 < T ≤ 2, 0 ≤ Pk ≤ 2, and 0 < P ′k ≤ 4 for all j ≤ k ≤ h. The

following Table 2.1 shows all possible values of T , Pk, and P ′k.

T Pk P ′k

1 Pk1 = 1, Pk2 = 1 P ′k1 = 1, P ′k2 = 1

1 Pk1 = 2, Pk2 = 0 P ′k1 = 0, P ′k2 = 2

2 Pk1 = 2 P ′k1 = 4

2 Pk1 = 2, Pk2 = 0 P ′k1 = 0, P ′k2 = 4

2 Pk1 = 2, Pk2 = 0 P ′k1 = 2, P ′k2 = 2

2 Pk1 = 1, Pk2 = 1 P ′k1 = 3, P ′k2 = 1

2 Pk1 = 2, Pk2 = 0, Pk3 = 0 P ′k1 = 0, P ′k2 = 2, P ′k3 = 2

2 Pk1 = 1, Pk2 = 1, Pk3 = 0 P ′k1 = 1, P ′k2 = 1, P ′k3 = 2

Table 2.1

For the values in Table 2.1, (2.1) does not hold. Consequently, i > 2 and c2 = 0 must

hold.

From the previous propositions we observe that solutions of system (1.1) which may

allow extended bicolorings are only of the following two types:

(a) (0, . . . , 0, cj , . . . , ch) with some j ≥ 2;

(b) (0, . . . , 0, ci, 0, . . . , 0, cj , cj+1, . . . , ch) with some i ≥ 3 and j ≥ i+ 2.

3. A class of systems with no extended bicolorings

As we mentioned in Section 1, it was shown in [1] that no S′ = STS(2h − 1) has an

extended bicoloring for h < 10.

In the next theorem we prove that at least some triple systems have this property for

each h.
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Theorem 3.1. For every integer h ≥ 2 there exists an STS(2h − 1) Sh obtained from

STS(3) by a sequence of doubling plus one constructions, such that χ(Sh) = χ(Sh) = h.

Proof. For every h ≥ 2 we describe an explicit (non-recursive) algebraic construction of a

system STS(2h − 1) with the required properties, which will be denoted by Sh.

Let h ≥ 2, and consider the h-dimensional vector space F h over the field GF(2). Then,

the vertex set Xh of Sh consists of the non-zero vectors of F h, and the set of blocks is

defined as

B =
¶¶
x, y, z

©
⊆ Xh | x+ y + z = 0

©
.

Clearly, for every two distinct non-zero vectors x and y there exists a unique z ∈ Xh

satisfying x+ y + z = 0 which can equivalently be written as x+ y = z. Hence, Sh is an

STS(2h−1). Inside Sh, the vertices having zero as their last coordinate together determine

an STS(2h−1 − 1) which is isomorphic to Sh−1. Thus, for each h ≥ 2, Sh can be obtained

by a sequence of doubling plus one constructions from STS(3). By Theorem 1.1, every Sh

is bicolorable and χ(Sh) = h. We will show that none of the constructed systems Sh has

extended bicolorings.

Let C be a bicoloring of Sh with color classes C1, . . . , C`. We need to prove ` = h. For

this purpose we are going to analyze the positions of blocks with respect to C1, . . . , C`.

Claim 3.2. For any two color classes Ci and Cj , if there exists a block which contains

one vertex from Ci and two vertices from Cj , then for every block B ⊆ Ci ∪ Cj the same

property holds; that is, |B ∩ Ci| = 1 and |B ∩ Cj | = 2.

Proof. Assume to the contrary that there are two blocks B1 = {a, b, c} and B2 =
¶
d, x, y

©
inside Ci ∪ Cj such that a, x, y ∈ Ci and b, c, d ∈ Cj .

If these are six different vertices, consider the block incident with a and d. Its third

vertex, say e, has color either i or j; we may assume without loss of generality that e ∈ Ci.

On the other hand, if B1 and B2 are not disjoint, then they share exactly one vertex, and

renaming the vertices (and changing the indices i and j if necessary) we may assume again

that {a, b, c} and {a, d, e} are two blocks with a, e ∈ Ci and b, c, d ∈ Cj .

By definition of Sh, we have a = b + c = d + e. Consider first the element z = b + e.

Since C is a bicoloring, and {z, b, e} is a block in Sh, we obtain z ∈ Ci ∪Cj . On the other

hand, z = c+ d also holds and z /∈ Cj follows. Thus, z ∈ Ci. (Note for this analysis that

z is non-zero because b 6= e, and also it is distinct from each of a, c, d since z = c+ d, and

z = a would imply b+ c = b+ e, contradicting c 6= e.)

Next, let us consider z′ = a + b + e. Since both a and z = b + e belong to Ci, we see

that z′ /∈ Ci. But z′ = d+ e+ b+ e = b+ d and z′ = b+ c+ b+ e = c+ e are valid as well.

The former one implies z′ /∈ Cj , while the latter implies z′ ∈ Ci ∪ Cj . This contradiction

proves the claim.
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By Claim 3.2 and by the basic property of Steiner triple systems, we can define an

orientation ~K` of the complete graph on the vertex set {1, 2, . . . , `} such that an edge ij

is oriented from i to j if and only if there exists a block B in Sh with |B ∩ Ci| = 1 and

|B ∩ Cj | = 2.

Claim 3.3. The orientation ~K` is transitive.

Proof. For three color classes of C, namely for Ci, Cj , and Ck, assume that we have the

orientations ~ij and ~jk in ~K`. Take three vertices, one from each color class, x ∈ Ci, y ∈ Cj

and z ∈ Ck. Since C is a bicoloring, a = x + z belongs to Ci ∪ Ck. On the other hand,

a = (x + y) + (z + y), and our condition ~ij, ~jk ∈ E( ~K`) implies that x + y ∈ Cj and

z + y ∈ Ck. Hence, a ∈ Ck and ik is oriented from i to k. This proves the transitivity of

the orientation ~K`.

Consequently, the defined orientation is a linear ordering. So, for every bicoloring C of

Sh, there is an order Ci1 , . . . , Ci` of the color classes satisfying the following condition. If

j < k, every block intersecting Cij and Cik contains one vertex from the former class and

two vertices from the latter one.

Claim 3.4. For every j, the color class Cij contains exactly 2j−1 vertices.

Proof. Observe that every block meets Ci1 in at most one vertex, hence |Ci1 | = 1. Then,

we may proceed by induction on j. In the color class Cij , each pair x, y of vertices is

covered by a block whose third vertex is from
⋃j−1

p=1Cip . Each block of this type covers

exactly two vertex pairs between Cij and
⋃j−1

p=1Cip . Hence, by the induction hypothesis,

we obtain Ç
|Cij |

2

å
=

1

2
|Cij |

j−1∑
p=1

|Cip | =
1

2
|Cij |(2j−1 − 1)

that proves |Cij | = 2j−1.

By Claim 3.4, the 2h − 1 vertices of Sh are partitioned into exactly h color classes in

any bicoloring. Therefore, χ(Sh) = χ(Sh) = h, and consequently Sh admits no extended

bicolorings.

The system Sh has a large number of bicolorings; we can take the coordinates i1, i2, . . . ,

ih in any order, and define the jth color class as the set of those vectors in which the

coordinate ij is 1, and all later coordinates are zero. In particular, fixing one coordinate

to be 1 provides h different positions for a set of cardinality 2h−1 that can be taken as the

largest color class. Hence, Sh has at least h! different bicolorings.

As we have seen, Sh is obtained by doubling plus one construction, contains Sh−1 as a

subsystem and admits no extended bicolorings. Another kind of construction is described

in the following result.
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Theorem 3.5. Suppose that S′ is an STS(2h− 1) such that χ(S′) = χ(S′) = h, moreover

there is a (unique) set of 2h−1 vertices which is the largest color class in every bicoloring

of S′. Then S′ can be extended to an STS(2h+1 − 1) system S via doubling plus one

construction such that S does not admit any extended bicoloring.

Proof. Let S′ = (X ′,B′) be an STS(2h − 1) satisfying the assumptions of the theorem.

Let m = 2h−1 and denote by Y the set {y1, . . . , ym} of 2h−1 vertices, which has to be the

largest color class independently of the actual choice of the bicoloring. We extend S′ to

an STS(2h+1 − 1) denoted as S = (X,B), and write X in the form X = X ′ ∪ Y ′ ∪ Y ′′,
where the sets Y ′ = {y′1, . . . , y′m} and Y ′′ = {y′′1 , . . . , y′′m} are viewed as two copies of Y .

We keep all blocks of S′ to form a subsystem of S. The further blocks of S are defined

as follows. If xyiyj ∈ B′ for an x ∈ X ′ \ Y and some yi, yj ∈ Y , then its copies xy′iy
′
j and

xy′′i y
′′
j are blocks in B. To partition the remaining vertex pairs into triples, we note that

the complete bipartite graph with vertex classes Y ′ and Y ′′ admits a 1-factorization into

perfect matchings F1, . . . , Fm. Then the following blocks are created: yi∪f , where f ∈ Fi,

for i = 1, 2, . . . ,m.

Consider any bicoloring C of S. On the set X ′ this induces a bicoloring of S′, therefore

the entire Y is monochromatic. Analogously, since the subsystems induced by (X ′\Y )∪Y ′

and (X ′\Y )∪Y ′′ are isomorphic to S′, each of Y ′ and Y ′′ is monochromatic. Moreover, the

colors on Y ∪Y ′∪Y ′′ cannot occur in X ′ \Y . Since Y ∪Y ′∪Y ′′ cannot be monochromatic,

we obtain that C uses more than h colors (in fact precisely h+ 1 ones). Thus, S does not

have an extended bicoloring.

We note that the assumption on the unique largest color class implies that S′ is ob-

tained by doubling plus one construction from a Steiner triple system S′′ of order 2h−1.

It is not required, however, that also S′′ is created in the same way.

4. Concluding remarks

For the systems STS(2h+1 − 1) we gave new necessary conditions for the existence of

extended bicolorings. In particular, we obtained that the solutions of the equation sys-

tem (1.1), which possibly may define extended bicolorings, can only be of two types:

(0, . . . , 0, ci, 0, . . . , 0, cj , cj+1, . . . , ch) with i ≥ 3, and (0, . . . , 0, ci, ci+1, . . . , ch).

It is important to stress that extended bicolorings of triple systems STS(2h−1) have not

been found yet, while on the other hand the construction of Section 3 — which provably

does not admit an extended bicoloring — does not include all triple systems obtainable by

a sequence of doubling plus one constructions from STS(3). Hence, Gionfriddo’s conjecture

[4] remains open.
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